Experiments with High-Energy Radioactive Beams

Thomas Aumann

6th CNS International Summer SCHOOL CISS07 Center for Nuclear Study (CNS), the University of Tokyo

RIKEN Wako Campus

August 2007

Experiments with High-Energy Radioactive Beams

- Introduction: Physics, Experiments, Production
- At and beyond the drip line: knockout reactions
- Dipole excitations of neutron-rich nuclei
 - Coulomb breakup of halo nuclei
 - Giant and Pygmy collective excitations
- Future Developments: Experimental Program at FAIR

Physics of exotic nuclei

First reaction experiments with relativistic radioactive beams: Discovery of the halo nuclei

first theoretical interpretation: G. Hansen and B. Jonson, Europhys. Lett. 4 (1987) 409

The first experimental hint ?: The ¹¹Be neutron halo

E1 transition in ¹¹Be

Millener et al., Phys. Rev. C 28 (1983) 497:

Lifetime $\tau = 166(15)$ fs

fastest known E1 transition between bound states

Hansen, Jensen, Jonson,

Annu. Rev. Nucl. Part. Sci. 45 (1995) 591

A new phenomenon at the neutron drip line: Halo nuclei

Single-particle density distributions

Matter Radii extracted from total interaction cross section measurements

1/3

Isao Tanihata, Nucl. Phys. A654 (1999) 235

Appearance of a neutron skin in neutron-rich nuclei

(Skyrme Sk, SL) mean-field calculations P.G. Reinhard, priv. comm. Interaction cross section measurement (GSI) plus Isotope shift measurements (ISOLDE) T.Suzuki et al., Phys. Rev. Lett. 75 (1995) 3241

<u>Other experimental techniques:</u> IV GDR (isoscalar probe), Spin-dipole resonance (rel. n-skin), **Pygmy dipole**, anti-proton scattering, e- plus p elastic scattering

Total absorption measurements

A. Ozawa et al., Nucl. Phys. A 693 (2001) 32

Black disc model:

$$\sigma = \pi [R_{I}(p) + R_{I}(t)]^{2}$$

 \rightarrow interaction radius R_I

rms matter radius $\sigma = \int 2\pi b db [1-T(b)]$ transmission function T(b) Glauber: $T(b) = \exp\{-\sigma_{NN} \int dz \int d^3r \rho_p(\mathbf{r}) \rho_t(\mathbf{R}-\mathbf{r})$ free N-N cross section σ_{NN} **R**=(**b**,z) density distribution $\rho(\mathbf{r})$ e.g. 2pF: $\rho(r) = \rho_0 [1 + \exp\{(r - R_0)/a\}]^{-1}$ half density radius R_{0.} diffuseness a Problem: one measured quantity, two parameters (target dependence, energy dependence)

Method applicable down to intensities of 1 ion/s !!!

Elastic proton scattering at high energies (~1 GeV)

well established method to investigate nuclear matter distributions of stable nuclei (see, e.g., G. Alkhazov et al., Phys. Rep. 42 (1978) 89)

application to exotic nuclei:

- → scattering of radioactive beams off protons (' inverse kinematics ')
- → high-energy radioactive beam (~GeV/nucleon)
- → measurement of low-energy recoil (target-) proton

Elastic proton scattering on neutron-rich He and Li isotopes: The S105 IKAR experiment at GSI

Ab Initio Calculations for n-rich He isotopes

Green's Function Monte Carlo calculations

\Rightarrow Neutron Halo for ⁶He and ⁸He

Matter density distribution in agreement with proton elastic scattering data

Proton-proton distribution function changes only slightly in 6,8 He compared to α particle

 \Rightarrow Cluster structure

⁶He: α + 2n (3-body models)

⁸He: α + 4n

S.C. Pieper and R.B. Wiringa, Annu. Rev. Nucl. Part. Sci. 51 (2001) 53

Halo Nuclei - Basic Properties - Key Observables

- Symmetry-Energy ~ $(N-Z)^2/A^2$
- $\varepsilon_{f} \rightarrow 0$: neutron leaks into
 - classically forbidden region
- orbitals of low angular momentum

- Large radii and dilute surface
- Low-momentum components
- Bound-state and continuum sector not well separated (very few bound states)
- Pairing / Clusterisation in low-density medium ?
- Decoupling of valence nucleons and core
- Reduced Spin-Orbit splitting (~ 1/r dV/dr)
- Single-Particle Structure ?
- Excitation Modes ?
- Specific Reaction Mechanisms ?

