Structure change in light neutron-rich nuclei via nucleon transfer reaction

CNS, University of Tokyo S. Shimoura

Collaborators

• CNS / Univ. Tokyo

• M. Niikura, M. Tamaki, A. Saito, E. I deguchi, M. Notani,

T. Teranishi, S. Kubono, H. Iwasaki, S.S.

RIKEN

- S. Michimasa (²³F*), K. Yamada, T. Gomi, N. Imai, H. Baba, S. Takeuchi, T. Minemura, Y. Yanagisawa, N. Aoi, Z. Elekes, M. Kurokawa, H. Sakurai, T. Motobayashi, M. Ishihara
 Rikkyo Univ.
 - Y.U. Matsuyama, S. Kanno, E. Takeshita, T. Fukuchi, K. Kurita, K. Leki

• Kyoto Univ.

• S. Ota (¹³B*), T. Fukui, T. Murakami

Inverse Kinematics w/ RI beam (30-100 MeV/u)

Formation of Excited States of Exotic Nuclei

Direct reactions and their selectivities

In-beam spectroscopy measuring decay products

- Invariant-mass/γ-ray spectroscopy
 - Particle detectors at forward angles (kinematical focus)
 - Gamma detectors surrounding target (Doppler shift)

Probes for direct reactions (30-100 MeV/u)

- Heavy Nuclei: Strong Coulomb Field
 - Coulomb Excitation, Coulomb Dissociation
 - E1, E2, (M1) / Isovector
- H, D, ⁴He [Liquid targets]
 - Inelastic Scattering
 - Collective / single-particle states (odd nuclei)
 - Isovector (H) / Isoscaler(H, D, ⁴He)
 - Spin-Flip (H, D) / Spin-Non-Flip (H, D, ⁴He)
 - Charge Exchange
 - Fermi type (H) / Gamow-Teller type (H, D)

• Nucleon Transfer

•(α ,t), (α ,³He) Reaction

- Knockout
 - Hole states
- Other (Be, C, etc.)
 - Inelastic Scattering
 - Knockout / Fragmentation

Motivation for transfer reactions

Structure information of nuclei as functions of N and Z

Shell Evolution : Single particle states

 Spectroscopy of proton (unoccupied) single particle states in neutron-rich nuclei

Nucleon (Proton) Transfer

Incident energy higher than 30 MeV/u ✓ Thicker target (100~200 mg/cm²)

- ✓ Less distortion effect
- ✓ Less multi-step process
- ✓ Same optical potential as inelastic excitation
- ✓ I dentification by comparing with other direct reactions

But

x Momentum mismatch

Momentum Matching Condition

- As if "Getting off from the moving train (projectile) to platform (target)"
 - Internal motion in the train (Fermi motion in the projectile) along the opposite direction of the train (target)
 - Motion on the platform (Fermi motion of the nucleon on the target) along the direction of the train

$$\begin{bmatrix} c \\ a+A \rightarrow b+B \\ a = (b+x) \\ B = (A+x) \end{bmatrix}$$
Plane Wave Born Approx.

$$T_{PW}^{Post} = \langle \phi_{c'} | V_{xb} + V_{bA} | \phi_{c} \rangle$$

$$T_{PW}^{Prior} = \langle \phi_{c'} | V_{xA} + V_{bA} | \phi_{c} \rangle$$

$$\langle \phi_{c'} | V_{xb} | \phi_{c} \rangle = -\frac{1}{(2\pi)^3} \frac{\hbar^2}{2\mu_{xb}} (k_{xb}^2 + \kappa_a^2) \int d^3 r_{xb} \psi_a(\vec{r}_{xb}) e^{i\vec{k}_{xb}\cdot\vec{r}_{xb}} \int d^3 r_{xA} \psi_B *(\vec{r}_{xA}) e^{-i\vec{k}_{xA}\cdot\vec{r}_{xA}}$$

$$\langle \phi_{c'} | V_{xA} | \phi_{c} \rangle = -\frac{1}{(2\pi)^3} \frac{\hbar^2}{2\mu_{xb}} (k_{xA}^2 + \kappa_B^2) \int d^3 r_{xb} \psi_a(\vec{r}_{xb}) e^{i\vec{k}_{xb}\cdot\vec{r}_{xb}} \int d^3 r_{xA} \psi_B *(\vec{r}_{xA}) e^{-i\vec{k}_{xA}\cdot\vec{r}_{xA}}$$

$$\bar{k}_{xb} = \frac{b}{a} \vec{k}_c - \vec{k}_{c'}; \vec{k}_{xA} = \vec{k}_c - \frac{A}{B} \vec{k}_{c'}$$
Fourier Transforms of wave functions of nucleon (x) in a and B
Same value but different expressions

$$\frac{\hbar^2 \kappa_a^2}{2\mu_{xb}} = \varepsilon_a; \frac{\hbar^2 \kappa_B^2}{2\mu_{xA}} = \varepsilon_B$$
Binding energies of a and B

Proton Transfer in Momentum Space

Exotic Magic Number at N=16 (Z~8)

Known Energy Levels of Fluorine I sotopes

$^{4}\text{He}(^{22}\text{O},^{23}\text{F}\gamma), ~^{4}\text{He}(^{23}\text{F},^{23}\text{F}\gamma), ~^{4}\text{He}(^{24}\text{F},^{23}\text{F}\gamma), ~^{4}\text{He}(^{25}\text{Ne},^{23}\text{F}\gamma)$

