Shell model Monte Carlo approaches to nuclear level densities

H. Nakada (Chiba U.)

@ CNS (Jan. 26–28, 2006)

Contents:

I. Introduction

II. Shell model Monte Carlo approaches to nuclear level densities

III. Spherical & nearly spherical nuclei — Fe-Ni region

IV. Deformed nuclei — rare-earth region

V. Summary

I. Introduction

Nuclear structure at finite temperature

• properties under astrophysical environment

e.g. ele.-mag. & weak responses at thermal equilibrium

• statistical properties at high excitation energy ($E_x \gtrsim 3 \,\mathrm{MeV}$)

e.g. level density — key input to low-energy nuclear reaction rates

 $(\rightarrow astrophysics)$

"nuclear temperature"

microcanonical
$$\cdots T(E) = \left[\frac{\partial}{\partial E} \ln \rho(E)\right]^{-1}$$
 ($\rho(E)$: level density)
canonical \cdots saddle-point approx. $\rightarrow E(\beta) = -\frac{\partial}{\partial \beta} \ln Z(\beta)$ ($\beta = 1/T$)
 $\Rightarrow T$: external parameter controlling average excitation energy

 \cdots both are treated within the same framework of thermodynamics (or statistical mechanics)

Nuclear level densities

 \bullet basic quantity in investigating nuclear properties at finite T

 $\rho(E) \quad \longleftrightarrow \quad Z(\beta) = \int \rho(E) \, e^{-\beta E} dE : \text{ partition fn.} \qquad \text{(in canonical formalism)}$ Laplace transf.

e.g. exp. of $\rho(E) \rightarrow$ thermal properties Ref.: A. Schiller *et al.*, P.R.C63, 021316

• relevance to astrophysics — one of the critical inputs in nucleosynthesis calculations

Experimental methods to measure nuclear level densities

- 1. direct counting of levels lowest-lying states or light nuclei
- 2. level spacing among neutron resonances ($\rho \approx \bar{D}^{-1}$) relatively small energy range
- **3. Ericson fluctuation** $-E_x \sim 20 \text{MeV}$
- 4. charged particle reactions
- 5. γ -strength function ($\Gamma(E_x, E_\gamma) \propto F(E_\gamma)\rho(E_x)$) \leftarrow Brink-Axel hypothesis

Previous theoretical works on nuclear level densities

- $\bullet \ backshifted \ Bethe \ formula \quad (\leftarrow \ Fermi-gas \ model) \qquad \rightarrow \ next \ discussion$
- distributing (spherical) s.p. levels + marginal interaction effects
 - e.g. spectral averaging theory \cdots int. \rightarrow smearing

```
(treated in terms of moments)
```

 \circ unable to constrain overall energy shift (\leftrightarrow g.s. energy)

• moderately good for spherical nuclei,

but unable to handle strong collectivity

- finite-temperature methods
 - e.g. mean-field approx., static-path approx. \rightarrow later discussion

II. Shell model Monte Carlo approaches to nuclear level densities

Conventional approach to nuclear level densities

 ${\bf Backshifted \ Bethe \ formula} \quad \leftarrow {\bf Fermi-gas \ model}$

$$\rho_{\text{tot}}(E_x) = \frac{\sqrt{\pi}}{12} a^{-1/4} (E_x - \Delta + t)^{-5/4} \exp\left[2\sqrt{a(E_x - \Delta)}\right] \qquad (E_x - \Delta = at - t^2)$$

... fits well to experimental data, if the parameter a is adjusted (Δ : backshift, representing pairing & shell effects)

Problem · · · value of a ! (& sometimes Δ , also)

- 1) exp. $\rightarrow a = A/6 \sim A/10 \, [\text{MeV}^{-1}]$ cf. $a \approx A/15$ in Fermi-gas model
- 2) exp. $\rightarrow a$: nucleus-dependent (not only A-dependent) shell effects, etc.

 \Rightarrow predictability ?

 $\rho(E)$ for Ag:

A-dep. of *a*-parameter:

Ref.: Bohr-Mottelson vol.1

complexity due to finiteness

e.g. quantum fluctuation, shell effects, conservation, coexistence of collective & non-coll. d.o.f.

 \Downarrow Interacting shell model \cdots desirable for level density calculations

Both (1) shell effects & (2) 2-body correlations can fully be taken into account (but within finite model space)

e.g. $V = -\frac{\kappa}{2} \hat{\rho}^2$ ($\hat{\rho}$: 1-body op.) typically, κ : large \leftrightarrow collective

'collective'

to handle sufficiently large model space

 \rightarrow quantum Monte Carlo method (Shell model Monte Carlo (SMMC) method)

Interacting shell model at finite $T \rightarrow$ auxiliary-fields path integral rep.