•••

The collective response of the nucleus: Giant Resonances

Electric giant resonances

Isoscalar

Monopole (GMR)

Isovector

Dipole (GDR)

Quadrupole (GQR)

Photo-neutron cross sections

The dipole response of neutron-rich nuclei

Neutron-Proton asymmetric nuclei: low-lying dipole strength **Stable nuclei:** 100% of the E1 threshold strong \mathbf{n} new collective soft strength absorbed fragmentation dipole mode strength into the $\sigma_{(\gamma,xn)}\,(mb)$ (Pygmy resonance) **Giant Dipole** non-resonant 16 transitions Resonance 10 Prediction: RMF (GDR) The one-neutron Halo ¹¹Be (N. Paar et al.) (y,p) $\sigma_{(\gamma,xn)}\,(mb)$ do / dE (b / MeV) 0.3 av 100 √ 100 00 100 R [e²fm²/MeV] 12 132_{Sn} 120_{Sn} 20 $^{11}\text{Be} \rightarrow ^{10}\text{Be}(0^+) \,\text{m}$ 10 Pb target • elm. + nuclear 121 nucl. contribution (y,p) 0.2 4 $\sigma_{(\gamma,xn)}\,(mb)$ ²²**O** 0.10 (y .Za) (y,3a) ły "i .10 2030 0 15 20 25 10 10 E [MeV] Photon Energy [MeV] 0 0 E (MeV) (γ,p) spectroscopic tool: 10 20 E (MeV) $\frac{d\sigma}{dE^*}(I_c^{\pi}) = (\frac{16\pi^3}{9\hbar c})N_{E1}(E^*)\sum_{nl\,i}C^2S(I_c^{\pi},n\ell j)$ $\times \sum |\langle \boldsymbol{q}|(Ze/A)rY_m^1|\phi_{n\ell j}(r)\rangle|^2.$

Astrophysical implications: r-process

S. Goriely, Phys. Lett. B 436 (1998) 10. (schematic calculation)

Production of radioactive beams: Methods

H. Geissel, G. Münzenberg, K. Riisager, Annu. Rev. Nucl. Part. Sci. 45 (1995) 163

IN-FLIGHT:

relativistic heavy ions (50 MeV/u – 1 GeV/u)

- fragmentation
- fission (elm. or nuclear induced)

ISOL:

- spallation (~1 GeV protons)
- fission: p-induced, fast neutrons (d beam), slow neutrons (reactor), photons (e⁻ beam)
- fusion/evaporation, multi-nucleon transfer

Fragmentation

Empirical formula for production cross sections: EPAX

K. Sümmerer, B.Blank, PRC 61 (2000) 034607

Two-step process:

- 1) Abrasion of nucleons
 - \rightarrow pre-fragment: <A/Z> ~ (A/Z)_{proj}
 - → excitation energy
 - geometrical overlap (Glauber model) + energy of created holes (Fermi gas, shell model)
 - Intra-nuclear cascade (INC)

2) Ablation (Evaporation of nucleons)

 \rightarrow fragment: <A/Z> < (A/Z)_{proj}

- statistical model (compound nucleus), also fission

(see, e.g., M.deJong et al., NPA 613 (1997) 435

Momentum distributions after fragmentation

Momentum distributions

PHYSICAL REVIEW C VOLUME 23, NUMBER 6

JUNE 1981

Relativistic heavy ions measure the momentum distribution on the nuclear surface

J. Hüfner and M. C. Nemes

Institut für Theoretische Physik der Universität and Max-Planck-Institut für Kernphysik, D-6900 Heidelberg, Federal Republic of Germany (Received 29 December 1980)

In fragmentation reactions of the type ${}^{16}O + target \rightarrow {}^{15}O + X$, the momentum distribution of the outgoing fragment ${}^{15}O$ reflects the momentum distribution of the nucleon which is removed from the surface of the projectile nucleus. We derive a relation using Glauber's multiple scattering theory and the Wigner transform of the one-body density matrix. The experimental cross section at 2 GeV/nucl is analyzed with the following result: The uniform and local Fermi-gas models fail to reproduce the momentum distribution on the surface. The shell model with harmonic oscillator wave functions is correct for momenta below the Fermi momentum. Hartree-Fock wave functions describe the data up to 350 MeV/c.

