Nuclear Matrix Elements of Double Beta Decay

Probe the fundamental properties of neutrinos by using nuclei as a microscopic laboratory

K. Muto Tokyo Institute of Technology CNS Workshop 2006. 1. 26

What is double beta decay?

 $\beta\beta$ decay can be observed, when single β decays are forbidden.

- *∆Z* = 2
- Second order process of the weak interaction
- Very long half-lives

For observation, those nuclei are favored with

- Large Q-value
- Large abundance

Typical nuclides : ⁴⁸Ca, ⁷⁶Ge, ⁸²Se, ¹⁰⁰Mo, ¹²⁸Te, ¹³⁰Te, ¹³⁶Xe, ¹⁵⁰Nd

Two Decay Modes

2ν mode

- Allowd in the Standard Model
- Observed for some 10 nuclides
- Shortest half-life

$$T_{1/2} = 10^{19} \text{ y}$$

$\mathbf{0}\nu$ mode

• Forbidden in the SM

No observations so far

Measurements of Half-Lives

1. Geochemical Method

eg.: 128 Te 128 Xe (10⁷) in rocks of 1.3 billion years old Cannot distinguish 0v and 2v decays

2. Radiochemical Method (^{238}U)

3. Direct method

0v and 2v decays can be separated by sum energy spectrum of two electrons.

- 1. Measurement of electron energies only (*eg*. ⁷⁶Ge)
- 2. Measurement of electron energies and momenta (angular correlations)

Conditions for $0\nu\beta\beta$ decay

Condition 1 : Neutrinos are Majorana particles.

The (anti-)neutrino emitted by a nucleon is identical to the neutrino to be absorbed by another nucleon in the nucleus.

Condition 2 : Neutrinos have finite masses.

The (anti-)neutrino is **emitted in left-handed** by the V-A interaction, but has **a mixture of right-handed component** due to the finite mass, and then can be absorbed by another nucleon via the V-A interaction. At the same time, a possible V+A interaction contributes.

If $0\nu\beta\beta$ decay is observed $a \rightarrow p + e^- + \bigcirc + n \rightarrow p + e^$ e^-

1. Neutrinos are Majorana particles : $\overline{\nu} = \nu$

Double beta decay is, at present, the only practical method to distinguish between **Dirac** neutrinos and **Majorana** neutrinos.

2. Neutrinos have finite masses.

already found by observation of atmospheric, solar, and reactor neutrinos

3. We can obtain information on the absolute mass scale of neutrinos.

Neutrino oscillations tell us only $\Delta m_{ab}^2 = m_a^2 - m_b^2$

Goal :

Predict 0v decay nuclear matrix elements reliably

2v decay provides a test of nuclear structure calculations by comparison of calculated and observed half-lives

But, nuclear structure calculations have poor predictive power for 2v decay nuclear matrix elements.

Nuclear Matrix Element of 2v decay mode

- Second-order perturbation of the weak interaction
- Successive Gamow-Teller transitions through virtual intermediate 1⁺ states

$$M_{\rm GT}^{2\nu} = \sum_{m} \frac{\langle 0_{f}^{+} \| t_{-} \sigma \| 1_{m}^{+} \rangle \langle 1_{m}^{+} \| t_{-} \sigma \| 0_{i}^{+} \rangle}{E_{m} - (M_{i} + M_{f})/2}$$

Nuclear Matrix Elements of Ov decay mode (1)

Neutrino Potential due to the exchange of a neutrino between two nucleons

$$V(|\mathbf{r}_1 - \mathbf{r}_2|) \sim \int \mathrm{d}\mathbf{q} \frac{\exp[i\mathbf{q}\cdot(\mathbf{r}_1 - \mathbf{r}_2)]}{\omega[E_i - (\omega + m_e + E_a)]} \quad \omega = \sqrt{\mathbf{q}^2 + m_\nu^2}$$

- Integral over neutrino momenta
- Contribution to the nuclear matrix elements via $q \sim 100 \text{ MeV/}c$
- Long-range Yukawa-type potential
 - Corresponds to the exchange of a particle with the mass of around 10 MeV
 - Independent of the neutrino mass

Nuclear Matrix Elements of Ov decay mode (2)

double Gamow-Teller matrix element

$$\begin{split} \mathcal{N}_{\mathsf{T}}^{\nu} &= g_{A}^{2} \int_{0}^{\infty} q^{2} \, \mathrm{d}q \, v(q) \\ &\times \sum_{LJ^{\pi}m} \langle 0_{f}^{+} \| \, \mathcal{F}_{1LJ} \| \, J_{m}^{\pi} \rangle \, \langle J_{m}^{\pi} \| \, \mathcal{F}_{1LJ} \| \, 0_{i}^{+} \, \rangle \\ & \mathcal{F}_{1LJ} = t_{-} \, [\, \boldsymbol{\sigma} \otimes \boldsymbol{Y}_{L}(\hat{r}) \,]_{J} \, j_{L}(qr) \qquad J^{\pi} \neq 0^{+} \end{split}$$

