New interpretation of chiral doublet bands by a pairtruncated shell model

K. Higashiyama

Departiment of Physsics, University of Tolkyo

Outline of my talk

- Introduction
- Framework of the PTSM and
its application to even-even and odd-mass nuclei
- New band mechanism of doubly-odd nuclei
- Summary

In collaboration with N. Yoshinaga and K. Tanabe (Saitama university)

Tilted Axis Cranking model
Doubly odd nuclei with triaxial deformation
Orientation of axis of rotation is tiled to three axis

NUCLEAR

Particle Rotor Model

 One neutron hole and one proton particle coupled with a rigid triaxial rotor

Interpretation of chiral doublet bands

High j holes tend to align with long axis
High j particles tend to align with short axis
Triaxial core tend to align with intermediate axis
\Rightarrow Three angular momenta construct

Two nearly degenerate $\Delta \mathrm{l}=1$ bands of the same parity originate from these systems

Candidates for chiral doublet bands

The A~130 nuclei have several valence protons outside the closed shell $Z=50$ and several neutron holes with respect to the closed shell $\mathrm{N}=82$.

Single particle orbitals

The single particle (hole) energies for proton (neutron)

The $\mathrm{Oh}_{11 / 2}$ orbital plays a Important role in the description of the chiral doublet bands.

Experiment of doubly-odd nuclei

$\Delta I=1$ bands have been found in many doubly-odd nuclei with mass around 130.

Experiment of doubly-odd nuclei

D. J. Hartley et all,

Phys. Rev, C 64; 031304(R) (2001).
${ }_{61}^{136} \mathrm{Pm}_{75}$

Studies for A~130 nuclei

K. Starosta et al.,

Phys. Rev. Lett. 86, 971 (2001).
A. A. Hecht et al.,

Phys. Rev. C63, 051302(R) (2001).
R. A. Bark et al.,

Nucl. Phys. A691, 577 (2001).
K. Starosta et al.,

Phys. Rev. C 65, 044328 (2002).
T. Koike et al.,

Phys. Rev. C 67, 044319 (2003).
G. Rainovski et al.,

Phys. Rev. C 68, 024318 (2003).
A. A. Hecht et al.,

Phys. Rev. C 68, 054310 (2003).
S. Zhu et al.,

Phys. Rev. Lett. 91, 132501 (2003).
$\Delta I=1$ bands have been found in many doubly-odd nuclei with mass around 130.

Tilted axis cranking model

FIG. 3. Experimental energies vs spin for band 2 (filled symbols) and band 3 (open symbols) in ${ }^{132} \mathrm{Cs}$ (cf. Fig. 2). The 3D TAC energies for the chiral $\pi h_{11 / 2} \otimes \nu h_{11 / 2}$ solution with no pairing included in ${ }^{132} \mathrm{Cs}$ are shown by the solid line. The inset presents the dependence of the total routhian on the tilt angle φ when the pairing is included in the calculations.

G. Rainovski et all.,

Phys. Rev. C 68, 024318 (2003)).

TABLE II. The results of 3D TAC calculations with no pairing included for the $\pi h_{11 / 2} \otimes \nu h_{11 / 2}$ configuration in ${ }^{132} \mathrm{Cs}$. The deformation parameters used were $\varepsilon_{2}=0.161, \varepsilon_{4}=0.003$, and $\gamma=36^{\circ}$. These were obtained as self-consistence values at $\hbar \omega=185 \mathrm{keV}$.

$\hbar \omega$ (keV)	ϑ (deg)	φ (deg)	I (\hbar)	$B(M 1) / B(E 2)$ $\left(\mu_{N} / e \mathrm{~b}\right)^{2}$
185	55	10.3	10.09	195.1
200	60	29.2	11.02	32.0
225	65	40.6	12.43	11.7
235	65	42.7	12.88	10.9
240	65	43.7	13.11	10.5
250	65	45.5	13.57	9.9

FIG. 4. (a) Measured $B(M 1 ; I \rightarrow I-1) / B(E 2 ; I \rightarrow I-2)$ ratios for band 2 in ${ }^{132} \mathrm{Cs}$. (b) Measured $B(M 1 ; I \rightarrow I-1)_{i n} / B(M 1 ; I \rightarrow I$ $-1)_{\text {eut }}$ ratios for band 3 in ${ }^{132} \mathrm{Cs}$. The lines are drawn to guide the eye.