Application to radioactive beams (knockout reactions) for nuclear-structure studies

- \rightarrow Measurement of the nucleon momentum distribution in the nucleus
- \rightarrow Spatial extension of the wave function (Heisenberg)
- → determination of the angular momentum of knocked-out nucleons

Production cross sections for fragmentation and fission

Separation of radioactive beams

$\begin{array}{l} \mathsf{B}\rho-\Delta\mathsf{E}-\mathsf{B}\rho\\ \mathsf{Method}\\ \\ \mathsf{B}\rho\propto\beta\gamma\;\mathsf{A}/\mathsf{Z} \end{array}$

 $\Delta E \propto Z^2 f(\beta)$

high beam energy \rightarrow fully stripped ions

Measurement: x, ToF, ΔE acceptance FRS@GSI: $\pm 1\% (\Delta p/p)$ $\pm 13mrad (transversal)$

> Hans Geissel et al., NIM B 70 (1992) 286

Summary: Secondary Beams and High-Energy Scattering

0.6 < v/c < 0.8

Physics Aspects:

- short interaction time σ_{NN} lowest at ~ 300 MeV \rightarrow reduced re-scattering low transverse momentum \rightarrow eikonal approximation
- → sudden process
- reaction dynamics and nuclear structure less entangled \rightarrow

Experimental Aspects:

Lorentz boost coverage detection efficiency

- Thick targets (g/cm^2) \rightarrow increased luminosity
 - \rightarrow full solid angle

→ 100%

mixed secondary beams

compensating low beam intensity (1 - 10000 s⁻¹) \rightarrow

for a recent review on reaction models, see J. Al-Khalili and F. Nunes, J.Phys.G 29 (2003) R89

<u>GSI</u>: up to 1 GeV/A

Other Laboratories (up to ~ 0.1 GeV/A):

GANIL / France MSU/U.S. **RIKEN / Japan**

Summary: Physics of exotic nuclei and high-energy reactions

A broad physics programme		
	Experiment	
Nuclear radii, density distributions,	Total-absorption measurements,	
halos and skins, nuclear equation of state	proton elastic scattering,	
	knockout and momentum distributions,	
	spin-dipole excitations	
Shell structure far off stability,	Knockout reactions,	
single-particle occupancies, spectral functions	quasi-free scattering,	
	Coulomb breakup	
Dipole response of exotic nuclei,	Heavy-ion induced electromagnetic excitation	
giant dipole resonance and soft modes		
Nuclei beyond the neutron drip-line	Knockout reactions	
Astrophysics	(γ,n) and (γ,p) cross sections (Coulomb breakup)	
	Gamov-Teller transitions (charge-exchange)	
Gamma spectroscopy	Knockout and fragmentation	
Large-amplitude motion	Multifragmentation and fission	
Reaction mechanisms/applications (hybrid reactors etc)	Spallation and fission	

✓ Introduction: Physics, Experiments, Production

At and beyond the drip line: knockout reactions

- Dipole excitations of neutron-rich nuclei
 - Coulomb breakup of halo nuclei
 - Giant and Pygmy collective excitations
- Future developments: Experimental Program at FAIR

The GSI accelerator facilities

Experimental Scheme: II. Separation in FLIGHT

H. Geissel et al., NIM B 70 (1992) 286

Measurement of momentum distributions

Dispersion matching: "Energy-loss mode"

Position (momentum) measurement at final focal plane independent of initial momentum spread \rightarrow high resolution

Sudden process Reaction: $\Delta t \approx 10^{-22} \text{ s}$ Internal motion: $\approx 10^{-21} \text{ s}$

 \Rightarrow measurement of wave function (at the surface: $b_c > r_c$)

Sudden process Reaction: $\Delta t \approx 10^{-22} \text{ s}$ Internal motion: $\approx 10^{-21} \text{ s}$

 \Rightarrow measurement of wave function (at the surface: b_c>r_c)

Example:

Carbon isotopes

 $^{A}C + C \rightarrow ^{A-1}C + x$

 $E \approx 900 \text{ MeV/u}$

FRS@GSI

T. Baumann et al.

Sudden process Reaction: $\Delta t \approx 10^{-22} \text{ s}$ Internal motion: $\approx 10^{-21} \text{ s}$

 \Rightarrow measurement of wave function (at the surface: $b_c > r_c$)