 $H = \sum_{j} \epsilon_{j} \hat{N}_{j} + \sum_{\alpha} \frac{\kappa_{\alpha}}{2} \hat{\rho}_{\alpha}^{2} \quad \leftarrow \text{Pandya transformation} \quad (\hat{\rho}_{\alpha}: 1\text{-body operator})$ Suzuki-Trotter decomposition: $e^{-\beta H} = (e^{-\Delta\beta H})^{n_{t}}$ with $\beta = n_{t} \Delta\beta$; $e^{-\Delta\beta H} \cong \prod_{j} \left[\exp(-\Delta\beta\epsilon_{j} \hat{N}_{j}) \right] \prod_{\alpha} \left[\exp(-\Delta\beta\frac{\kappa_{\alpha}}{2} \hat{\rho}_{\alpha}^{2}) \right] + O\left((\Delta\beta)^{2} \right)$

Hubbard-Stratonovich transformation:

$$\exp(-\Delta\beta\frac{\kappa_{\alpha}}{2}\hat{\rho}_{\alpha}^{2}) \propto \int d\sigma_{\alpha} \exp\left[-\Delta\beta(\frac{|\kappa_{\alpha}|}{2}\sigma_{\alpha}^{2} + s_{\alpha}\kappa_{\alpha}\sigma_{\alpha}\hat{\rho}_{\alpha})\right]; \quad s_{\alpha} = \begin{cases} \pm 1 & (\text{if } \kappa_{\alpha} < 0) \\ \pm i & (\text{if } \kappa_{\alpha} > 0) \end{cases}$$

 $\Rightarrow \operatorname{Tr}(Oe^{-\beta H}) \cong \int D[\sigma]G(\sigma)\operatorname{Tr}(OU_{\sigma}); \quad G(\sigma) = \exp(-\Delta\beta \frac{|\kappa_{\alpha}|}{2}\sigma_{\alpha}^{2}), \quad U_{\sigma} = \Pi^{n_{t}}\exp(-\Delta\beta h_{\sigma})$ $h_{\sigma} = \sum_{j} \epsilon_{j} \hat{N}_{j} + \sum_{\alpha} s_{\alpha} \kappa_{\alpha} \sigma_{\alpha} \hat{\rho}_{\alpha}: \quad (\sigma\text{-dep.}) \text{ s.p. Hamiltonian}$ $\operatorname{Ref.}: \text{ G. H. Lang et al., P.R.C 48, 1518 ('93)}$

SMMC: $\langle O \rangle = \frac{\operatorname{Tr}(Oe^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})} \cong \frac{1}{N_{\operatorname{samp}}} \sum_{k} \langle O \rangle_{\sigma(k)}; \quad \langle O \rangle_{\sigma(k)} = \frac{\operatorname{Tr}(OU_{\sigma})}{\operatorname{Tr}(U_{\sigma})}: \text{ measurement}$ $\operatorname{Tr}_{\operatorname{GC}}(U_{\sigma}) = \det(1 + \mathcal{U}_{\sigma}) \qquad \mathcal{U}_{\sigma}: \text{ s.p. matrix for } U_{\sigma}$

 \cdots calculable only via the s.p. matrices

 $(\sigma(k) \leftarrow \text{random walk under } W_{\sigma} = G(\sigma) \operatorname{Tr}(U_{\sigma}))$

Level density calculation: $\rho(E) = \operatorname{Tr} \delta(E - H) \leftrightarrow Z(\beta) = \operatorname{Tr}(e^{-\beta H}) = \int dE \, \rho(E) e^{-\beta E}$ Laplace transform (Tr: canonical trace)

Saddle-point approx. for the inverse Laplace transformation

 $\Rightarrow \rho(E) \cong \frac{e^S}{\sqrt{2\pi\beta^{-2}C}}; \quad S = \beta E + \ln Z(\beta), \quad \beta^{-2}C = -\frac{dE}{d\beta}$ cf. thermodynamics S: entropy, C: heat capacity

 $E(\beta) = \langle H \rangle = \frac{\operatorname{Tr}(He^{-\beta H})}{Z(\beta)} \leftarrow \mathbf{SMMC}$

 $Z \& C \leftarrow \text{numerical integration } \left(\ln[Z(0)/Z(\beta)] = \int d\beta' E(\beta') \right) \& \text{ differentiation}$

