Recent Progress on the 0^{+}Dominance

Naotaka Yoshinaga
Saitama University, JAPAN

Outline of my talk

- Introduction
- Formulation in single j-shells
- Estimation of the ground state energy
- Application to the $P(I)$
- Summary

In collaboration with A. Arima and Y.M. Zhao

Introduction

Johnson, Bertsch and Dean (1998)

0^{+}predominance

$$
\begin{aligned}
\left\langle V_{\alpha, \alpha^{\prime}}^{2}\right\rangle & =c_{J}\left(1+\delta_{\alpha \alpha^{\prime}}\right) \\
\left\langle V_{\alpha, \alpha^{\prime}} V_{\beta, \beta^{\prime}}\right\rangle & =0, \quad\left(\alpha, \alpha^{\prime}\right) \neq\left(\beta, \beta^{\prime}\right) .
\end{aligned}
$$

TABLE I. Percentage of ground states (g.s.) of the RQE that have $J=0, T=T_{z}$ for our target nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers.

N	Ω	Nucleus	$J=0, T=T_{z}$	$J=0, T=T_{z}$
6	12	${ }^{22} \mathrm{O}$	76%	Total space
6	20	${ }^{46} \mathrm{Ca}$	75%	9.8%
$N=4, Z=4$	12	${ }^{24} \mathrm{Mg}$	66%	3.5%

C. W. Johnson, G. F. Bertsch, D. J. Dean and I. Talmi Second paper

Calculation on O, Ca, Mg
RQE : random quasiparticle ensemble
TBRE: two-body random ensemble
RQE-NP: random quasiparticle ensemble-no pairing
RQE-SPE: random quasiparticle ensemble with single-particle energies

TABLE I. Percentage of ground states for selected random ensembles that have $J=0$ for our target nuclides, as compared to the percentage of all states in the model spaces that have these quantum numbers. (Statistical error is approximately $1-3 \%$.) Entries with dashes were not computed.

Nucleus	RQE	RQE-NP	TBRE	RQE-SPE	$J=0$ (total space)	$J=2$ (total space)
${ }^{20} \mathrm{O}$	68%	50%	50%	49%	11.1%	14.8%
${ }^{22} \mathrm{O}$	72%	68%	71%	77%	9.8%	13.4%
${ }^{24} \mathrm{O}$	66%	51%	55%	78%	11.1%	14.8%
${ }^{44} \mathrm{Ca}$	70%	46%	41%	70%	5.0%	9.6%
${ }^{46} \mathrm{Ca}$	76%	59%	56%	74%	3.5%	8.1%
${ }^{48} \mathrm{Ca}$	72%	53%	58%	71%	2.9%	7.6%
${ }^{50} \mathrm{Ca}$	65%	45%	51%	61%	2.7%	7.1%
${ }^{24} \mathrm{Mg}$	66%	-	44%	54%	4%	16%
${ }^{26} \mathrm{Mg}$	62%	52%	48%	56%	4%	15%
${ }^{28} \mathrm{Mg}$	59%	46%	44%	54%	4%	16%

References

Y.M. Zhao, A. Arima, N.Yoshinaga, Phys. Rep. 400 (2004) 1.
C.W. Johnson, G.F. Bertsch, D.J. Dean, Phys. Rev. Lett. 80 (1998) 2749.
C.W. Johnson, G.F. Bertsch, D.J. Dean, I. Talmi, Phys. Rev. C 61 (1999)014311.
Y.M. Zhao, A. Arima, Phys. Rev. C 64 (2001) 041301.
Y.M. Zhao, A. Arima, N.Yoshinaga, Phys. Rev. C 66 (2002) 034302.
A. Arima, N.Yoshinaga,Y.M. Zhao, Eur. Phys. J. A 13 (2002) 105.
Y.M. Zhao, A. Arima, N.Yoshinaga, Phys. Rev. C 66 (2002) 064322.
N.Yoshinaga, A. Arima, Y.M. Zhao, J. Phys. A 35 (2002) 8575.
Y.M. Zhao, A. Arima, N. Yoshinaga, Phys. Rev. C 68 (2003) 014322.
A. Arima, N. Yoshinaga, Y.M. Zhao, Nucl. Phys. A 722 (2003) 234c.
Y.M. Zhao, A. Arima, J.N. Ginocchio, N.Yoshinaga, Phys. Rev. C 68(2003) 034320.
Y. M. Zhao, A. Arima, N. Shimizu, K. Ogawa, N. Yoshinaga, and O. Scholten, Phys. Rev. C 70 (2004) 054322.
V. Zelevinsky, A. Volya, Phys. Rep. 391 (2004) 311.