Rigid triaxial rotor + two quasi-particles

- Particle rotor model
- Phenomenological core-particle-hole coupling model

FIG. 4. Comparisons between energies of excited states in the yrast and γ bands in ${ }^{130} \mathrm{Ba}$ and ${ }^{132} \mathrm{Ba}$ with those calculated for a rigid triaxial rotor. See Table II for the model parameters. The experimental data are taken from Refs. [29] and [30] for ${ }^{130} \mathrm{Ba}$ and ${ }^{132} \mathrm{Ba}$, respectively.
${ }^{132}$ La

FIG. 7. Comparison between energies of excited states in the artner band in ${ }^{132} \mathrm{La}$ with those calculated for $\pi h_{11 / 2} \nu^{-1} h_{11 / 2}$ article-hole coupling with a rigid triaxial rotor (see Table II for the odel parameters). Theoretical states are shown only when the corsponding experimental states are known.
K. Starosta et al.,

Phys. Rev/ C 65, 044328 (2002),

Interacting boson fermion-fermion model

S. Brant et al., Phys. Rev, C 69, 017304 (2004).

- Mass A~130 : Odd-mass and doubly-odd nuclei
- Mass A~100 : Odd-mass and doubly-odd nuclei
- Mass A~190 : Doubly-odd nuclei

Theory

- Tilted axis cranking model
\Rightarrow Support the chiral doublet bands
- Particle rotor model
- Phenomenological core-particle-hole coupling model One neutron hole and one proton particle
coupled with a rigid triaxial rotor
\Rightarrow Support the chiral doublet bands
- Interacting boson fermion-fermion model

The A~130 nuclei have several valence protons outside the closed shell $\mathrm{Z}=50$ and several neutron holes with respect to the closed shell $\mathrm{N}=82$.

Low-lying collective states

neutron

Oblate
${ }^{132} \mathrm{Ba}$ expt.
proton

Prolate

- Mean field theories are not applicable.
- Exact shell model calculations are not possible.

Pair truncated shell model

SD-pair states

S-pair

$$
S^{\dagger}=\sum_{j} \alpha_{j} A_{0}^{\dagger(0)}(j j)
$$

Angular momentum 0 Angular momentum 2

D-pair

Closed shell

$$
\begin{aligned}
& D_{M}^{\dagger}=\sum_{j_{1} j_{2}} \beta_{j_{1} j_{2}} A_{M}^{\dagger(2)}\left(j_{1} j_{2}\right)
\end{aligned}
$$

SD-pair state
$\left(S^{\dagger}\right)^{n_{s}}\left(D^{\dagger}\right)^{n_{d}}|-\rangle=\left|S^{n_{s}} D^{n_{d}} J\right\rangle$

Odd system

SD-pair state $\quad\left|S^{n_{s}} D^{n_{d}} I\right\rangle$

SD-pair+1 particle state

$$
c_{j}^{\dagger}\left|S^{n_{s}} D^{n_{d}} I^{\prime}\right\rangle=\left|j S^{n_{s}} D^{n_{d}} I\right\rangle
$$

Basis state of even-even, odd-mass

and doubly-odd nuclei

In the PTSM, the shell-model basis is restricted to the SD subspace with angular momentum zero (S) and two(D)collective pairs.

N. Yoshinage and IK. Higashiyama, Phys. Rev. C69, 054309 (2004),

N. Yoshinaga and K. Higashiiyama, Phys. Rev. C69, 054309 (2004),

Doubly-odd nuclei

We analyze the behavior of three angular momenta of the unpaired neutron , unpaired proton and even-even core.

Internal structure of doublet bands

$\hat{\boldsymbol{j}}_{\tau j} \quad(\tau=v$ or $\pi)$: angular momenta of valence nucleons in the $\mathrm{Oh}_{11 / 2}$ orbital
$\hat{\boldsymbol{R}}=\hat{\boldsymbol{J}}-\hat{\boldsymbol{j}}_{\nu j}-\hat{\boldsymbol{j}}_{\pi j}$: angular momentum of the core
Effective angle of two angular momenta

$$
\cos \theta_{j_{v_{j}} \cdot \boldsymbol{j}_{\pi j}}=\frac{\langle\Phi(J)| \boldsymbol{j}_{v j} \cdot \boldsymbol{j}_{\pi j}|\Phi(J)\rangle}{\sqrt{\langle\Phi(J)| \boldsymbol{j}_{v j}^{2}|\Phi(J)\rangle\langle\Phi(J)| \dot{\boldsymbol{j}}_{\pi j}^{2}|\Phi(J)\rangle}}
$$

Square of core angular momentum

$$
R^{2}=\langle\Phi(J)| \hat{\boldsymbol{R}}^{2}|\Phi(J)\rangle
$$

The $v h_{11 / 2} \otimes \pi h_{11 / 2}$ bands are interpreted as arising from the chopsticks configurations of the two angular momenta of the unpaired nucleons, and the quadrupole collective excitations of the eveneven core.

Summary

PTSM calculations were carried out

for the doubly-odd nucleus ${ }^{134} \mathrm{La}$.

- Good agreement with experiment for both energy levels and electromagnetic transitions is obtained.
- The structure of the $v h_{11 / 2} \otimes \pi \mathrm{~h}_{11 / 2}$ bands is well explained by the chopsticks configurations of the unpaired nucleons, weakly coupled with the quadrupole collective excitations of the even-even part of the nucleus.

Similar results are obtained
for doubly- odd nuclei ${ }^{130} \mathrm{Cs},{ }^{130} \mathrm{Cs}$ and ${ }^{132} \mathrm{La}$.
The detailed results and their analyses are presented in
K. Hiligashiyama et all., Phys. Rev: C7/2, 0243315 (2005).