 $E_x = E - E_0$; $E_0 = \lim_{\beta \to \infty} E(\beta) \leftarrow E(\beta)$ for large β

Projections: $(\leftrightarrow \text{ conservation, finiteness})$

• particle-number projection (both for protons & neutrons) \rightarrow canonical $\operatorname{Tr}(U_{\sigma}) = \operatorname{Tr}_{\operatorname{GC}}(P_n U_{\sigma})$; $P_n \propto \int d\phi \, \exp[i\phi(\hat{N} - n)]$

 ϕ : additional auxiliary field \rightarrow exact integration

• parity projection \rightarrow level densities for each parity

Ref.: H.N. & Y. Alhassid, P.R.L. 79, 2939 ('97)

 $Tr(P_{\pm}U_{\sigma}) = \frac{1}{2}Tr[(1 \pm P)U_{\sigma}] = \frac{1}{2}[Tr(U_{\sigma}) \pm Tr(PU_{\sigma})]$ (*P*: parity op.) $Tr_{GC}(PU_{\sigma}) = det(1 + \mathcal{P}U_{\sigma}); \quad \mathcal{P} = (-)^{\ell} \text{ for each s.p. state}$

• isospin projection (for *T*-conserved Hamiltonian & model space)

Ref.: H.N. & Y. Alhassid, Proc. of 11th Int. Symp. on Cap. γ -Ray Spec. ('03) $\rightarrow \begin{cases} \text{isospin dependence of level densities} \\ \text{exact 'binding energy' correction} \quad (T\text{-splitting is not necessarily reliable}) \end{cases}$ $\text{Tr}_{T=T_0}(X) = \text{Tr}_{|T_z|=T_0}(X) - \text{Tr}_{|T_z|=T_0+1}(X) = \text{Tr}_{\mathcal{A}}(X) - \text{Tr}_{\mathcal{A}'}(X)$ $\mathcal{A} \equiv (Z, N) \cdots |T_z| = (N - Z)/2 \equiv T_0, \quad \mathcal{A}' \equiv (Z - 1, N + 1) \cdots |T_z| = T_0 + 1$ random walk with $W_{\sigma} = G(\sigma) \text{Tr}_{\mathcal{A}}(U_{\sigma}) \rightarrow \text{MC}$ evaluation

$$\frac{Z_{T=T_0}(\beta)}{Z_{\mathcal{A}}(\beta)} = \frac{\operatorname{Tr}_{T=T_0}(e^{-\beta H})}{\operatorname{Tr}_{\mathcal{A}}(e^{-\beta H})} = 1 - \frac{\operatorname{Tr}_{\mathcal{A}'}(e^{-\beta H})}{\operatorname{Tr}_{\mathcal{A}}(e^{-\beta H})} \cong \frac{1}{N_{\operatorname{samp}}} \sum_k \left\{ 1 - \frac{\operatorname{Tr}_{\mathcal{A}'}[U_{\sigma(k)}]}{\operatorname{Tr}_{\mathcal{A}}[U_{\sigma(k)}]} \right\}$$
$$\langle O \rangle_{\mathcal{A}'} = \frac{\operatorname{Tr}_{T=T_0}(Oe^{-\beta H})}{Z_{T=T_0}(\beta)} = \frac{\operatorname{Tr}_{\mathcal{A}'}(Oe^{-\beta H})/Z_{\mathcal{A}}(\beta) - \operatorname{Tr}_{\mathcal{A}}(Oe^{-\beta H})/Z_{\mathcal{A}}(\beta)}{1 - Z_{\mathcal{A}'}(\beta)/Z_{\mathcal{A}}(\beta)}$$

Relation among MFA, SPA & SMMC

• mean-field approx. (Hartree-Fock)

$$\exp(-\beta \frac{\kappa_{\alpha}}{2} \hat{\rho}_{\alpha}^{2}) \approx \exp\left[-\beta(\frac{|\kappa_{\alpha}|}{2} \sigma_{\alpha}^{2} + s_{\alpha} \kappa_{\alpha} \sigma_{\alpha} \hat{\rho}_{\alpha})\right]$$

$$\sigma_{\alpha} = \langle \hat{\rho}_{\alpha} \rangle : \text{ static mean-field} \quad \text{(no fluctuation, no } \beta\text{-dependence)}$$

• static-path approx.

$$\exp(-\beta \frac{\kappa_{\alpha}}{2} \hat{\rho}_{\alpha}^2) \propto \int d\sigma_{\alpha} \, \exp\left[-\beta \left(\frac{|\kappa_{\alpha}|}{2} \sigma_{\alpha}^2 + s_{\alpha} \kappa_{\alpha} \sigma_{\alpha} \hat{\rho}_{\alpha}\right)\right]$$