Sudden process Reaction: $\Delta t \approx 10^{-22} \text{ s}$ Internal motion: $\approx 10^{-21} \text{ s}$

 $\Rightarrow \mathbf{P}_{\text{frag}} = -\mathbf{P}_{\text{n}}$

 \Rightarrow measurement of wave function (at the surface: $b_c > r_c$)

Measurement		Observable	
Momentum distribution		\Rightarrow <i>l</i> -value of removed nucleon	
γ-ray coincidence		\Rightarrow identification of core-state	
invariant mass (unbound states)			
Cross section		\Rightarrow spectroscopic factor	
$\sigma_{ln}(J^{\pi}) = S(J^{\pi}) \times \sigma_{sp}(l,S_n)$ Eikonal calculation			

Single-particle cross sections

$$\sigma_{sp}(J^{\pi}) = \sigma_{sp}^{knockout} + \sigma_{sp}^{diffraction}$$

Eikonal approximation:

$$\sigma_{sp}^{knockout}(J^{\pi}) = \int d^2b \int d^3r \ |\Phi_{l,S_n}(\mathbf{r})|^2 \ S_c^2(\mathbf{b_c}) \ (1 - S_n^2(\mathbf{b_n}))$$

$$\swarrow \qquad \qquad \checkmark \qquad \qquad \checkmark \qquad \qquad \uparrow$$

$$core \ \text{survival} \qquad \text{reaction}$$

$$\text{'shadowing'} \qquad n + \text{target}$$

- $-\Phi_{l,S_n}(\mathbf{r})$ is calculated for a <u>Woods-Saxon Potential</u>
- $-S_c, S_n$ are calculated using target and core <u>density distributions</u> + <u>free NN cross sections</u> + energy dep. ratio of imaginary to real part
- \rightarrow no free parameters

One-neutron removal reaction (nuclear breakup)

Reaction mechanisms:

- knockout (stripping)
- inelastic scattering (diffraction)

cross section dominated by knockout for

- high beam energies
- non-halo states

$$p_{stripping} = \langle S_c^2(\mathbf{b_c})[1 - S_n^2(\mathbf{b_n})] \rangle$$

$$p_{inelastic} = \langle [1 - S_c(\mathbf{b_c})S_n(\mathbf{b_n})]^2 \rangle - \langle 1 - S_c(\mathbf{b_c})S_n(\mathbf{b_n}) \rangle^2$$

$$\underline{\text{no-recoil limit: }} A_c \gg 1, \mathbf{b_c} = \mathbf{b}$$

$$p_{diffraction} = S_c^2 \langle [1 - S_n(\mathbf{b_n})]^2 \rangle - S_c^2 \langle 1 - S_n(\mathbf{b_n}) \rangle^2$$

$$\underline{\text{elastic scattering}} \qquad \underline{\text{elastic scattering}} \qquad \underline{\text{elastic scattering}} \qquad \underline{\text{of neutron}} \qquad \underline{\text{of projectile}}$$
Momentum distributions and reaction mechanism

Knockout reactions as spectroscopic tool: Setup at the NSCL@MSU

Reviews: P.G. Hansen, B.M. Sherrill, NPA 693 (2001) 133

P.G. Hansen, J.A. Tostevin, Annu. Rev. Nucl. Part. Sci 53 (2003) 219

Neutron removal from individual single-particle states: ¹¹Be \rightarrow ¹⁰Be (I^{π}) + γ

Comparison to transfer reactions

¹²Be: Breakdown of the N=8 Shell Closure

Data: S800@MSU, A. Navin *et al.*, PRL 85 (2000) 266

²³O: the heaviest halo nucleus?

The N=20 (closed shell?) nucleus ²⁸O is unbound !