Formulation in single-j shells

In order to simplify argument, we take j^{n}-configuration.

Hamiltonian

$$
\begin{gathered}
\hat{H}=\sum_{J=0}^{2 j-1} \sqrt{2 J+1} G_{J}\left[A^{\dagger(J)} \tilde{A}^{(J)}\right]^{(0)} \\
A^{\dagger(J)}=\frac{1}{\sqrt{2}}\left[a_{j}^{\dagger} a_{j}^{\dagger}\right]^{(J)}, \quad \tilde{A}^{(J)}=-\frac{1}{\sqrt{2}}\left[\tilde{a}_{j} \tilde{a}_{j}\right]^{(J)}
\end{gathered}
$$

Two-body random ensemble (TBRE) :

$$
\rho\left(G_{J}\right)=\frac{1}{\sqrt{2 \pi}} \exp \left[-\frac{G_{J}^{2}}{2}\right]
$$

The ensemble average :

$$
\left\langle G_{J}\right\rangle=0, \quad\left\langle G_{J} G_{K}\right\rangle=\delta_{J K}
$$

Matrix elements of \hat{H} for spin-/ states with dimension d_{I}

$$
\begin{align*}
& H_{I \beta \gamma}=<j^{n} I \beta|\hat{H}| j^{n} I \gamma>=\sum_{J=0}^{2 j-1} \alpha_{I \beta \gamma}^{J} G_{J} \\
& \left.\left.\alpha_{I \beta \gamma}^{J}=\frac{n(n-1)}{2} \sum_{K \delta}<j^{n-2} K \delta, j^{2} J \mid\right\} j^{n} I \beta><j^{n-2} K \delta, j^{2} J \mid\right\} j^{n} I \gamma> \\
& \text { c.f.p. }
\end{align*}
$$

Definition of the matrix $\boldsymbol{\alpha}_{I}^{J}$ with dimension d_{I}

$$
\left(\boldsymbol{\alpha}_{I}^{J}\right)_{\beta \gamma} \equiv \alpha_{I \beta \gamma}^{J} \quad\left(\beta, \gamma=1, \ldots, d_{I}\right)
$$

0^{+}dominance examples

Probabilities of Spin=/ ground states: $P(I)$
All probabilities are obtained by 1000 runs of the TBRE Hamiltonian in j^{4}

One sees clearly the Spin = 0 dominance in this figure.

Empirical approach to predict $\mathrm{P}(\mathrm{I})$

We set one of the two-body matrix elements $\quad G_{J}=-1$ and all others 0 . We find which angular momentum I gives the lowest eigenvalue among all the eigenvalues of the shell model diagonalization.

How many times does a certain angular momentum I gives
the lowest eigenvalues among all the possible eigenvalues ? N_{I}
We predict that the probability of I g.s. is given by

$$
P(I)=N_{I} / N \text { where } N \text { is the number of } G_{J} \quad(=(2 j+1) / 2)
$$

TABLE I. The angular momenta that give the lowest eigenvalues when $G_{J}=-1$ and all other parameters are 0 for four fermions in single- j shells.

