Past, Present and Future of Shell Model 26, Jan. – 28, Jan. 2006, CNS Workshop

Measurement of the ${}^{19}C(p,p')$ reaction at $E_p = 70 \text{ MeV}$

Y.Satou^{*1}, T.Nakamura^{*1}, N.Fukuda^{*2}, T.Sugimoto^{*1}, Y.Kondo^{*1}, N.Matsui^{*1}, Y.Hashimoto^{*1}, T.Nakabayashi^{*1}, T.Okumura^{*1},
M.Shinohara^{*1}, T.Motobayashi^{*2}, Y.Yanagisawa^{*2}, N.Aoi^{*2}, S.Takeuchi^{*2},
T.Gomi^{*2}, Y.Togano^{*3}, S.Kawai^{*3}, H.Sakurai^{*2}, H.J.Ong^{*4}, T.K.Onishi^{*4},
S.Shimoura^{*5}, M.Tamaki^{*5}, T.Kobayashi^{*6}, H.Otsu^{*2}, Y.Matsuda^{*6},
N.Endo^{*6}, M.Kitayama^{*6}, and M.Ishihara^{*2}

- 1. Tokyo Institute of Technology
- 2. RIKEN
- 3. Rikkyo University
- 4. University of Tokyo
- 5. Center for Nuclear Study, University of Tokyo
- 6. Tohoku University

Outline

Introduction

General Purpose Physics Motivation Related to ¹⁹C

Experiment and Analysis

Invariant Mass Method in Inverse Kinematics Experimental Setup and Particle Identification

Results and Discussion

Invariant Mass Spectrum Single Particle Estimate of the Width Energy Level Diagram Differential Cross Section

Summary

Introduction

General Purpose

- Nucleon-induced reactions, (p,p') and (p,n), have been one of the major tools to study nuclear structures.
 - Various combinations of $\Delta S(spin)$, $\Delta T(isospin)$, Δq , ΔE are available. => Populating various types of excited states.
 - Many theoretical works done to reproduce cross sections.
 - => Allowing to make a detailed study of the wave function through the transition density.
- In order to extend such studies to unstable nuclei, we are developing an experimental method of spectroscopy involving neutron detection in inverse kinematics.
- ¹⁹C(p,p') at E_p=70 MeV

Physics Motivation Related to ¹⁹C

¹⁹C: Candidate of the heaviest one-neutron halo nucleus

- To clarify the ground state property of ¹⁹C
 - Longitudinal momentum distribution of ¹⁸C after the one-neutron removal from ¹⁹C
 - D.Bazin et al. PRL74(1995)3569. 1/2+
 - T.Baumann et al. PLB439(1998)256. 5/2+
 - Coulomb Dissociation of ¹⁹C
 - T.Nakamura et al. PRL83(1999)1112. 1/2+
 - Single-nucleon knockout reaction, partial cross sections to final states of the ¹⁸C residue
 - V.Maddalena et al. PRC63(2001)024613. 1/2+

Identify excited states in ¹⁹C.
 Using the (p,p') cross section as a probe, specify the structure of the ground state.

T.Nakamura et al.

dσ m_am_b $\overline{(2\pi\hbar^2)^2} \overline{\mathbf{k}}$ $d\Omega$ $\mathbf{T}_{\mathbf{b}\mathbf{a}} = \left\langle \boldsymbol{\varphi}_{\mathbf{b}} \mid \mathbf{V}_{\mathbf{b}} \mid \boldsymbol{\varphi}_{\mathbf{a}} \right\rangle$

EXP: Z.Elekes et al. PLB614(2005)174.

R.Kanungo et al. NPA 757(2005)315. => No isomers observed.

No excited states known above the neutron decay threshold !

Experiment and Analysis

Invariant Mass Method in Inverse Kinematics

Advantages:

- Beam momentum is irrelevant to invariant mass; high resolution \sim 150 keV (in σ @ 1 MeV) can be attained.
- Kinematical focusing allows to use a detection system covering relatively small acceptance solid angles.
- Various reaction channels can be measured simultaneously.

Experimental Setup (1)

RIPS @ RIKEN accelerator facility

Experimental Setup (2)

Advantages in using cryogenic hydrogen target

- 1. Coulomb multiple scattering effect is low => Good angular resolution
- 2. Number of target is large
- 3. Inert & no contaminant component
- => High counting statistics
- => Low background

Particle Identification

Acceptance Correction

Monte Carlo Simulation

Three Dimensional particle trajectory inside a dipole magnet (R 364n)

Acceptance Curve

Efficiency map of wall-1 for the one-neutron decay channel: 19C -> 18C+n (R 364n)

Intrinsic Neutron Detection Efficiency

• Pulse height calibration made with cosmic ray events.

 Efficiency calibration made with neutrons from the ⁷Li(p,n) reaction.

- •(p,n) cross sections are Wa normalized to values in Wa Ref [T.N.Taddeucci PRC41(1990)2548].
- •For a threshold setting of 4 MeVee. →

Wall-No	Efficiency
Wall-1	8.29±0.13%
Wall-2	8.12±0.13%
Wall-3	5.81±0.12%
Wall-4	6.09±0.13%
Total	28.31±0.25%
	Wall-No Wall-1 Wall-2 Wall-3 Wall-4 Total

Invariant Mass Spectrum

Model space: psd

Shell model interaction:

WBT,WBP : E.K.Warburton and B.A.Brown, PRC46(1992)923. MK : D.J.Millener and D.Kurath, NPA255(1975)315.

Model space: psd

Shell model interaction:

WBT,WBP : E.K.Warburton and B.A.Brown, PRC46(1992)923. MK : D.J.Millener and D.Kurath, NPA255(1975)315.

Differential Cross Section

Summary

- We have measured the ¹⁹C(p,p') reaction at E_p=70 MeV by applying the invariant mass method in inverse kinematics.
- In an invariant mass spectrum, a previously unknown peak was identified at E_x =1.49 MeV in ¹⁹C.
- From comparison in excitation energy with shell model calculations, spin and parity of the state was suggested to be either 5/2⁺ or 1/2⁻.