Experiment at RIKEN:

H. Sakurai et al., Phys. Lett. B 448 (1999) 180

Secondary fragmentation plus y spectroscopy

New magic number N=16

All experiments consistently suggest a

vanishing of the N=20 shell gap (²⁸O unbound) and the

appearance of a shell closure for N=16 (large spectroscopic factor, high-lying 2⁺ state)

for the neutron-rich oxygen isotopes

Z=14 → Z=8 Removing $Od_{5/2}$ protons → less binding for $Od_{3/2}$ neutrons

T. Otsuka et al., PRL87(2001)082502 PRL95(2005)232502

✓ Introduction: Physics, Experiments, Production

At and beyond the drip line: knockout reactions

2) Knockout to unbound states

- Dipole excitations of neutron-rich nuclei
 - Coulomb breakup of halo nuclei
 - Giant and Pygmy collective excitations
- Future developments: Experimental Program at FAIR

Experimental Scheme: The LAND reaction setup @GSI

The Large Area Neutron Detector LAND

Nucl. Instr. Meth. A314 (1992) 136

Scattering of Light Neutron-Rich Nuclei Investigated at LAND@GSI

Reaction mechanisms for two-neutron Halo nuclei

T. Aumann et al., PRC 59 (1999) 1252

- 1) 1n knockout: one n scattered to large angles (\rightarrow N=1)
- 2) 2n knockout:
 - both neutrons react with target (\rightarrow N=0) cross section sensitive to correlations
- 3) Inelastic scattering (\rightarrow N=2) nuclear/electromagnetic excitation

Knockout to Continuum States: The ⁶He test case

 \Rightarrow Structure of 2*n*-halo nuclei, spectroscopy of unbound states

The halo of ¹¹Li: s and p waves

The halo of ¹¹Li: s and p waves

E_{tnn}

(MeV)

⁶He (p, ²He) ⁵H

60 Superheavy Hydrogen ⁵H A. A. Korsheninnikov,* M. S. Golovkov,*.³ and I. Tanihata 50 RIKEN, Hirosawa 2-1, Wako, Saitama 351-0198, Japan A. M. Rodin, A. S. Fomichev, S. I. Sidorchuk, S. V. Stepantsov, M. L. Chelnokov, V. A. Gorshke 40 D. D. Bogdanov, R. Wolski,[†] G. M. Ter-Akopian, and Yu. Ts. Oganessian counts JINR, 141980 Dubna, Moscow region, Russia 30 W. Mittig, P. Roussel-Chomaz, and H. Savajols GANIL BP 5027, F-14076 CAEN cedex 5, France 20 E.A. Kuzmin, E. Yu. Nikolskii,[§] and A.A. Ogloblin Kurchatov Institute, Kurchatov square 1, 123182 Moscow, Russia (Received 27 March 2001: published 13 August 2001) 10 at GSI: ⁶He \rightarrow t + n + n (proton knockout) 8 10 2 4 6 0 E_{5µ}(MeV) 120 ^{5}H (a.u.) $3/2^{+}$ $1/2^{+}$ 80 $d\sigma/dE_{tnn}$ Data consistent with 3-body calculation of Shulgina et al (PRC62, 2000, 014312) with 40 $5/2^+$ $I^{\pi}=1/2^{+5}H$ ground state 0 🖌 2 3 5 6 7 M. Meister et al., Phys. Rev. Lett. 91 (2003) 162504

Nucl. Phys. A 723 (2003) 13

Conclusion Knockout / Halo Nuclei

- Momentum distributions after one-nucleon removal are directly linked to the wavefunction of the removed nucleon (at the surface)
- Cross sections are large, in particular for Halo nuclei
- Knockout reaction have been established as a spectroscopic tool
 - coincident γ-ray spectroscopy defines core state
 - or likewise invariant-mass spectroscopy in case of unbound residual states
 - momentum distributions define l-value of knocked-out nucleon
 - cross sections yield spectroscopic factors
 - angular correlations \rightarrow quantum numbers
 - \rightarrow disentangle overlapping states in the continuum
 - spectroscopy of unbound states (even beyond the drip line)

Introduction: Physics, Experiments, Production
At and beyond the drip line: knockout reactions

Dipole excitations of neutron-rich nuclei

- Coulomb breakup of halo nuclei
- Giant and Pygmy collective excitations
- Future Developments

Experimental Approach: Electromagnetic excitation at high energies

Determination of 'photon energy' (excitation energy) via a kinematically complete measurement of the momenta of all outgoing particles (invariant mass)

Heavy-ion induced electromagnetic excitation at high beam energies

Low-Lying E1 Strength as Spectroscopic Tool

Wave function: e.g. $|^{11}Be > = \alpha |^{10}Be(0^+) \otimes 2s_{1/2} > + \beta |^{10}Be(2^+) \otimes 1d_{5/2} > + ...$