2_{j}	$G 0$	$G 2$	$G 4$	$G 6$	$G 8$	$G 10$	$G 12$	$G 14$	$G 16$	$G 18$	$G 20$	$G 22$	$G 24$	$G 26$	$G 28$	$G 30$
7	0	4	2	8												
9	0	4	0	0	12											
11	0	4	0	4	8	16										
13	0	4	0	2	2	12	20									
15	0	4	0	2	0	0	16	24								
17	0	4	6	0	4	2	0	20	28							
19	0	4	8	0	2	8	2	16	24	32						
21	0	4	8	0	2	0	0	0	20	28	36					
23	0	4	8	0	2	0	10	2	0	24	32	40				
25	0	4	8	0	2	4	8	10	6	0	28	36	44			
27	0	4	8	0	2	4	2	0	0	4	20	32	40	48		
29	0	4	8	0	0	2	6	8	12	8	0	24	36	44	52	
31	0	4	8	0	0	2	0	8	14	16	6	0	32	40	48	56

N. Yoshinaga-2006-CNS

Two main problems

- What is the origin of spin=0 dominance?
- What quantities characterize the ground state energy for each angular momentum?
-- How to estimate the ground state energy in many-body problems?

Estimation of the ground state energy

We assume the ground state energy of spin-I states as follows

$$
\begin{aligned}
E_{I}^{(\min)}=\bar{E}_{I}-\Phi\left(d_{I}\right) & \sigma_{I}\left\{G_{J}\right\} \\
\text { Average } & \text { Width }
\end{aligned}
$$

The distribution of enegies are assumed to be Gaussian

Estimation of the factor $\Phi\left(d_{I}\right)$

Let us take the following guess to the lowest eigen-value $E_{I}^{(\text {min })}$
of the Hamiltonian \hat{H} by assuming that eigen-energies
$E_{I \beta}\left(\beta=1,2, \cdots d_{I}\right)$ follow a gaussian distribution

$$
\rho\left(E_{I}\right)=\frac{d_{I}}{\sqrt{2 \pi} \sigma_{I}} \exp \left[-\frac{\left(E_{I}-\bar{E}_{I}\right)^{2}}{2\left(\sigma_{I}\right)^{2}}\right]
$$

To estimate $E_{I}^{(\min)}$, we need to solve the following equation ;

$$
\int_{E_{I}^{(\min)}}^{E_{I}} \rho\left(E_{I}\right) d E_{I}=\frac{d_{I}}{2}-1
$$

This is converted to the following equation by the change of variable

$$
\operatorname{Erfc}\left(t^{M}\right)=\frac{\sqrt{\pi}}{d_{I}} \quad t^{M}=\frac{E_{I}^{(\min)}-\bar{E}_{I}}{\sqrt{2} \sigma_{I}}
$$

where the error function is defined as $\operatorname{Erfc}(x) \equiv \int_{x}^{\infty} \exp \left[-t^{2}\right] d t$
We cannot solve this equation analytically, but for large d_{I} we get

$$
t^{M} \approx-\sqrt{\ln d_{I}-\frac{1}{2} \ln \left(4 \pi \ln d_{I}\right)}
$$

by using the asymptotic expansion of the error function for its large argument.
Thus, we have

$$
E_{I}^{(\min)}=\bar{E}_{I}-\sqrt{2 \ln d_{I}-\ln \left(4 \pi \ln d_{I}\right)} \sigma_{I} \Phi\left(d_{I}\right)
$$

Accordingly we have the estimate of the minimum energy $E_{I}^{(\text {min })}$ for $\left\{G_{J}\right\}$

$$
E_{I}^{(\min)}=\bar{E}_{I}-\Phi\left(d_{I}\right) \sigma_{I}\left\{G_{J}\right\}
$$

