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Abstract

Resonance states in12N were studied by using the resonance elastic scattering of11C + p with a low-energy radioactive
ion beam of11C at 3.5 MeV/nucleon and a thick(CH2)n target. The11C beam was separated by a newly installed CNS
radioactive ion beam separator (CRIB). The energy spectrum of recoil protons was measured at laboratory scattering angles
aroundθLAB = 0◦ to identify resonance states in12N. The spin-parity values ofJπ = 3− and (2)+ have been determined
for the levels at the excitation energies ofEx = 3.1 and 3.6 MeV in12N, respectively, suggesting a small contribution of the
3.1-MeV level to the11C(p,γ )12N stellar reaction.
 2003 Elsevier Science B.V. All rights reserved.
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Experimental studies on unstable nuclei using low-
energy radioactive ion (RI) beams are very useful to
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investigate low-energy nuclear properties, especially,
for astrophysical interests. We have developed an
extensive low-energy RI beam separator of in-flight
type for this purpose. The choice of in-flight type,
instead of ISOL, allows us to produce RI beams rather
easily due to its technical simplicity in extracting RI
from targets. On the other hand, ISOL type separators
often require elaborate works on ion sources, whose
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efficiencies depend on the chemical properties of RI to
be extracted. Using the low-energy in-flight separator,
we have performed the first experiment of the elastic
resonance scattering of11C + p to study resonance
states in12N.

Resonance states just above the proton threshold
in 12N have been discussed in conjunction with the
astrophysical reaction rate of11C(p,γ )12N [1–4]. This
reaction could play a key role for production of
heavy elements ofA � 12 from light elements of
the primordial origin [5]. This reaction would have a
large influence on the fate of metal-deficient massive
stars, which can be classified as Population III, in
the early universe. Although the stellar reaction rate
of 11C(p,γ )12N cannot be determined from the data
of 11C + p elastic scattering, it is important to know
precisely the energies, total widths, and spin-parities
(Jπ ) of the levels as well as to search for new
levels above the proton threshold. The low-lying
levels in 12N were previously studied mainly by
the 10B(3He, n)12N and12C(3He, t)12N reactions [6].
However, as discussed later, some of the levels are not
well known in terms ofJπ . The present experiment of
11C+ p gives an alternative way to investigate the12N
levels.

In the present Letter, we observed the elastic
resonance scattering of11C+ p in inverse kinematics,
p(11C, p). A low-energy11C beam was used in the
thick target method [7–9]. In this method, the energies
of recoil protons, coming out from a thick target, are
measured at a forward angle in the laboratory frame

and then converted to the center-of-mass energies of
scattering. Due to the thick target, a wide range of
the excitation function for the elastic scattering can be
measured with a beam of fixed energy. A resonance
state, if it exists with a sufficiently large width, can be
identified in the excitation function as an interference
pattern of potential and resonance scattering. The
resonance energy, width, andJπ can be determined
from the excitation function. Therefore, this method
is very useful to study proton resonances in proton-
rich unstable nuclei [10–13]. In this Letter, we report
the first experimental result on the elastic resonance
scattering of11C+ p using the RI beam of11C. Some
Jπ assignments have been made successfully for the
low-lying levels in12N above the proton threshold.

The experiment was performed using the CNS ra-
dioactive ion beam separator (CRIB) [14], which was
recently installed by CNS, in the RIKEN acceler-
ator research facility. Fig. 1 shows the experimen-
tal setup. A primary beam of10B was accelerated
up to 7.8 MeV/nucleon by an AVF cyclotron with
K = 70. The primary beam bombarded a3He gas tar-
get with a thickness of 0.25 mg/cm2. The target gas
was confined in a small chamber with entrance and
exit windows. The gas pressure was 1 atmosphere and
Havar foils of 2.2-µm thick were used for the win-
dows. A secondary beam of11C was produced by
the3He(10B, 12N∗)n reaction, where the11C particles
were emitted from the unbound levels in12N. The sec-
ondary11C particles were separated by CRIB, which
consisted of two dipole and four quadrupole magnets.

