
Instructions for CORDFER

CORDFER (CRIB-OrganizedRDF Encoder toRoot), is the code which can be used to convert

rdf files to root. This instruction will show how to use and modify the CORDFER according to

your own experimental setup.

1 HOW TO INSTALL AND USE CORDFER

Now, CORDFER is only supported on the LINUX system. To install CORDFER, the

required softwares are only root and yaml. Root provides the necessary libs, and yam-

l must be present for the recipe file (see the next Sec.2 for detail). Please see the website

https://github.com/jbeder/yaml-cpp for yaml installation.

With the head files (@“./include/”), .cpp files (@“./src”), as well as makefile copied from the

J1-PC, CORDFER can be easily compiled by typing “make”.

Some other directories and files are also required in addition to “./include/” , “./src” and

makefile (all of them should be in the same directory level):

“recipe.yaml”: see Sec.2;

“./cordfer map/”: contain all the map files required by CORDFER (see Sec.3);

“./rdf/”: the raw rdf files should be linked to this directory;

“./rootfile/”: contain the root files to be produced.

To execute CORDFER, just type “./cordfer run number (the run you want to convert)”. You

can write a batch script, or add a run number loop into the “./src/main.cpp”, to make a batch

conversion. Please keep in mind that you need to re-make if you modify the files in “./include/”

and “./src/”.

2 RECIPE

“recipe.yaml” is the most important file that you need to modify according to your own ex-

periment. And the CORDFER will create the root branches and leaves according to the recipe

file.

The recipe file is written in YAML format, which is based on the yaml-cpp 0.5.3 to run including

a header file “yaml.h”.

A sample of a regular recipe.yaml file is present as below.

===================Sample of recipe file===================

tree name: “tree”

setup:

- segment no.: 1 #”RF&F1”

dtype: Raw

mapfile: No

branches:

- name: [fRf,1,2,S,0]

- name: [fF1ppac,1,5,S,3]

2

- segment no.: 2 #”PPACs”

dtype: Raw

mapfile: No

branches:

- name: [fPpac,3,5,S,0]

- segment no.: 4 #”CoinReg”

dtype: Bit

mapfile: No

branches:

- name: [fCr,1,3,S,0]

- segment no.: 6 #”CAMAC ADC”

dtype: LeCroy

mapfile: psd.map

branches:

- name: [fPsdE,2,16,S,1]

- segment no.: 8 #”VME ADC”

dtype: CAEN

mapfile: psd vme adc.map

branches:

- name: [fF2SsdE,1,1,S,22]

- name: [fSsdE,1,6,S,23]

- name: [fHpsdE,6,5,S,101]

- segment no.: 9 #”VME TDC”

dtype: CAEN

mapfile: psd vme tdc.map

branches:

- name: [fSsdT,1,6,S,23]

- name: [fPsdT,2,16,S,31]

- name: [fHpsdT1,1,1,S,105]

- name: [fHpsdT2,1,1,S,110]

- name: [fHpsdT3,1,1,S,115]

- name: [fHpsdT4,1,1,S,120]

- name: [fHpsdT5,1,1,S,125]

- name: [fHpsdT6,1,1,S,130]

===================End of recipe file===================

Description:

1. tree name: Define the tree name of the root file to be produced. In this sample, the tree

name is set as “tree”.

2. segment no: segment ID. The ID for each segment has been fixed in the DAQ programme.

If you want to add a new segment, please check the DAQ code for the segment ID.

3. dtype: decoder type for this segment. There are four types: Raw, Bit, LeCroy and CAEN.

Please select the decoder type according to the DAQ module used for this segment to decode the

raw data.

3

4. mapfile: map file name. Only the CAMAC ADC and VME A/TDC require the map files.

Please see the detailed information for the mapping in the next section.

5. name: define all the branch information to be created in the root file. There are five

parameters for each branch: 1. branch name; 2. dimension of the array corresponding to this

branch; 3. channel numbers of each dimension; 4. data type of this branch, here, “S” indicates

short; 5. ID of the FIRST channel according to the map file.

Notes:

1. Basically, you do not need to modify the Segments 1, 2 and 4, which are based on the

setup of CRIB. Please just update the information of Segments 6, 8 and 9 according to your

experimental setup.

2. If you want to use an array to contain all the leaves for a branch, you must make sure that

IDs of these leaves are continuous in the map file. Take the HPSD timing signal (segment

ID 9) in the sample as an example. There are 6 HPSD timing channels, and according to the

definition of the TDC map file, the channel IDs of these signals are 105, 110, 115, 120, 125 and

130, respectively, which are not continuous. Thus you have to define them as branches separately.

3. All the data types defined in CORDFER are short. So please keep the “S” as the data type

in the recipe.

4. The maximum number of branch for each segment is set to be 9. And the maximum numbers

of array dimension, as well as channel for each dimension are set to be 9 and 96, respectively. You

can modify these default values in the head file of “./include/FillBranch.h”.

5. CORDFER reads the rdf files from the directory of “./rdf/”. So please link your rdf files

to this directory. The default output path is “./rootfile/”. These pathes can be modified in the

subroutine of “ReadRecipe” in the head file of “./include/FillBranch.h”.

3 MAPPING

The psd.map (which is used for the CAMAC ADC) can be used directly by CORDFER. Please

copy it to the directory of “./cordfer map/”.

The psd vme.map, however, is needed to convert to an appropriate format, which then can

be accepted by CORDFER. You can use the code MapConvert.cpp to fulfill this conversion.

With this small code, the psd vme.map (the path to this map should be specified in the code)

will be separated into psd vme adc.map and psd vme tdc.map, and stored in the directory of

“./cordfer map/” by default. Then CORDFER will read in these map files (psd vme adc.map,

psd vme tdc.map, as well as psd.map) from “./cordfer map/”.

So please make sure that all these maps are stored in this directory. Of course you can modify

the path as you want, but then please remember to update the path information of the maps in

CORDFER (the subroutine of “ReadRecipe” in the head file of “./include/FillBranch.h”).

4 SHELL SCRIPTS

You can also use shell scripts to set the links. The path to “./bin” directory is needed to be

specified by adding the following sentence into your shell profile, i.e., bashrc.

4

export PATH=$HOME/[path to cordfer directory]/bin:$PATH

Then the following commands can be used.

♣ setmap

setmap can make map files from anapaw map files. For instance, if you have map files in the

“home/exp/crib/be7 thm/src/”, use setmap as

setmap home/exp/crib/be7 thm/src/

and it automatically creates “cordfer map” with a symbolic link, “@map”, by using a perl script.

♣ setrdf

setrdf simply creates a symbolic link, “@rdf”, where rdf files are. Just use it as setmap.

♣ cordfer

It is almost same as “./cordfer” but gives you some information on its usage and version.

5 CALIBRATION

The root file produced by CORDFER only contains the raw data, without calibration. A sample

of calibration code is provided in the directory of “./cali convert/”. In this directory, please type

“./caliconvert”, and then input the minimum and maximum run numbers you want to calibrate.

With this code, the CRIB beam line detectors, i.e., F1-, F2- and F3-PPACs, as well as the

RF signals, can be calibrated (the original ppac.prm file is required). And you can also add

the calibration parameters of your own detectors to this code. The default output path of the

calibrated root file is “./cali rootfile/”.