Average
Width

Here $\Phi\left(d_{I}\right)=\sqrt{\ln d_{I}-\frac{1}{2} \ln \left(4 \pi \ln d_{I}\right)}$ and the width

$$
\begin{aligned}
\sigma_{I}\left\{G_{J}\right\} & =\sqrt{\frac{1}{d_{I}} \operatorname{Tr}\left[\left(\hat{H}-\bar{E}_{I}\right)^{2}\right]} \\
& =\sqrt{\frac{1}{d_{I}} \sum_{J, K} \operatorname{Tr}\left[\left(\boldsymbol{\alpha}_{I}^{J}-\bar{\alpha}_{I}^{J} \mathbf{I}\right)\left(\boldsymbol{\alpha}_{I}^{K}-\bar{\alpha}_{I}^{K} \mathbf{I}\right)\right] G_{J} G_{K}}
\end{aligned}
$$

Note that this guess is only valid for $\quad d_{I} \gg 1$

Numerical Check of our formula

Let us check our formula numerically.

$$
E_{I}^{(\min)}=\bar{E}_{I}-\Phi\left(d_{I}\right) \sigma_{I}\left\{G_{J}\right\}
$$

We calculate $\bar{E}_{I}-E_{I}^{(\min)}$ as a function of $\sigma_{I}\left\{G_{J}\right\}$

$j=31 / 2 \quad \mathrm{n}=4 \quad \mathrm{l}=0$

$$
\bar{E}_{I}-E_{I}^{(\min)} \quad \mathrm{j}=31 / 2 \mathrm{n}=4 \quad \mathrm{I}=0
$$

$$
\begin{gathered}
\boldsymbol{\Phi} \\
\downarrow \\
y=1.41 \times \\
\sigma_{I}\left\{G_{J}\right\}
\end{gathered}
$$

Factors Φ^{2} for $\mathrm{j}=31 / 2, \mathrm{n}=4$

N. Yoshinaga-2006-CNS

Application of our new formula

$$
\begin{aligned}
& E_{I}^{(\min)}=\bar{E}_{I}-\Phi\left(d_{I}\right) \sigma_{I}\left\{G_{J}\right\} \\
& \Phi\left(d_{I}\right)=\sqrt{a \ln \left(d_{I}\right)+b} \quad a=0.99, \quad b=0.36
\end{aligned}
$$

Surprisingly factors a, b are insensitive to the shell-size particle number as far as single-j shells are concerned.

We calculate $P(I)$ using this formula
"Width-prediction" method

Application to single- j shell

N. Yoshinaga-2006-CNS

Fermion systems : Single- j

 $j=7 / 2$ to $j=31 / 2 \quad n=4$
N. Yoshinaga-2006-CNS

Boson systems : Single-I

l=1 to $/=15 \quad n=4$

N. Yoshinaga-2006-CNS

Papenbrock and Weidenmuller

 Phys. Rev. Lett. 93(2004)132503$$
\begin{gathered}
E_{I}^{(\mathrm{min})}=-r_{I} \sigma_{I}^{P}\left\{G_{J}\right\} \\
\sigma_{I}^{P}\left\{G_{J}\right\}=\sqrt{\frac{1}{d_{I}} \operatorname{Tr}\left[(\hat{H})^{2}\right]}
\end{gathered}
$$

Their $P(I)$ for $j=19 / 2$ and $n=6$

FIG. 1 (color online). Six fermions in a shell with spin $j=$ 19/2. Top: Probability that the ground-state has spin J (data points); probability that spin J has the largest spectral width (solid line); probability that the product $r_{J} \sigma_{J}$ is maximal (dashed line). Bottom: Scaling factor r_{J} between the widths and spectral radii. Inset: Spectral radius R_{0} versus width σ_{0} (data points) and the linear fit (line) for total spin $J=0$. (Results from 900 random realizations).