Fig. 1. Setup for the production of the11C beam using the separator CRIB. The experimental setup for the11C+ p scattering was installed in
the chamber at F2.
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The primary beam of10B was removed from the sec-
ondary beam by the first dipole magnet and stopped
by a beam dump on an inner wall of the magnet. There
were two focal planes, a momentum dispersive focal
plane (F1) between the two dipole magnets and an
achromatic focal plane (F2) at the end of the separa-
tor. An energy degrader of 10-µm thick Mylar foil was
installed at F1 to remove background light ions from
the secondary beam. A horizontal slit was set at F1
to select the11C particles in an energy region of 4.5–
4.7 MeV/nucleon after the degrader.

At F2, a setup for the11C + p scattering was in-
stalled inside a vacuum chamber (the inset in Fig. 1).
The setup consisted of two parallel-plate avalanche
counters (PPACs) [15], a (CH2)n target with a thick-
ness of 8.0 mg/cm2, and a pair of�E–E silicon de-
tectors with thicknesses of 70 and 1500 µm, respec-
tively. Each PPAC was capable of measuring timing
and two-dimensional hit position. The identification
of 11C was made event-by-event by using time-of-
flight between the two PPACs. The beam profile on
the target was also monitored by the position infor-
mation of the PPACs. The beam intensity of11C was
1.7× 104 particles/s, which was about 17% of the to-
tal secondary-beam intensity. The major contaminant
in the beam was10B caused by scattering of the pri-
mary beam at inner walls of the magnets. The beam
spot widths were 18 mm (FWHM) horizontally and
13 mm (FWHM) vertically. The horizontal and verti-
cal angular widths of the beam were 25 mrad (FWHM)
and 53 mrad (FWHM), respectively. The energy of the
11C beam after the PPACs was 3.5 MeV/nucleon with
a width of 0.2 MeV/nucleon (FWHM).

The11C particles were fully stopped in the (CH2)n
target and the recoil protons, which went out from the
target, were detected by the�E andE detectors. The
�E andE detectors were mounted at 30-cm down-
stream of the target and were centered at the labora-
tory angleθLAB = 0◦ (the center-of-mass angleθCM =
180◦), coveringθLAB = 0◦–5◦ (θCM = 170◦–180◦).
The�E detector had double-sided strips, which were
used to determine the two-dimensional hit position. By
the proton hit position and the PPAC angular informa-
tion, the scattering angle was determined with a reso-
lution of �θLAB = 0.6◦ (FWHM). The identification
of proton was made by using the�E–E information
and time-of-flight measured by the PPACs and the�E

detector. From the sum of the energies measured by

the�E andE detectors, the proton energy (Ep) after
the target was deduced with a resolution of 170 keV
(FWHM). The calibration ofEp was performed by us-
ing secondary proton beams separated by CRIB at sev-
eral energy points.

One can convertEp to the center-of-mass en-
ergy (ECM) by taking into account the kinematics of
11C+ p and energy loss of particles in the target.
The resolution ofECM was deduced to be 50 keV
(FWHM) from theEp resolution, theθLAB resolution,
the beam energy width, and energy straggling of par-
ticles in the target. This resolution is much better than
the Ep resolution because of the kinematic factor of
dECM/dEp ∼ 0.3 atθLAB ∼ 0◦. The systematic error
in deducingECM was estimated to be±20 keV, which
came mainly from those ofEp and the beam energy.
Since the proton threshold in12N is 0.601 MeV [6], the
excitation energy in12N is Ex = ECM + 0.601 MeV.

