Cluster Structures Described by Randomly-Selected Multiple Slater Determinants

S. Shinohara¹, H. Ohta², T. Nakatsukasa^{1,3} and K. Yabana^{1,3}

¹Institute of Physics, University of Tsukuba ²Sumitomo Chemical, Tsukuba Laboratory ³Center for Computational Sciences, University of Tsukuba

> CNS work shop @ Wako January 26 - 28, 2006

Introduction

- Various theories have been developed to describe excited states.
 - Shell model
 - Mean-field theory
 - RPA, GCM
 - Cluster model, AMD
- We propose a new framework based on mean-field theory.
 - Prepare Slater determinants by some stochastic method $\{\Phi^i\} \ (i = 1, \cdots, N)$
 - Angular momentum projection and configuration mixing.

$$\{h^{J\pm} - En^{J\pm}\}g = 0 \begin{cases} h^{J\pm}_{iKi'K'} \\ n^{J\pm}_{iKi'K'} \end{cases} = \langle \Phi^i | \begin{cases} \hat{H} \\ 1 \end{cases} P^J_{KK'}P^{\pm} | \Phi^{i'} \rangle$$

How to prepare the Slater determinants?

Superposition of randomly-selected Slater determinants

- Description of various low-lying excitations.
 - Without assuming nuclear shape.
 - Superposition of multiple Slater determinants.
- We propose a new stochastic approach.
 - Slater determinants are randomly-generated and are cooled by "imaginary-time method".
- We examine the accuracy of our method by using BKN force in the calculation of light nuclei.

Many paths created by imaginary-time method

Initial Slater determinants

- Gaussian single-particle wave functions are distributed.
- Positions of the Gaussian-centers are determined by random numbers.

3D-mesh representation

3D-mesh representation is applied to deal with largely deformed shape.

How to select Slater det

- An imaginary-time calculation is continued until 2000 step.
 - 40 checkpoints in an imaginary-time calculation.
- Basis set should be linearly independent.

Many configurations included in the calculation in ¹⁶O

Local minima and soft modes automatically appear.

Configuration Mixing

Parity and angular momentum projection

$$\begin{split} |\Phi^{i}\rangle &\to P^{J}_{MK}P^{\pm}|\Phi^{i}\rangle \qquad (i=1,2,\cdots 50) \\ |\Phi^{i}\rangle &\equiv |\mathcal{A}\{\phi^{i}_{1}\phi^{i}_{2}\cdots \phi^{i}_{A}\}\rangle \end{split}$$

• Generalized eigenvalue problem

$$\{h^{J\pm} - En^{J\pm}\}g = 0$$

$$\begin{cases} h^{J\pm}_{iKi'K'} \\ n^{J\pm}_{iKi'K'} \end{cases} = \langle \Phi^i | \begin{cases} \hat{H} \\ 1 \end{cases} P^J_{KK'}P^{\pm} | \Phi^{i'} \rangle$$

Energy convergence of J^π=3⁻ in ¹⁶O (BKN interaction is used)

Results should be unique.

number of basis states

Comparison of two independent calculations Excitation spectrum (²⁰Ne)

Comparison of two independent calculations Excitation spectrum (¹²C)

Random number set A

Random number set B

- We examined accuracy of our method with BKN force.
 Convergence and uniqueness of solutions
 - Results are promising.
 - Estimation of excitation energy is poor.
- Next

– We will discuss the results of ²⁰Ne and ¹²C in detail.

Summary

- Description of various low-lying excitations.
 - Without assuming nuclear shape.
 - Superposition of multiple Slater determinants.
- New stochastic method using imaginary-time method.
 - Initial Slater determinants are randomly-generated.
 - Local minima and soft-modes automatically appear during the imaginary-time evolution.
- We examined accuracy of our method with BKN force.
 - Convergence and uniqueness of solutions
 - Application to light nuclei (12C, 20Ne)
 - Results are promising.

Future Problem

- Improvement of the method
 - We have to consider the way to select only important configurations that make the energy lower.
- Application with more realistic Skyrme force
 - Application to unstable nuclei

Energy convergence

Eigenvelue of norm matrix

Energy convergence

Eigenvelue of norm matrix

²⁰Ne

40 check points

An example of imaginary-time calculation ¹⁶O

Comparison of four independent calculations Excitation spectrum (²⁰Ne)

ரா