A New ³He polarization for

fundamental neutron physics

Y. Masuda, S.C. Jeong, Y. Watanabe, T. Ino, S. Muto (KEK) and V.R. Skoy (JINR)

Application to physics
 Sapphire cell for ³He polarization
 New Ramsey resonance

Fundamental Physics

tests for fundamental symmetries:
 neutron β decay, T violation, PV spin rotation,
 np->dγ asymmetry, and so on.

ø precision experiments

In high nuclear polarization with high precision

ø high counting statistics

low background

A is crucial for G_A and G_V

 $\odot G_V = V_{ud} G_F$

Precision asymmetry with 10⁻³ is required

(for ~100 days of beam time at J-PARC)

Baryon asymmetry

D **s** · (**k**×**I**) is obtained from double asymmetry upon n spin flip and transmission reversal

 $C \mathbf{s} \cdot \mathbf{k}$ (P-odd) is already measured

A new Ramsey resonance

n spin manipulation for the T violation experiment, β decay, and neutron spectrometer

External cavity

frequency narrowi

Diode laser

nm,

³He solenoid

0.25

nm

³He solenoid Ramsey solenoid

Hot gun for rubidium oven

n

Why ³He polarization ?

Polarized ³He is ideal slow neutron polarizer

³He(n, p)t bound state resonance
J = 1/2 (n spin) + 1/2 (³He spin) = 1 (parallel)
σ_t = σ₀[1- (±P_{He})], σ₀ ∝ 1/v, v: neutron velocity
σ₀ = 5333 b at v = 2200 m/s
σ_s = 3.1 b

Spin exchange optical pumping

Compared with meta stability exchange optical pumping

compact

 continuous pumping for experiment

Sapphire cell

c axis

Appl.Phys.Lett. 87 (2005)053506

sapphire window sapphire cylinder

³He inlet

port

sapphire is impervious to hot alkali vapor

o very clean

Interpretent surface to the neutron beam, strong for high pressure

ø very low neutron cross section

ø birefringence

Phase shift difference at birefringent window

θ = 2π (n_o - n_e) l/λ is controlled by l
P_{pho} = cos²(θ/2) - sin²(θ/2)
Ψ_i = R (right handed state)
Ψ_f = cos(θ/2)exp[i(θ/2)]×R + sin(θ/2)exp[i(θ/2-π/2)]×L

Expected polarization

 \odot P_{pho} = 87% at θ = 23°

³He spin relaxation time 1/γ = 24 h
 ³He

o if ³He-Rb spin exchange rate γ_{se} = 1/5 h⁻¹
 at 195°C (Baranga 1998))

PHe = $P_{Rb} \gamma_{se} / (\gamma_{se} + \gamma) = 72\%$ assuming $P_{Rb} = P_{pho}$

³He polarization is measured by n transmission

 $T = A exp(-\sigma_0 Nd) cosh(P_{He}\sigma_0 Nd)$

 \odot T₀ = A exp($-\sigma_0$ Nd) : transmission at P_{He} = 0

 \odot A: transmission at N = O (σ_0 Nd = O)

𝔅 T/T₀ = cosh(P_{He}σ₀Nd) and T₀/A = exp(−σ₀Nd) → P_{He}

Experimental set-up

$\Delta P_n = 10^{-3} \text{ is possible}$

Comparison with expectation

 \odot P_{He} = 63±1% at a pressure of 3.1 atm

 $\odot P_{He} = P_{Rb} \gamma_{se} / (\gamma_{se} + \gamma) = 72\%$

Low P_{Rb}. The frequency narrowed laser of 11 W is not enough. Rb spin destruction rate is higher than expected because of laser heating.

$\theta = 0, \pi$ flipper for the T violation and β decay

Timing of RF pulse was changed

RF phase was modulate as a function of n TOF for T-violation and n spectrometer