A data with a C target (10.7 mg/cm2) was also
taken in a separate run to evaluate the background
contribution from the reactions of11C with C atoms
in the (CH2)n target. The proton spectrum with the C
target had a bump shape centered atEp ∼ 6 MeV with
a width of∼ 4 MeV (FWHM) and without any sharp
structure. The yield normalization for the two proton
spectra with the (CH2)n and C targets was made by
number of beam particles and by target thickness per
unit energy loss of beam. After the normalization, the
proton yield in the spectrum with the C target was
about 1/5 of that with the (CH2)n target. Then, the
spectrum for the H target was deduced by subtracting
the normalized spectrum with the C target from that
with the (CH2)n target. Finally, the vertical scale of
the spectrum was converted from counts todσ/dΩ by
using the energy-dependent target thickness inversely
proportional to the beam stopping power (see Eq. (9)
in Ref. [9]), the detector solid angle, and the total beam
particles of 3.14× 109 for the spectrum.

Fig. 2 shows the experimental result of the pro-
ton spectrum for the11C + p scattering. The spec-
trum covers a region ofECM = 0.3–3.1 MeV. The
error bars indicate the statistical errors only. The sys-
tematic error in the absolute magnitude ofdσ/dΩ

is ±4%, which is mainly due to that in the detec-
tor solid angle. The events inEp = 2.3–2.7 MeV
(ECM = 0.73–0.85 MeV) were not always registered
with correct energies due to the dead layers between
the �E and E silicon detectors. These events were
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Fig. 2. Experimental proton spectrum for the11C + p elastic
scattering. The vertical scale is thedσ/dΩ averaged over the
detector solid angle (∼ dσ/dΩ at θCM = 180◦). The solid line is
a result by the resonance formula with the parameters in Table 2.
The dashed line represents the spectral shape forJπ = 2− at
Ex = 3.1 MeV. Arrows indicate resonance energies. A rough scale
of proton energy (Ep) is also displayed.

Table 1
Levels in12N above the proton threshold. The present experimental
spectrum is consistent with theEx andΓ values for the levels at
Ex = 1.2–3.6 MeV and theJπ values for the levels atEx = 1.2–
2.4 MeV

Jπ Ex (MeV) Γ (MeV) Jπ c

2+ a 0.960± 0.012a < 0.020a

2− a 1.191± 0.008a 0.118± 0.014a

1− a 1.80± 0.03a 0.75± 0.25a

0+ a 2.439± 0.009a 0.068± 0.021a

2+, 3− a, (3−)b 3.132± 0.008a 0.220± 0.020a 3−
(1)+ a, (1−,2+)b 3.558± 0.009a 0.220± 0.025a (2)+

2− b 4.18± 0.05b 0.836± 0.025b

4− b 4.41± 0.05b 0.744± 0.025b

a From Ref. [6].
b From Ref. [21].
c Present work.

removed from the spectrum. There are six known
12N levels in the spectral range (Ex = 0.9–3.7 MeV)
as listed in Table 1. The spectrum clearly shows an
interference pattern of potential scattering and reso-
nance scattering. Two peaks are prominently seen at
ECM ∼ 0.6 and∼ 2.5 MeV. These are due to the reso-
nance states atEx = 1.2 and 3.1 MeV, respectively. No
clear signature of the first 2+ level atEx = 0.96 MeV
(ECM ∼ 0.36 MeV) is seen in the spectrum because

its width is too narrow (Γ < 20 keV and probably
Γ ∼ 5.5 keV [3]) compared with the energy reso-
lution. A flat distribution of events atECM = 1.0–
1.7 MeV is due to the wide (Γ = 0.75 MeV) level
of 1− at Ex = 1.8 MeV. A contribution from the nar-
row (Γ = 0.068 MeV) level of 0+ at Ex = 2.4 MeV
can be seen as a small dip atECM ∼ 1.8 MeV. A val-
ley of yield atECM ∼ 2.9 MeV is due to the level at
Ex = 3.6 MeV. An increase of yield with energy at
ECM > 2.9 MeV can be explained partly by contribu-
tions from the levels atEx = 4.2 and 4.4 MeV, which
are out of the spectral range.