Microscopic origin of the 0+ dominance

$$
\begin{aligned}
& H_{I \beta \gamma}=<j^{n} I \beta|\hat{H}| j^{n} I \gamma>=\sum_{J=0}^{2 j-1} \alpha_{I \beta \gamma}^{J} G_{J} \\
& \left.\left.\alpha_{I \beta \gamma}^{J}=\frac{n(n-1)}{2} \sum_{K \delta}<j^{n-2} K \delta, j^{2} J \mid\right\} j^{n} I \beta><j^{n-2} K \delta, j^{2} J \mid\right\} j^{n} I \gamma> \\
& \text { c.f.p. } \\
& \bar{\alpha}_{I}^{J} \equiv \frac{1}{d_{I}} \sum_{\beta}^{d_{I}} \alpha_{I \beta \beta}^{J}=\frac{1}{d_{I}} \operatorname{Tr}\left(\boldsymbol{\alpha}_{I}^{J}\right) \\
& \left(\sigma_{I}^{J}\right)^{2}=\frac{1}{d_{I}} \operatorname{Tr}\left(\left(\boldsymbol{\alpha}_{I}^{J}-\bar{\alpha}_{I}^{J} \mathbf{I}\right)^{2}\right)=\frac{1}{d_{I}} \sum_{\beta, \gamma} \alpha_{I \beta \gamma}^{J} \alpha_{I \gamma \beta}^{J}-\left(\bar{\alpha}_{I}^{J}\right)^{2}
\end{aligned}
$$

"Random phase approximation"

$$
\begin{aligned}
\frac{1}{d_{I}} \sum_{J, K} \operatorname{Tr} & {\left[\left(\boldsymbol{\alpha}_{I}^{J}-\bar{\alpha}_{I}^{J} \mathbf{I}\right)\left(\boldsymbol{\alpha}_{I}^{K}-\bar{\alpha}_{I}^{K} \mathbf{I}\right)\right] G_{J} G_{K} \approx \sum_{J, K} \sigma_{I}^{J} \sigma_{I}^{K} G_{J} G_{K} \mid } \\
E_{I}^{M i n} & \approx \bar{E}_{I}-\Phi\left(d_{I}\right)\left|\sum_{J} \sigma_{I}^{J} G_{J}\right|^{2} \\
& =\sum_{J} \bar{\alpha}_{I}^{J} G_{J}-\Phi\left(d_{I}\right)\left|\sum_{J} \sigma_{I}^{J} G_{J}\right| \quad \text { Approx-A } \\
& =\sum_{J} \bar{\alpha}_{I}^{J} G_{J}-\left|\sum_{J} \sigma_{I}^{J} G_{J}\right|_{\text {Approx-B }}
\end{aligned}
$$

N. Yoshinaga-2006-CNS

N. Yoshinaga-2006-CNS

Large fluctuation of alpha and sigma

$$
\begin{aligned}
& H_{I \beta \gamma}=<j^{n} I \beta|\hat{H}| j^{n} I \gamma>=\sum_{J=0}^{2 j-1} \alpha_{I \beta \gamma}^{J} G_{J} \\
& \left.\left.\alpha_{I \beta \gamma}^{J}=\frac{n(n-1)}{2} \sum_{K \delta}<j^{n-2} K \delta, j^{2} J \mid\right\} j^{n} I \beta><j^{n-2} K \delta, j^{2} J \mid\right\} j^{n} I \gamma> \\
& \bar{\alpha}_{I}^{J} \equiv \frac{1}{d_{I}} \sum_{\beta}^{d_{I}} \alpha_{I \beta \beta}^{J}=\frac{1}{d_{I}} \operatorname{Tr}\left(\boldsymbol{\alpha}_{I}^{J}\right) \\
& \sum_{J} \bar{\alpha}_{I}^{J}=\frac{n(n-1)}{2}
\end{aligned}
$$

Figure 3. Predicted $\bar{\alpha}_{f}^{f}$ (dotted line) and actual values (solid line) for $I=0,2,4$ as a function of J with $j=31 / 2$ and $n=4$.

Conclusion

- A new formula is proposed to estimate the ground state of spin-I states of a TBRE hamiltonian.
- The probability $P(I)$ using our new formula gives a good agreement with $P(I)$ of TBRE for both fermions and bosons in single orbitals
- The microscopic origin of the spin-0 dominance is much easier to access by using our new formula.