 Use of Cocktail beam (²²O, ²³F, ²⁴F, ²⁵Ne) •Gamma ray measurement coincident with ²³F ejectile

Three Different Reactions Approaching ²³F 1. ⁴He(²²O,²³Fγ): Proton Pickup Reaction

- 2. 4 He(23 F, 23 F γ): Inelastic Scattering
- 3. ${}^{4}\text{He}({}^{24}\text{F},{}^{23}\text{F}\gamma)$: 4. ${}^{4}\text{He}({}^{25}\text{Ne}, {}^{23}\text{F}\gamma)$:

Knockout

- 1. Proton S.P. states (5/2+, 1/2+, 3/2+)
- 2. Collective states; Non-spin-flip states ([core 2+] \otimes S.P. state, etc)
- 3. Neutron hole states

Level Scheme of ²³F

Fitting using response functions by GEANT3 simulations

Angular Distributions for the 4.06- and 2.37-MeV state

J^{π} and spectroscopic factors of excited states by DWBA analysis.

Optical Potentials

 of the ²²O+α and the ²³F+t channels
 deduce from angular distributions for
 ²²O(α,α') and ²³F(α,α')

The 4.06-MeV state : Single particle state in *d*.

The 2.27-MeV state : consistent with Single particle state in the *s*.

Comparison with Shell Model Calculations

LS splitting of proton single particle energy may be larger than stable nuclei because of neutron-richness

$$V_{LS} \propto \frac{1}{r} \frac{d}{dr} V(r) \left(\vec{l} \cdot \vec{s} \right)$$

[1] B.A.Brown,
http://www.nscl.msu.edu/~brown
/resources/SDE.HTM
[2] T.Otsuka, private

communication.: predicts N=16 magic number

N-rich N=8 Nuclei

Spin-orbit splitting between $vp_{1/2} \& vp_{3/2}$ depend on the number of protons in $dp_{1/2}$ orbit attracting $vp_{1/2}$ orbit

¹²Be

•Low-lying 2+ state
•Low-lying 1- state
•Low-lying 0+2 state
Magicity loss in N=8
Deformed ground state

Change of Boron Proton Shell as a function of configuration Deformed mean field?

p_{1/2}

 $p_{3/2}$

П

 $13\mathbf{B*}$

sd

 $p_{1/2}$

 $p_{3/2}$

n

 $^{13}B_{gs}$

р

⁴He(¹²Be, ¹³Bγ) @ 50 A MeV

Deformed ¹²Be core + 1 proton ?

Spectra of ¹⁴C, ¹²Be, ¹¹B, and ¹³B

[keV]	⁴ He(¹² Be, ¹³ B)Х	¹¹ B(t,p)	¹³ B ⁹ Be(¹⁴ B, ¹³ B)	¹⁴ Be(n)	¹⁶ O(¹⁴ N, ¹⁷ F) ¹³ E	$3^{12} C(^{14}C, ^{13}N)^{13}B$	$^{12}C(^{13}C,^{12}N)^{13}B$	¹² C(¹⁵ N, ¹⁴ O) ¹³ B
4829	1.00		0.03				1.00	0.34		
4131	0.59(13)		1.00	0.40				0.23	0.78	0.39
3713	0.95(18)		0.25				I	1.00	1.00	1.00
3681	0.48(16)	i	0.38	1.00						
3534	0.31(12)		0.19		1.00)				
3482	0.06(13)		0.06	0.60						

⁴He(¹²Be, ¹³Bγ) @ 50 A MeV

Angular Distribution of ¹³B coin. with **4829** keV γ

FR-DWBA (DWUCK5) Optical Potential: ${}^{12}C + {}^{4}He$ (entrance) ${}^{12}C + {}^{3}He$ (exit) L=0 -> J ${}^{\pi} = 1/2^{+}$

 $C^2S = 0.1 - 0.2$

dep. on Potentials -> Proton "single particle" state on ¹²Be

 $d\sigma/d\Omega_{cm} \ (mb/sr)$

⁴He(¹²Be, ¹³Bγ) @ 50 *A* MeV

1/2⁺ state in ¹³B^{*} Configuration

1/2⁺ state in ¹³B* by AMD Kanada-Enyo prelim.

- 1/2⁺₁:変形した状態
 - 70% 1 h
 - 30% 1h + 2h
 - ・ 陽子の励起状態
 - ¹²Beの基底状態の配位混
 合を反映した状態
- 1/2+2:球形の状態
 1h + 0h
- 本実験では、1/2+1状態 が励起?

Summary

- (α ,t) and (α ,³He) reactions at intermediate energy can be used for spectroscopy of single-particle states in exotic nuclei.
- Spectroscopy of ^{23}F was also performed by (α,t) reaction combined with inelastic and knock-out reactions
- \bullet Level scheme was constructed for $^{23}\mathrm{F}$
- Spin-orbit splitting of 3/2⁺ and 5/2⁺ was not so small as predictions of shell models.
- γ-ray spectroscopy of ¹³B excited by Proton Transfer (¹²Be,¹³Bγ) reaction was measured.
- The 4.8-MeV state have J^π of 1/2⁺ and an proton S-factor of =0.1~0.2 by DWBA analysis
 - Differs from standard shell-model prediction
 - It might be contain [220]1/2⁺ configuration on the deformed ¹²Be core.
 - $1/2_{1}^{+}$ state in AMD calculation
- (α ,t), (α ,³He) reaction on ³²Mg and ³⁴Si was measured recently by using position-sensitive Ge array, GRAPE. N-rich nuclei around N~20