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Tests of Fundamental Symmetries
• Parity violation → weak interactions

• CP violation → Three generations of quarks

Lorentz and CPT symmetry

• Exact in standard field  theory

• Can be broken in many ways by quantum gravity effects

⇒For example, Plank mass introduces an energy scale, so a particle given a
Lorentz boost to p ~ Mpl should experience different physics due to quantum
gravity effects.

Symmetry violations found before corresponding particles were produced directly



•  Lorentz Symmetry
⇒  Motivations for possible violation
⇒  Experimental signatures

•Development of sensitive co-magnetometer
⇒ Elimination of alkali-metal spin-exchange broadening
⇒ Alkali-metal noble gas co-magnetometer
⇒ Limits on Lorentz-violating spin coupling

•Applications
⇒ Sensitive magnetometer for detection of brain fields
⇒ Nuclear spin gyroscope

Outline



Parametrizing Lorentz and CPT Violation

•Use effective field theory:

•Many mechanisms:
⇒ spontaneous symmetry breaking: vector fields with VEV

⇒ Modified dispersion relationships: E2 = m2 + p2 + η p3/MPl

⇒ Non-commutative space time [xµ,xν] = θµν

a,b - CPT-odd, dimension of energy
c,d - CPT-even, dimensionless

Kostelecky et al.

D = 3L = – ψ (m + aµγµ + bµγ5γµ)ψ +
i
2ψ (γν + cµν γµ + dµν γ5 γµ)∂νψ D = 4

+ higher dimension operators

Jacobson, Amelino-Camelia
Myers, Pospelov, Sudarsky

Witten, Schwartz, Pospelov



Experimental Signatures
• Spin coupling:

• Limiting velocities for particles different from c

• Photon effects: vacuum dispersion, vacuum birefringence,
directional dependence of the speed of light

L = – bµψγ5γµψ = – b ·S SB ⋅−==
m

geAe
2

ψγψ µ
µLc.f.

i
L = 2ψ cµν γµ ∂ νψ (cπ-c)/c ~ c00

In general, spin coupling seems to be the most robust effect in most models.



Spin coupling experiments
• Vector interaction gives a sidereal signal in the lab frame

• Need a co-magnetometer to distinguish from regular magnetic fields

and avoid cancellation by magnetic shields

• Assume coupling is not in proportion to the magnetic moment

• Don’t need anti-particles to search for CPT violation

• Preferred direction bµ could be the direction of motion relative to CMB
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Atomic Spin Magnetometers
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Quantum noise limit for N atoms: δω= 1
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Choice of Active Species:

• Unpaired electron - high magnetic moment
• 2S1/2 ground state - relatively small collisional spin relaxation rate
• Easy to polarize using optical pumping

Alkali metal atoms: Na, K, Rb, Cs



Collisions between alkali atoms, with buffer gas and cell walls

• Spin-exchange alkali-alkali collisions

⇒ Increasing density of atoms decreases spin relaxation time

⇒ Under ideal conditions:

T 2
–1 = σse v n

σ se = 2 × 10–14cm2

δB¥ 1fT cm3

Hz

T2N = σsevV

Mechanisms of spin relaxation



Why do spin-exchange collisions cause relaxation?
• Spin exchange collisions preserve total angular momentum
• They change the hyperfine states of alkali atoms
• Cause atoms to precess in the opposite direction around the magnetic field
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Eliminating spin-exchange relaxation
1. Increase alkali-metal density
2. Reduce magnetic field

ω << 1/ΤSE
Atoms undergo spin-exchange collisions faster than the two hyperfine states can
precess apart

•No relaxation due to spin exchange
B
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W. Happer and H. Tang, PRL 31, 273 (1973)



 Complete elimination of spin-exchange broadening

• Residual linewidth due to spin-
destruction collisions
⇒ Convert spin angular momentum to

rotational momentum of atoms
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J. C. Allred, R. N. Lyman, T. W. Kornack, and MVR,
Phys. Rev. Lett. 89, 130801 (2002)
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Magnetometer Schematic

• Multi-layer magnetic shields eliminate external fluctuations
• Residual fields are zeroed out with internal coils
• Cell heated to 180°C to obtain alkali density of 1014 cm-3
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Magnetometer Performance

