Shell-model description of ¹⁶C with modern NN forces

Shinichiro Fujii (CNS, Univ. of Tokyo)

- **1. Recent studies of ¹⁶C**
- 2. Derivation of effective interaction
- 3. Large-scale shell-model calculation
- 4. Results (energy levels, B(E2))
- **5.** Summary

Collaborators

Takahiro Mizusaki (Senshu Univ.) Takaharu Otsuka (Univ. of Tokyo) Takashi Sebe (Hosei Univ.) Akito Arima (JSF)

CNS Workshop on *Past, Present and Future of Shell Model* (with a course of shell-model code), Jan. 26-28, 2006, CNS

week ending 13 FEBRUARY 2004

Anomalously Hindered E2 Strength $B(E2; 2_1^+ \rightarrow 0^+)$ in ¹⁶C

N. Imai,^{1,*} H. J. Ong,² N. Aoi,¹ H. Sakurai,² K. Demichi,³ H. Kawasaki,³ H. Baba,³ Zs. Dombrádi,⁴ Z. Elekes,^{1,†}
N. Fukuda,¹ Zs. Fülöp,⁴ A. Gelberg,⁵ T. Gomi,³ H. Hasegawa,³ K. Ishikawa,⁶ H. Iwasaki,² E. Kaneko,³ S. Kanno,³ T. Kishida,¹ Y. Kondo,⁶ T. Kubo,¹ K. Kurita,³ S. Michimasa,⁷ T. Minemura,¹ M. Miura,⁶ T. Motobayashi,¹
T. Nakamura,⁶ M. Notani,⁷ T. K. Onishi,² A Saito,³ S. Shimoura,⁷ T. Sugimoto,⁶ M. K. Suzuki,² E. Takeshita,³ S. Takeuchi,¹ M. Tamaki,⁷ K. Yamada,³ K. Yoneda,^{1,‡} H. Watanabe,¹ and M. Ishihara¹
¹RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
²Department of Physics, University of Tokyo, Hongo 7-3-1, Bunkyo, Tokyo 113-0033, Japan
³Department of Physics, Rikkyo University, Nishi-Ikebukuro 3-34-1, Toshima, Tokyo 171-8501, Japan
⁴ATOMKI, H-4001 Debrecen, P.O. Box 51, Hungary
⁵Institut für Kernphysik der Universität zu Köln, D-50937 Köln, Germany
⁶Department of Physics, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro, Tokyo 152-8551, Japan
⁷CNS, University of Tokyo, RIKEN campus, Hirosawa 2-1, Wako, Saitama 351-0198, Japan

The electric quadrupole transition from the first 2^+ state to the ground 0^+ state in ${}^{16}C$ is studied through measurement of the lifetime by a recoil shadow method applied to inelastically scattered radioactive ${}^{16}C$ nuclei. The measured mean lifetime is 77 + 14(stat) + 19(syst) ps. The central value of mean lifetime corresponds to a $B(E2; 2^+_1 \rightarrow 0^+)$ value of $0.63e^2 \text{ fm}^4$, or 0.26 Weisskopf units. The transition strength is found to be anomalously small compared to the empirically predicted value.

Theoretical studies

DOI: 10.1103/PhysRevLett.92.062501

PACS numbers: 23.20.Js, 21.10.Tg, 27.20.+n, 29.30.Kv

Shell model Eff. int. for the 0p1s0d shells Eff. charge

• AMD

Eff. int. MV1(central) + G3RS (spin-orbit) Bare charge

Both methods can reproduce the systematic decrease of the experimental $B(E2; 2_1^+ \rightarrow 0_1^+)$ values in the neutron-rich C isotopes with increasing the mass number up to A = 16. However, the absolute values are considerably larger than the experiments.

New approach to neutron-rich C isotopes

• Large-scale shell model

- Code: newly developed version of MSHELL
- Model space: the 0s 1p0f shells
- Nucleon excitation: up to 2 nucleons from the occupied shells for ¹⁴C

up to 2 nucleons to the 1p0f shells

Bare charge

• Microscopic effective interaction

Derived from a high-precision NN interaction (CD Bonn, …) and the Coulomb force in the neutron-proton formalism for the given model space through a unitary-transformation theory

Derivation of effective interaction

• Eff. int. in a huge model space

 $\rho_1 = 2n_a + l_a + 2n_b + l_b$ ({ n_a, l_a } and { n_b, l_b }: sets of h.o. quantum numbers of two-body states)

Unitary transformation

- S. Okubo, Prog. Theor. Phys. 12, 603 (1954)
- S. F., R. Okamoto, and K. Suzuki, Phys. Rev. C 69, 034328 (2004)

• Eff. int. in the 0s - 1p0f shells

Calculated results by the unitary-model-oparator approach (UMOA) In the present shell model without any adjustable parameters

→ wrong order for the 1/2⁺ and 5/2⁺ states in ¹⁵C due to the *small* modelspace size

To remedy the wrong order and reproduce the binding energies for the $1/2^+$ and $5/2^+$ states of the UMOA results

→ introduce a minimal refinement on the one-body energies for the $0d_{5/2}$ and $1s_{1/2}$ orbits of the neutron

The calculated results are denoted by "dressed"

Occupation numbers in ¹⁴C and ¹⁶C

for "dressed"

	$oldsymbol{J}^{\pi}$	p or n	0 <i>p</i> _{3/2}	0 <i>p</i> _{1/2}	1s _{1/2}	$0d_{5/2}$
¹⁴ C	0_{1}^{+}	р	3.58	0.27	0.10	0.02
		n	3.87	1.94	0.08	0.02
	2_{1}^{+}	р	2.82	1.02	0.09	0.02
		n	3.87	1.94	0.08	0.03
¹⁶ C	0_{1}^{+}	р	3.40	0.42	0.12	0.02
		n	3.87	1.94	0.95	1.03
	2_{1}^{+}	р	3.39	0.44	0.12	0.02
		n	3.88	1.94	0.80	1.19 /

Summary

- Developed a new shell-model framework to microscopically investigate neutron- or proton-rich exotic nuclei
 - Large-scale shell-model code new MSHELL
 - Microscopic effective interaction derived from the CD-Bonn potential through a unitary-transformation theory
- Experimental low-lying energy levels and B(E2) in ¹⁶C \rightarrow well reproduced by the calculation
- Including the genuine three-body force and diminishing the approximations in the calculation