Gamow-Teller strengths in p-, sd- and pf-shell nuclei as a test case of shell-model calculations

-Comparison of B(GT): Exp. & SM-

Y. Fujita, Osaka Univ. at SM workshop, Tokyo, 2006. Jan.26-28

Vibration Modes in Nuclei (Operators)

Microscopic classification of giant resonances

	$\Delta S = 0$ $\Delta T = 0$	$\Delta S = 0$ $\Delta T = 1$	$\Delta S = 1$ $\Delta T = 0$	$\Delta S = 1$ $\Delta T = 1$
L = 0		$\Sigma \tau_i$ IAS		$\Sigma \vec{\sigma}_i \tau_i$ GTR
2 nd order	$\frac{\sum r_i^2}{\text{ISGMR}}$	$\sum r_i^2 \tau_i$ IVGMR	$\sum r_i^2 \vec{\sigma}_i$ ISSMR	$\sum r_i^2 \vec{\sigma}_i \tau_i$ IVSMR
L = 1		$\sum r_i Y_m^1 \tau_i$ IVGDR	$\sum r_i Y_m^1 \vec{\sigma}_i$ ISSDR	$\sum r_i Y_m^1 \vec{\sigma}_i \tau_i$ IVSDR
2 nd order	$\sum r_i^3 Y_m^1$ ISGDR			
L = 2	$\sum r_i^2 Y_m^2$ ISGQR	$\sum r_i^2 Y_m^2 \tau_i$ IVGQR	$\sum r_i^2 Y_m^2 \vec{\sigma}_i$ ISSQR	$\frac{\sum r_i^2 Y_m^2 \vec{\sigma}_i \tau_i}{\text{IVSQR}}$
L = 3	$\sum r_i^3 Y_m^3$ ISGOR	$\sum r_i^3 Y_m^3 \tau_i$ IVGOR	$\Sigma r_i^3 Y_m^3 \vec{\sigma}_i$ ISSOR	$\sum r_i^3 Y_m^3 \vec{\sigma}_i \tau_i$ IVSOR

B(GT) derivation

★β decay :fundamental, but E_{χ} range :limited "Q-window limitation" ★(p, n) reaction at intermediate energies (E = 100-500 MeV) "proportionality" : B(GT) and $\sigma(0^\circ)$ $\sigma(0^\circ) = KN_{\sigma\tau} | J_{\sigma\tau}(0^\circ) |^2 B(\text{GT})$ ⇒Breakthrough against "Q-window limitation"

but resolution : rather poor ($\Delta E = 200-400 \text{ keV}$)

★(³He, t) reaction at intermediate energies (E = 130-150 MeV/u) "high resolution" (ΔE < 50 keV) ☆magnetic spectromerter, matching techniques "proportionality" : good (B(GT) > 0.03)
⇒Breakthrough against "Energy resolution limitation" ⇒Reliable B(GT) values for individual transitions

B(GT) derivation

 \star β decay :fundamental, but E_{χ} range :limited "Q-window limitation"

 \star (*p*, *n*) reaction at intermediate energies (*E* = 100-500 MeV)

"proportionality" : B(GT) and $\sigma(0^{\circ})$ $\sigma(0^{\circ}) = KN_{\sigma\tau} | J_{\sigma\tau}(0^{\circ}) |^2 B(GT)$

⇒Breakthrough against "Q-window limitation" but resolution : rather poor ($\Delta E = 200-400 \text{ keV}$)

★(³He, t) reaction at intermediate energies (E = 130-150 MeV/u) "high resolution" (ΔE < 50 keV) ☆magnetic spectromerter, matching techniques "proportionality" : good (B(GT) > 0.03)
⇒Breakthrough against "Energy resolution limitation" ⇒Reliable B(GT) values for individual transitions

²⁸Si: CE Reactions (II)

(p, n) spectra for Fe and Ni Isotopes

(p, n) spectra for A>90 Nuclei

Figure 10 Zero-degree (p,n) spectra for medium A-mass nuclei at the indicated incident energies.

B(GT) derivation

 \star β decay :fundamental, but E_{χ} range :limited "Q-window limitation"

 \star (*p*, *n*) reaction at intermediate energies (*E* = 100-500 MeV)

"proportionality" : B(GT) and $\sigma(0^{\circ})$ $\sigma(0^{\circ}) = KN_{\sigma\tau} | J_{\sigma\tau}(0^{\circ}) |^2 B(GT)$

⇒Breakthrough against "Q-window limitation" but resolution : rather poor ($\Delta E = 200-400 \text{ keV}$)

★(³He, *t*) reaction at intermediate energies (E = 130-150 MeV/u) "high resolution" ($\Delta E < 50 \text{ keV}$)

☆magnetic spectromerter, matching techniques
 "proportionality" : good (B(GT) > 0.03)
 ⇒Breakthrough against "Energy resolution limitation"
 ⇒Reliable B(GT) values for individual transitions

⁵⁶Fe(³He,t) : low-lying GT states

Wave function (radial direction)

?? Proportionality ??

*proportionality has been most well studied in (³He,t)

Universal proportionality X ← for all mass A
 Specific proportionality O ← for each A (of the order of a few - 10%)

Larger uncertainties of the proportionality: 1) for the $j_{<} \rightarrow j_{<}$ transitions (weak!) (ex. $p_{1/2} \rightarrow p_{1/2}, d_{3/2} \rightarrow d_{3/2}$) 2) when a w.f. has a node (ex. $2s_{1/2} \rightarrow 2s_{1/2}, 2p_{3/2} \rightarrow 2p_{3/2}$) at N=18 at N=30

at the sd -shell region

**A=23 T=1/2 \rightarrow 1/2 transitions

**A=26 T=1 \rightarrow 0 transitions

²⁶Mg(³He,t) spectrum and SM cal. B(GT)

B(GT) distributions (low-lying): Exp. & SM

**A=28 T=0 \rightarrow 1 transitions

at the Ni region of fp -shell

Isospin symmetry energy & Ratio of isospin CG coefficients

(p, n) spectra for Fe and Ni Isotopes

at the lower part of fp -shell region

**Critical case: A=41, T_z=3/2→1/2 transitions

Comparison of two β -decay results

(³He,t) B(GT) : J = 1/2, 3/2, 5/2

**A=46, T=0, 1 system

B(GT) Experiment vs Calculations

**"Width" represents a lot !

Comparison: ²⁶Mg(³He,t)²⁶Al and ²⁶Mg(d,²He)²⁶Na

²⁶Mg(³He,t) spectrum and SM cal. B(GT)

⁹Be(³He,t)⁹B spectrum (at various scales)

**Limitation of the Space

Summary

*Observed strengths are well reproduced (by including the recommended "quenching factor") *Fragmentation of strengths: A=23, 26 very good ! A=28 not so well sd & f should be included A=41 A=46 deformed: fp and sd are needed A=58 **GXPF1** reproduced well ! *Widths of states: more sophisticated !?