Shell model calculations for the mass around 100 region in a truncated SD space

S. Hara (Saitama University), N. Yoshinaga (Saitama University), K. Higashiyama (University of Tokyo)

-Motivation
 - Pair truncated shell model
 - Results of energy spectra
 -Summary

Introduction

- We perform systematic studies for the nuclei ${ }^{96,98,100} \mathrm{Mo},{ }^{98,100,102} \mathrm{Ru},{ }^{100,102,104} \mathrm{Pd}$ within the framework of a pair-truncated shell model.
- The interaction strengths are determined to reproduce experimental energy levels for each nucleus.
-The set of mean values of interaction strength adjusted for each nucleus is applied to all the nuclei.

SD- pair states

S- pair

D. pair

Closed shell

$$
S^{\dagger}=\sum_{j} \alpha_{j} A_{0}^{\dagger(0)}(j j)
$$

$$
D_{M}^{\dagger}=\sum_{j_{1} j_{2}} \beta_{j_{1} j_{2}} A_{M}^{\dagger(2)}\left(j_{1} j_{2}\right)
$$

$$
\left(A_{M}^{\dagger(J)}\left(j_{1} j_{2}\right)=\sum_{m_{1} m_{2}}\left(j_{1} m_{1} j_{2} m_{2} \mid J M\right) c_{j_{1} m_{1}}^{\dagger} c_{j_{2} m_{2}}^{\dagger}=\left[c_{j_{1}}^{\dagger} c_{j_{2}}^{\dagger}\right]_{M}^{(J)}\right)
$$

Hamiltonian

-Pairing+quadrupole interaction

$$
\begin{aligned}
\mathbf{H} & =\sum_{\mathrm{jm} \tau=v, \pi} \varepsilon_{\mathrm{j} \tau} \mathbf{c}_{\mathrm{jm} \tau}^{\dagger} \mathbf{c}_{\mathbf{j m} \tau} \\
& -\sum_{\tau=v, \pi}\left[\mathbf{G}_{\mathbf{0} \tau} \mathbf{P}_{\tau}^{\dagger(0)} \mathbf{P}_{\tau}^{(0)}+\mathbf{G}_{2 \tau} \mathbf{P}_{\tau}^{\dagger(2)} \cdot \tilde{\mathbf{P}}_{\tau}^{(2)}+\kappa_{\tau}: \mathbf{Q}_{\tau} \cdot \mathbf{Q}_{\tau}:\right] \\
& -\kappa_{v \pi} \mathbf{Q}_{v} \cdot \mathbf{Q}_{\pi}
\end{aligned}
$$

${ }^{*}$ Strengths of two-body interactions

$$
\begin{array}{ll}
G_{0 v}=0.1156 & G_{0 \pi}=0.1153 \\
G_{2 v}=0.0236 & G_{2 v}=0.0217 \\
K_{v}=0.0931 & K_{\pi}=0.1354 \\
K_{v \pi}=-0.0694 &
\end{array}
$$

Single particle orbitals

The single particle (hole) energies for proton (neutron)
neutron
proton

$\mathrm{N}=\mathrm{Z}=50$ is taken as a core

:Mo

$$
\begin{array}{cc}
\hline- \text { exp } \\
\rightarrow- & \text { th } \\
\hline
\end{array}
$$

Summary

-PTSM calculations are carried out for nuclei with mass around 100.
tThe PTSM reproduces well experimental energy levels for the yrast states.

- The interaction strengths should be further improved in future.
- As a future task we need to take into account the $28 \sim 50$ configuration space for protons and the $50 \sim 82$ configuration space for neutrons.