A calculation utilizing a resonance formula was
performed to derivedσ/dΩ and the result was com-
pared with the experimental spectrum. The formula is
based on Ref. [16] and involves potential scattering
(Rutherford+ hard-sphere) amplitudes and a sum of
single-level resonance amplitudes for the seven levels
from Ex = 1.2 to 4.4 MeV. For the sake of simplic-
ity, we assume that only a single-particle proton orbit
of �j contributes to a resonance. This may be a good
approximation for the low-lying negative-parity lev-
els (2s1/2 ⊗ 1p−1

3/2 or 1d5/2 ⊗ 1p−1
3/2) with T = 1 in

A = 12 nuclei [17–20]. The level widthΓR is defined
asΓ�(ER), whereER is the resonance energy andΓ�

is the energy-dependent proton width proportional to
the penetration factor for�. Since the channel spin can
be s = 1 or 2 for the spin pair ofI1 = 3/2 (11C) and
I2 = 1/2 (proton),Γ� is equal to the sum of the partial
widths for the twos values (Γ� = ∑

s Γs�). A single-
level resonance amplitude for thes → s′ scattering is
proportional toigs�gs ′�/(ER + ∆� − ECM − iΓ�/2),
wheregs� = ±Γ

1/2
s� as defined in Ref. [16] and∆�

is the energy shift with the boundary condition of
∆�(ER) = 0. Due to the pure�j orbit,gs� may be pro-
portional to the Racah recoupling-transformation co-
efficient between the two coupling schemes of (�I1 +
�I2 = �s; �s + �� = �J ) and (�� + �I2 = �j ; �I1 + �j = �J ). The
gs� value was deduced from this coefficient and the in-
put parameters ofER andΓR. The corrections for the
finite detector solid angle and the detector energy res-
olution were also included in the calculation.

The solid line in Fig. 2 indicates the result of
calculation with the resonance parameters shown in
Table 2. A channel radius of 4.5 fm [18,19] is used
for the resonances and the hard-sphere scattering. The
ER, ΓR andJπ values were taken from Refs. [6,21].
The� of the proton orbit for each level is also shown
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Table 2
Resonance parameters for the proton spectrum shown by the solid line in Fig. 2

ER (MeV) 0.59a 1.20a 1.84a 2.53a 2.96a 3.58b 3.81b

ΓR (MeV) 0.12a 0.75a 0.07a 0.22a 0.22a 0.84b 0.74b

Jπ 2− 1− 0+ 3− 2+ 2− 4−
� 0 0 1 2 1 2 2

a From Ref. [6].
b From Ref. [21].

in Table 2. Fors- and d-waves, the corresponding
proton orbits were assumed to be 2s1/2 and 1d5/2,
respectively. For the 0+ level, 1p3/2 is taken sincej =
3/2 is required to makeJ = | �I1 + �j | = 0. In the level
at Ex = 3.6 MeV, 1p3/2 and 1p1/2 components may
be comparably mixed. However, 1p1/2 was tentatively
taken for this level, producing almost the same result
as one taking 1p3/2. The theoretical curve agrees well
with the experimental spectrum, indicating that all
the knownER and ΓR of the levels atEx = 1.2–
3.6 MeV are consistent with the present spectrum. The
simplification of no�-mixing in each level seems to be
also supported by the agreement of the spectral shape.

The Jπ of the level atEx = 3.1 MeV was previ-
ously assigned to be 2+ or 3− [6]. The data of the
12C(p, n)12N reaction [21], which was measured af-
ter the level compilation of Ref. [6], gave an assign-
ment ofJπ = (3−). Our experimental result is con-
sistent with the calculation withJπ = 3− (d-wave)
for this level. A result takingJπ = 2+ (p-wave) and
keeping the same width does not reproduce the peak at
ECM ∼ 2.5 MeV, and gives, instead, a valley of yield
there. Therefore, the possibility of 2+ at this energy is
excluded. The peak height depends on theJ value and
is consistent withJπ = 3−. Taking a different possible
J value (0,1,2, or 4) for thed-wave resonance gives
a worse fit to the experimental peak. For example, the
peak forJπ = 2−, shown by the dashed line in Fig. 2,
has a lower height than the 3− peak height by 14%,
while the uncertainty in the calculated peak height is
only ±2 % due to the uncertainty in theER andΓR