I. K. Kominis, T. W. Kornack, J. C. Allred and MVR, Nature 422, 596 (2003)

Magnetic
shield noise
7 fT/Hz1/2

Gradiometer
Sensitivity
0.5 fT/Hz1/2

Volume : 0.3 cm3

Baseline: 3 mm

Best SQUID

• Fundamental sensitive limit at 5 aT/ Hz Previously best atomic
magnetometer : ~1.8 fT/Hz1/2

with a volume 1800 cm3



3He Co-magnetometer
• Simply replace 4He buffer gas with 3He
• 3He is polarized by spin-exchange

⇒T1    ~ 300 hours
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3He Co-magnetometer
1. Replace 4He with 3He (I = 1/2)
2. 3He nuclear spin is polarized by spin-exchange

collisions with alkali metal
3.  Polarized 3He creates a magnetic field felt by

K atoms

4. Apply magnetic field Bz to cancel field BK
⇒K magnetometer operates near zero field

5. In a spherical cell dipolar fields produced by
3He cancel
⇒

3He spins experience a uniform field Bz
⇒Suppress relaxation due to field gradients

BK = 8π
3 κ 0MHe
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Magnetic field self-compensation



Magnetic field compensation
Slightly uncompensatedCompensated

Frequency Response

T.W. Kornack and MVR, 
PRL 89, 253002 (2002)



Cancellation of magnetic field effects

Noise Compensation Gradient Compensation



Thermal
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Development Run Data

S = Ax sin(Ωt)+Ay cos(Ωt)
Ω - sidereal Earth rotation rate

Ax = −0.76 ± 0.74 fT
Ay =   0.59 ± 0.81 fT

Periodic zeroing of fields



Limits on Lorentz and CPT violating spin coupling

|bn| < 1.4 ×10−31 GeV

|be| < 1.0 ×10−28 GeV

Limits from development run

|bn| < 1.1 ×10−31 GeV

|be| < 0.3 ×10−28 GeV

Existing best limit
3He-129Xe co-magnetometer
Walsworth, Harvard-Smithonian

Magnetic torsion pendulum
Heckel, Adelberger, U of Washington

Natural size for Lorentz violation ?

plM
mb

2
~η

m - light mass scale: 
fermion mass 
SUSY breaking scale

Pospelov, hep-ph/0505029Existing limits: η ~ 10−9 − 10−12

1/Mpl  effects are already highly excluded



What’s next?
• Low frequency noise dominates

• Current result 2-3 orders of magnitude below best sensitivity
⇒Further work on drift reduction and continuous data taking
⇒Constructing a miniature (30 cm size) system that can be placed on a

rotating table to increase modulation frequency

1 day



Other applications of co-magnetometer
• Search for a permanent electric dipole moment (EDM)

⇒ EDM violates CP symmetry, but very suppressed in the SM
⇒ Large EDMs generated in SUSY, other extensions

•  Need heavy atoms

• Cs- 129Xe co-magnetometer
⇒Sensitivity 1 fT/Hz1/2

⇒E = 10kV/cm, t = 107 sec
)sin(

24
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δde= 10−29 e-cm, δdXe= 10−30 e-cm  
Factor of 100 improvement in both limits

Cs-129Xe cell



Atomic Magnetoencephalography Setup

•DC Shielding Factor ~ 10000
•256 channel 2D photodiode array
•No conductive materials inside
•10 measurement positions
•Optimization in progress



Atomic Gyroscope
•Rotation creates an effective magnetic field  Beff = Ω/γ
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 ⇒ 1 fT/Hz1/2

For 21Ne       0.001 deg/hour1/2  
 ⇒ 10 fT/Hz1/2



Rotation signal

•Motion and rotation agree with no free parameters
•Short term noise is 2.2 × 10−7 rad/s / Hz1/2

•Competitive with compact ring laser and fiber gyros
T. W. Kornack, R. K. Ghosh and MVR, PRL (in press)



Conclusions

• Lorentz and CPT symmetry tests provide one of the few
ways to experimentally probe Quantum Gravity

• Noble-gas - alkali-metal co-magnetometers allow
sensitive tests of Lorentz violation and other  precision
measurements.
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