 σ_{α} : static auxiliary-field with fluctuation

 \cdots error of $O(\beta^2)$ in the Trotter decomp. \rightarrow reasonable (only) for small β

• SMMC

HS for $\Delta\beta$, instead of $\beta \rightarrow$ auxiliary-field path integral $\exp(-\Delta\beta\frac{\kappa_{\alpha}}{2}\hat{\rho}_{\alpha}^{2}) \propto \int d\sigma_{\alpha} \exp\left[-\Delta\beta(\frac{|\kappa_{\alpha}|}{2}\sigma_{\alpha}^{2} + s_{\alpha}\kappa_{\alpha}\sigma_{\alpha}\hat{\rho}_{\alpha})\right]$ σ_{α} : β -dependent auxiliary-field with fluctuation $\begin{array}{l} {\rm MC\ integration\ of\ the\ auxiliary-fields} \\ \rightarrow {\rm MC\ weighted\ sum\ of\ time-dependent\ `mean-fields'} \end{array} \right)$

Fermion sign problem

 $W_{\sigma} = G(\sigma) \operatorname{Tr}(U_{\sigma}) \cdots$ weight for the random walk of $\{\sigma\}$ in the MC calculation However, $\operatorname{Tr}(U_{\sigma})$ is not always positive-definite \rightarrow "sign problem"

nuclear effective interaction \approx (collective part) + (non-collective perturbation) \uparrow (almost) sign good unimportant for level densities (\because gross property)

 \Rightarrow T = 1 pairing + T = 0 multipole interaction

— describes collective features well (including level densities)

III. Spherical & nearly spherical nuclei — Fe-Ni region

Setup for $50 \leq A \leq 70$ nuclei

• model space — full $pf + 0g_{9/2}$ (so as to cover $S_n (\leq 15 \text{ MeV})$)

 \bullet effective hamiltonian — $T\text{-}\mathrm{conserving}$

s.p. energies \leftarrow Woods-Saxon potential (with LS term)

T = 0 surface-peaked multipole interactions ($\lambda = 2, 3, 4$)

radial part ($\propto dV_{\rm WS}/dr$) & bare strength

 \leftarrow nuclear self-consistency (between density & s.p. potential)

renormalization factors \leftrightarrow core-polarization effects

 \leftarrow comparison with a realistic interaction

$$\lambda = 2 \cdots \times 2, \ \lambda = 3 \cdots \times 1.5, \ \lambda = 4 \cdots \times 1$$

T = 1 pairing interaction \leftarrow mass differences of 40 < A < 80 spherical nuclei

 \implies uniquely determined for individual nucleus

* check of the hamiltonian for quadrupole collectivity in 56 Fe

 $E_Q \equiv \frac{\sum_i (E_i - E_0) |\langle 2_i^+ | Q | 0_g^+ \rangle|^2}{\sum_i |\langle 2_i^+ | Q | 0_g^+ \rangle|^2} \to \mathbf{Exp.} \ (p, p') : 2.16, \quad \mathbf{SMMC} : 2.12 \pm 0.11 \quad [\text{MeV}]$

• MC · · · $N_{\text{samp}} \approx 4000$, $\Delta \beta = 1/32 \,[\text{MeV}^{-1}]$ (time slice) thermal · · · $d\beta = 1/16 \,[\text{MeV}^{-1}]$ (for Z & C) Thermal properties of 56 Fe — SMMC vs. HF & exp.

• mean-field (semi-classical) picture \rightarrow signature to phase transition at $\beta_c \approx 1.3 \,\mathrm{MeV}^{-1}$ \cdots deformed (low T) \rightarrow spherical (high T)

shell model (full quantum theory) \rightarrow washed out due to quantum fluctuations ! \leftrightarrow finiteness

- $E_0 \leftarrow a \text{ sort of extrapolation to } \beta = \infty$
 - even-even nuclei

For large β , $E(\beta)$ is slightly different from E_0 due to the contribution of 2_1^+ The amount of the 2_1^+ contribution is estimated from $\langle \hat{J}^2 \rangle$

cf. This approx. will be also good, if the influence of higher states in $E(\beta)$ is compensated with that in $\langle \hat{J}^2 \rangle$

• odd-A & odd-odd nuclei

For large β , $E(\beta) \cong E_0$ (because of higher degeneracy around $E \cong E_0$)

Total level density (state density) of ⁵⁶Fe

Note: Exp. total level density \leftarrow reconstructed with exp. BBF parameters (C. C. Lu *et al.*, Nucl. Phys. A 190, 229('72))

Total level densities of other even-even nuclei

(Exp.: C. C. Lu et al., N. P. A 190, 229('72))

(Exp.: W. Dilg et al., N. P. A 217, 269('73))

Parity-projected level density of ⁵⁶Fe

 \Rightarrow strong parity-dependence ! — not well considered so far

sensitive to shell structure

 \rightarrow (Z- &) N-dep.