parameters. The peak height may also change if ans-
wave component is largely admixed in this level. Such
a mixture, possible only forJπ = 1− and 2−, modi-
fies also the peak shape considerably and makes the fit
further worse. The present assumption of the pured5/2
orbit for thed-wave resonance can be justified by indi-
cations of smalld3/2 contributions to low-lyingT = 1
levels inA = 12 nuclei [17–20]. From the above con-

siderations, we adoptJπ = 3− here for the 3.1-MeV
level.

The Jπ of the level atEx = 3.6 MeV was previ-
ously assigned to be (1)+ in Ref. [6] and(1−, 2+)

in Ref. [21]. A result of the present calculation taking
Jπ = 1− (s- or d-wave) produces a peak atECM ∼
2.9 MeV, and therefore, is not consistent with the
experimental spectrum. On the other hand, both re-
sults takingJπ = 2+ (p-wave), as shown by the solid
line in Fig. 2, and 1+ (p-wave) reproduce the val-
ley of yield there. However, it is difficult to deter-
mine uniquely theJ value from the depth of the valley
because the contributions from higher levels are not
taken into account precisely. If we compare theT = 1
triplets in A = 12 nuclei (see Fig. 2 in Ref. [21]),
Jπ = 2+ is more likely for this level, because there is
no 1+ (T = 1) level near the first 3− (T = 1) level in
12B (12C). Therefore, we tentatively adoptJπ = (2)+
for the 3.6-MeV level.

The inelastic scattering p(11C,11C∗)p could occur
at the energies aboveECM = 2.0 MeV since the
first excited state in11C is at Ex = 2.0 MeV [6].
In the present experimental condition, recoil protons
by the inelastic scattering should haveEp = 1.7–
7.4 MeV when they come out from the target. There
is no significant excess of events in this region of
the experimental spectrum as compared with the
theoretical curve. Therefore, the contribution of the
inelastic scattering to the spectrum is considered to be
negligible.

In the stellar reaction of11C(p,γ )12N, the lowest
three excited levels in12N at Ex = 0.96, 1.2, and
1.8 MeV were suggested to play important roles at
the temperature region ofT9 < 1 [1]. The energies and
widths for the latter two levels have been confirmed
by the present experiment. The assignment ofJπ =
3− has been made for the level atEx = 3.1 MeV.
Therefore, we can conclude that the 3.1-MeV level
does not contribute to the (p,γ ) reaction rate so
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much, even atT9 > 1, since the level decays by
M2 or E3 transitions to the12N (g.s.; 1+), which is
the unique bound state in12N. The (p,γ ) reaction
rate was investigated experimentally by the Coulomb
dissociation of12N [3,4]. However, the most crucial
resonance parameters, the gamma widths, have been
determined only for the 1.2-MeV level with a large
uncertainty. Thus, the reaction rate is still an open
question and the gamma width measurements are the
next experimental goal for the present stellar reaction.

In summary, we observed the elastic resonance
scattering of11C + p using an RI beam of11C,
obtained from the newly installed RI beam separator
CRIB. In the recoil proton spectrum, levels in12N
were identified in the region ofEx = 0.9–3.7 MeV.
We have made the assignments ofJπ = 3− and(2)+
for the levels atEx = 3.1 and 3.6 MeV, respectively.
The present newJπ assignment suggests a small
contribution of the 3.1-MeV level to the11C(p,γ )12N
stellar reaction. The present results of11C+ p clearly
demonstrate a capability of the present experimental
technique, the low-energy RI beam separator of in-
flight type for nuclear spectroscopy on unstable nuclei.
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