♦ double Fermi matrix element

$$M_{\mathsf{F}}^{0\nu} = (g_V/g_A)^2 \int_0^\infty q^2 \, \mathrm{d}q \, v(q) \\ \times \sum_{J^{\pi}m} \langle 0_f^+ \| \, \mathcal{F}_{0JJ} \| \, J_m^{\pi} \rangle \, \langle J_m^{\pi} \| \, \mathcal{F}_{0JJ} \| \, 0_i^+ \rangle \\ \mathcal{F}_{0JJ} = t_- \, Y_J(\hat{r}) \, j_J(qr) \qquad J^{\pi} = 0^+, \, 1^-, \, 2^+, \, 3^-, \cdots$$

QRPA Models

Quasiparticle Random Phase Approximation

RPA calculation in a quasiparticle basis

- Pairing correlations in like-nucleon systems by BCS
- Proton-Neutron correlations by RPA
- Much improvement has been achieved:
 - Commutators of nucleon pair creation and annihilation operators renormalized QRPA
 - Ikeda sum rule for Gamow-Teller transition strengths self-consistent QRPA
- **\square** Predictive power for 2v decay nuclear matrix elements is still poor.

QRPA Calculations

 g_{pp} enhances spin-isospin ground-state correlations.

Suppression of GT Transitions

Strongly attractive proton-neutron interaction in $J^{\pi} = 1^+$

- Enhances spin-isospin ground-state correlations
- Enhances backward-going amplitudes, which interfere destructively with the forward-going amplitudes

Multipole Decomposition Ov decay NME

Components through nuclear intermediate states with various spinparities J^{π} have the same sign, indicating that the NMEs are not so much sensitive to nuclear structure.

Sizable contributions through intermediate states with L = 0, 1, 2, 3. This requires a large model space consisting of two major shells.

The most reliable prediction of 0v decay NME by QRPA models

Fix g_{pp} by 2ν decay NME deduced from experimental half-lives

Problem of QRPA Calculations

Cannot reproduce three Gamow-Teller type transitions among three ground states

- $B(GT-) \ ^{100}Tc(g.s.1^+) \rightarrow \ ^{100}Ru(g.s.0^+)$
- $B(GT+)^{100}Tc(g.s.1^+) \rightarrow {}^{100}Mo(g.s.0^+)$
- $M^{2\nu}$ 100Mo(g.s.0⁺) \rightarrow 100Ru(g.s.0⁺)

Lanczos Method

Generating linear combinations of shell-model basis states :

$$|\Phi_j^{\mathsf{L}}\rangle = \sum_{i=1}^n v_{ij} |\Phi_i^{\mathsf{SM}}\rangle |v_j\rangle = [v_{1j}, v_{2j}, \cdots, v_{nj}]^T$$

Lanczos procedure

Step 1 :	$\ket{w_k} = H \ket{v_k} - eta_{k-1} \ket{v_{k-1}}$
Step 2 :	$lpha_k = \langle oldsymbol{v}_k oldsymbol{w}_k angle$
Step 3 :	$\ket{oldsymbol{u}_k}=\ket{oldsymbol{w}_k}-lpha_k\ket{oldsymbol{v}_k}$
Step 4 :	$eta_k = \sqrt{\langle oldsymbol{u}_k oldsymbol{u}_k angle}$
Step 5 :	$ v_{k+1} = eta_k^{-1} u_k angle$

Hamiltonian is tridiagonal in the Lanczos basis.

Energy eigenstates are described in a very small number of Lanczos basis states.

 $N \ll n$

Energy Eigenvalues

Both calculations in TJ-scheme

Resolvent Operator

2v mode nuclear matrix element

$$M_{GT}^{2\nu} = \langle 0_f^+ | \mathcal{O} \frac{1}{H-E} \mathcal{O} | 0_i^+ \rangle \qquad \mathcal{O} = t_- \boldsymbol{\sigma}$$

 $\begin{aligned} \mathsf{Application of \ Lanczos \ method} \\ |v_1\rangle &= \mathcal{S}^{-1/2} \mathcal{O} |0_i^+\rangle \quad \mathcal{S} = \langle 0_i^+ | \mathcal{O}^\dagger \mathcal{O} |0_i^+\rangle \\ \frac{1}{H-E} |v_1\rangle &= \sum_{k=1}^N c_k |v_k\rangle \\ c_k &= f_1 \prod_{j=2}^k \left(-\beta_{j-1}f_j\right) \\ c_k &= f_1 \prod_{j=2}^k \left(-\beta_{j-1}f_j\right) \\ c_j &= \frac{1}{\alpha'_j - \frac{\beta_j^2}{\alpha'_{j+1} - \frac{\beta_{j+1}^2}{\alpha'_{j+2} - \frac{\beta_{j+2}^2}{\alpha'_{j+3} - \cdots}}} \\ \alpha'_j &= \alpha_j - E \end{aligned}$

QRPA Model? or Shell Model?

QRPA model

- Much too simplifed
- Two-major-shell calc.
- Easy to handle
- Crucial assumption of Q^{\dagger}_{ω} by 2qp operators

Shell model

- Various correlations
- One-major-shell calc.
 - **Good for** $2\nu\beta\beta$
 - Insufficient model space for 0νββ

Quasiparticle Shell Model