New interpretation of chiral doublet bands by a pairtruncated shell model

K. Higashiyama

Department of Physics, University of Tokyo

Outline of my talk

- Introduction
- Framework of the PTSM and its application to even-even and odd-mass nuclei
- New band mechanism of doubly-odd nuclei
- Summary

In collaboration with N. Yoshinaga and K. Tanabe (Saitama university)

Introduction

Experiment of doubly-odd nuclei

Experiment of doubly-odd nuclei

D. J. Hartley et al, Phys. Rev. C **64**, 031304(R) (2001).

Studies for A~130 nuclei

K. Starosta et al., Phys. Rev. Lett. 86, 971 (2001). A. A. Hecht et al., Phys. Rev. C 63, 051302(R) (2001). R. A. Bark et al., Nucl. Phys. A691, 577 (2001). K. Starosta et al., Phys. Rev. C 65, 044328 (2002). T. Koike et al. Phys. Rev. C 67, 044319 (2003). G. Rainovski et al., Phys. Rev. C 68, 024318 (2003). A. A. Hecht et al. Phys. Rev. C 68, 054310 (2003). S. Zhu et al., Phys. Rev. Lett. **91**, 132501 (2003).

Tilted axis cranking model

TABLE II. The results of 3D TAC calculations with no pairing included for the $\pi h_{11/2} \otimes \nu h_{11/2}$ configuration in ¹³²Cs. The deformation parameters used were $\varepsilon_2 = 0.161$, $\varepsilon_4 = 0.003$, and $\gamma = 36^\circ$. These were obtained as self-consistence values at $\hbar \omega = 185$ keV.

<i>ħω</i> (keV)	ϑ (deg)	φ (deg)	Ι (ħ)	$\frac{B(M1)/B(E2)}{(\mu_N/e b)^2}$
185	55	10.3	10.09	195.1
200	60	29.2	11.02	32.0
225	65	40.6	12.43	11.7
235	65	42.7	12.88	10.9
240	65	43.7	13.11	10.5
250	65	45.5	13.57	9.9

FIG. 3. Experimental energies vs spin for band 2 (filled symbols) and band 3 (open symbols) in ¹³²Cs (cf. Fig. 2). The 3D TAC energies for the chiral $\pi h_{11/2} \otimes \nu h_{11/2}$ solution with no pairing included in ¹³²Cs are shown by the solid line. The inset presents the dependence of the total routhian on the tilt angle φ when the pairing is included in the calculations.

FIG. 4. (a) Measured $B(M1;I \rightarrow I-1)/B(E2;I \rightarrow I-2)$ ratios for band 2 in ¹³²Cs. (b) Measured $B(M1;I \rightarrow I-1)_{in}/B(M1;I \rightarrow I-1)_{out}$ ratios for band 3 in ¹³²Cs. The lines are drawn to guide the eye.

Rigid triaxial rotor + two quasi-particles

- Particle rotor model
- Phenomenological core-particle-hole coupling model ¹³²La

FIG. 4. Comparisons between energies of excited states in the yrast and γ bands in ¹³⁰Ba and ¹³²Ba with those calculated for a rigid triaxial rotor. See Table II for the model parameters. The experimental data are taken from Refs. [29] and [30] for ¹³⁰Ba and ¹³²Ba, respectively.

FIG. 7. Comparison between energies of excited states in the artner band in ¹³²La with those calculated for $\pi h_{11/2} \nu^{-1} h_{11/2}$ article-hole coupling with a rigid triaxial rotor (see Table II for the odel parameters). Theoretical states are shown only when the corsponding experimental states are known.

K. Starosta et al., Phys. Rev. C **65**, 044328 (2002).

Interacting boson fermion-fermion model

Experiment

- Mass A~130 : Odd-mass and doubly-odd nuclei
- Mass A~100 : Odd-mass and doubly-odd nuclei
- Mass A~190 : Doubly-odd nuclei

Theory

- Tilted axis cranking model
 Support the chiral doublet bands
- Particle rotor model
- Phenomenological core-particle-hole coupling model
 One neutron hole and one proton particle

coupled with a rigid triaxial rotor

- Support the chiral doublet bands
- Interacting boson fermion-fermion model

The A~130 nuclei have several valence protons outside the closed shell Z=50 and several neutron holes with respect to the closed shell N=82.

Pair truncated shell model

In the PTSM, the shell-model basis is restricted to the SD subspace with angular momentum zero (S) and two (D) collective pairs.

N. Yoshinaga and K. Higashiyama, Phys. Rev. C 69, 054309 (2004).

N. Yoshinaga and K. Higashiyama, Phys. Rev. C 69, 054309 (2004).

Doubly-odd nuclei

We analyze the behavior of three angular momenta of the unpaired neutron, unpaired proton and even-even core.

The $vh_{11/2} \times \pi h_{11/2}$ bands are interpreted as arising from the chopsticks configurations of the two angular momenta of the unpaired nucleons, and the quadrupole collective excitations of the even-even core.

Summary

PTSM calculations were carried out for the doubly-odd nucleus ¹³⁴La.

- Good agreement with experiment for both energy levels and electromagnetic transitions is obtained.
- The structure of the vh_{11/2} × πh_{11/2} bands is well explained by the chopsticks configurations of the unpaired nucleons, weakly coupled with the quadrupole collective excitations of the even-even part of the nucleus.

Similar results are obtained for doubly-odd nuclei ¹³⁰Cs, ¹³⁰Cs and ¹³²La.

The detailed results and their analyses are presented in

K. Higashiyama et al., Phys. Rev. C 72, 024315 (2005).