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Introduction
• Various theories have been developed to describe excited states.

– Shell model
– Mean-field theory

• RPA, GCM
– Cluster model, AMD

• We propose a new framework based on mean-field theory.
– Prepare Slater determinants by some stochastic method

– Angular momentum projection and configuration mixing.

How to prepare the Slater determinants?



  

Superposition of randomly-selected 
Slater determinants

• Description of various low-lying excitations.
– Without assuming nuclear shape. 
– Superposition of multiple Slater determinants.

• We propose a new stochastic approach.
– Slater determinants are randomly-generated and are 

cooled by “imaginary-time method”.

• We examine the accuracy of our method by using BKN 
force in the calculation of light nuclei.



  

Many paths created by
 imaginary-time method

16O

Randomly-generated Slater determinants

soft



  

Initial Slater determinants

• Gaussian single-particle wave functions are distributed.
• Positions of the Gaussian-centers are determined by 

random numbers.

Gaussian wave packet

iteration iteration



  

3D-mesh representation

3D-mesh representation is applied to deal with largely deformed shape.

Initial state HF state



  

How to select Slater det
• An imaginary-time calculation is continued until 2000 step.

– 40 checkpoints in an imaginary-time calculation.
• Basis set should be linearly independent.

We exclude a state |Φ〉 if this 
does not satisfy the condition

〈Φ(±)|Φi(±)〉<0.7
for any of already selected Slater 
determinants {|Φi〉}.



  

Many configurations included
in the calculation in 16O

Local minima  and soft modes automatically appear.



  

Configuration Mixing
• Parity and angular momentum projection

• Generalized eigenvalue problem



  

Energy convergence of Jπ=3- in 16O
(BKN interaction is used)

Configuration mixing
of 53 basis states

Configuration mixing
of 2 basis states



  

Results should be unique.

Random number set A

Φ1, Φ2, ・・・ , Φ50

result A

Random number set B

Ψ1, Ψ2, ・・・ , Ψ50 

result B

Result A and B should be identical.



  

Comparison of three independent calculations (16O)



  

Comparison of four independent calculations
Excitation spectrum (16O)

Jπ
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Comparison of two independent calculations
Excitation spectrum (20Ne)

Random number set A Random number set B
Jπ Jπ



  

Comparison of two independent calculations
Excitation spectrum (12C)

Random number set A Random number set B

Jπ Jπ



  

• We examined accuracy of our method with BKN force.
– Convergence and uniqueness of solutions

• Results are promising.
– Estimation of excitation energy is poor.

• Next
– We will discuss the results of 20Ne and 12C in detail. 



  

20Ne

cal exp

Kπ=2-

Kπ=0+

Kπ=0-



  

12C

Kπ=0+

Kπ=1- Kπ=3-

cal exp



  

Summary
• Description of various low-lying excitations.

– Without assuming nuclear shape. 
– Superposition of multiple Slater determinants.

• New stochastic method using imaginary-time method.
– Initial Slater determinants are randomly-generated.
– Local minima and soft-modes automatically appear 

during the imaginary-time evolution.
• We examined accuracy of our method with BKN force.

– Convergence and uniqueness of solutions
– Application to light nuclei (12C, 20Ne)

• Results are promising.



  

Future Problem
• Improvement of the method

– We have to consider the way to select only important 
configurations that make the energy lower.

• Application with more realistic Skyrme force
– Application to unstable nuclei



  

Energy convergence

Eigenvelue of norm matrix



  

Energy convergence

Eigenvelue of norm matrix



  

20Ne



  

40 check points



  

An example of imaginary-time calculation
16O



  

Comparison of four independent calculations
Excitation spectrum (20Ne)
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