Systematics for (β -stable) even-even nuclei in the $50 \leq A \leq 70$ regionSMMC \rightarrow fit to BBFNuclei: $^{54-58}$ Fe, $^{58-64}$ Ni, $^{64-70}$ Zn, 70,72 GeSingle-particle level density parameters a:

Backshift parameters Δ :

Total level densities of A = 55 isobars

Exp.: W. Dilg et al., Nucl. Phys. A217, 269 ('73)

Total level densities of ⁵⁸Cu

 $\rho_{\text{tot}}(E) = \sum_{T \ge |T_z|, \pi = \pm} \rho_{T, \pi}(E)$ $(E \leftarrow \text{ correction of } E_T - E_{T=0})$

■ With *T*-projection □ Without *T*-projection \times With perturbative correction

perturbative corr. — not so good

T-projection is important for Z = N (& $Z = N \pm 1$?) nuclei

Extension to higher energy

higher energy (*i.e.* higher T) \cdots size of model space is more important, 2-body correlation becomes less important

 \rightarrow connection to Hartree-Fock approach (without space truncation)

free energy: $F(\beta) = F_{\text{SM,trunc}}(\beta) + [F_{\text{HF,full}}(\beta) - F_{\text{HF,trunc}}(\beta)]$ 1st term \leftrightarrow 2-body corr. at low E_x 2nd term \leftrightarrow full d.o.f. at high E_x (& subtract d.o.f. included in 1st term)

Ref.: Y. Alhassid et al., P. R. C 68, 044322 ('03)

IV. Deformed nuclei — rare-earth region

quadrupole deformation \rightarrow influence level density \cdots how?

• deformation itself? • collective rotation? • influence of non-coll. d.o.f.?

What is important?

• at high E_x ($E_x \gtrsim 5 \text{ MeV}$) \cdots non-coll. (*i.e.* s.p.) d.o.f. dominant \leftrightarrow degree of quadrupole deformation \leftrightarrow strength of $Q \cdot Q$ -int.

 \leftarrow checked by MF approx.

- at low E_x ($E_x \leq 2 \text{ MeV}$) $\cdots \rho(E) \propto$ (mom. of inertia \mathcal{I}) \leftarrow single rotational band \leftrightarrow strength of pairing int. \leftarrow checked from $\langle \mathcal{J}^2 \rangle_T (\approx 2\mathcal{I} \cdot T)$ for small T(or Thouless-Valatin estimate?)
- ⇒ preliminary result for ¹⁶²Dy (in collaboration with L. Fang & Y. Alhassid) model space $\approx 1.5 \hbar \omega$, WS s.p.e. + pairing int. + multipole int.

Total level density of 162 **Dy** — $\ln \rho(E_x)$

(preliminary)

V. Summary

1. SMMC approaches to nuclear structure at finite temperature

 \rightarrow accurate microscopic calculations of nuclear level densities

(for spherical & nearly spherical nuclei)

 \Rightarrow application to astrophysics? Ref.: D. Mocelj *et al.*, N.P.A 758, 154c

2. Extensions

higher energy \leftarrow connection to HF \cdots works well deformed nuclei — promising (work in progress)

3. Problems

int. parameters for deformed nuclei — systematics? $(\leftrightarrow \text{ predictability})$ connection between spherical & deformed region

Collaborators:

Y. Alhassid, S. Liu, L. Fang (Yale Univ., U.S.A.)

G. F. Bertsch (Univ. of Washington, U.S.A.)

References:

- 1) H. N. & Y. Alhassid, Phys. Rev. Lett. 79, 2939 ('97)
- 2) H. N. & Y. Alhassid, Phys. Lett. B 436, 231 ('98)
- 3) Y. Alhassid, S. Liu & H. N., Phys. Rev. Lett. 83, 4265 ('99)
- 4) Y. Alhassid, G. F. Bertsch, S. Liu & H. N.,

Phys. Rev. Lett. 84, 4313 ('00)

5) H. N. & Y. Alhassid, Proc. of 11th Int. Symp. on Capture Gamma-Ray Spectroscopy ('03)