Coulomb Breakup of ¹¹Be: The Classical One-Neutron Halo

Coulomb Breakup of ¹¹Be: The Classical One-Neutron Halo

Coulomb Dissociation of ¹⁹C and its Halo Structure

T. Nakamura,^{1,*} N. Fukuda,¹ T. Kobayashi,² N. Aoi,¹ H. Iwasaki,¹ T. Kubo,³ A. Mengoni,^{3,†} M. Notani,³

H. Otsu,² H. Sakurai,³ S. Shimoura,⁴ T. Teranishi,³ Y. X. Watanabe,¹ K. Yoneda,¹ and M. Ishihara^{1,3}

¹Department of Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan

²Department of Physics, Tohoku University, 2-1 Aoba, Aramaki, Aoba, Sendai 980-8578, Japan

³The Institute of Physical and Chemical Research (RIKEN), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan

⁴Department of Physics, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan (Received 25 February 1999)

Results from the measurement with an intensity of 300 ions/sec only:

- → dominantly dipole excitations
- \rightarrow ground state spin I^{π}=1/2⁺
- → ${}^{18}C(0^+) \otimes 1s_{1/2}$: S = 0.67
- \rightarrow separation energy S_n=530(130) keV

PRL 83 (1999) 1112

Sensitivity of Coulomb breakup

Comparison of the one-neutron halo ¹¹Be with the well bound ¹⁷O d neutron

Coulomb breakup is very sensitive to extended neutrondensity distributions (halo)

→ applicability as a spectroscopic tool mainly for weakly bound nuclei (large cross sections)

R. Palit et al.,

NPA 731 (2004) 235

Absolute single-particle occupancies

Spectroscopic factors for 2s_{1/2} halo states derived from nuclear and Coulomb breakup in comparison to the shell model

Ratio of experimental occupancies to shell-model values

Isospin dependence of nucleon-nucleon correlations

Sensitivity of Coulomb and nuclear breakup

Reaction probabilities

Halo-Neutron Densities

Sensitivity to the tail of the wave function only

Alternative approach: quasi-free scattering: (p,2p), (p,pn) etc. at LAND and R3B or (e,e'p) at the e-A collider at FAIR

Future: Quasi-free scattering in inverse kinematics

- kinematical complete measurement of (p,pn), (p,2p), (p,pd), (p,α), reactions
- redundant experimental information: kinematical reconstruction from proton momenta plus gamma rays, recoil momentum, invariant mass
- sensitivity not limited to surface
 - \rightarrow spectral functions
 - \rightarrow knockout from deeply bound states
- cluster knockout reactions

Quasi-free cluster knockout

Experiment S174: Proton elastic scattering (P. Egelhof et al.)

Electromagnetic excitation of ⁶He

T. Aumann et al., PRC 59 (1999) 1252

Sagawa 3b-model: $< R_{\alpha-2n}^2 > 1/2 = 3.63 \text{ fm}$

Electromagnetic excitation of ⁶He

3-body calculation (Danilin et al)

Non-energy-weighted dipole sum rule: $S = \frac{2}{4} = \frac{7}{2} = \frac{2}{4} (N + \frac{1}{4}) = \frac{2}{2}$

 $S_{NEW} = 3/4 \pi Z^2 e^2 (N_h/A_c)^2 < R_{cm-h}^2 >$

T. Aumann et al., PRC 59 (1999) 1252 **Spatial correlation from dipole strength:**

 $< R_{\alpha-2n}^{2} > 1/2 = 3.36 \pm 0.39 \text{ fm}$

 $< R_{cm-2n}^{2} > 1/2 = 2.24 \pm 0.26 \text{ fm}$

Sagawa 3b-model: $< R_{\alpha-2n}^{2} > 1/2 = 3.63$ fm

Astrophysics: Bridging the mass A=5 and A=8 gaps

R-process nucleosynthesis (type-II supernova; neutron-star merging): ${}^{4}\text{He}(2n,\gamma)$ ${}^{6}\text{He}$ and ${}^{6}\text{He}(2n,\gamma)$ ${}^{8}\text{He}$ in the preceding α process may be relevant in bridging the A = 5 and A = 8 mass instability gaps

T. Aumann et al., PRC 59 (1999) 1252
Coulomb breakup and Astrophysics Example: The ${}^{14}C(n,\gamma)$ radiative capture reaction is important in the neutron-induced CNO cycles in the stellar evolution

Introduction: Physics, Experiments, Production
 At and beyond the drip line: knockout reactions

Dipole excitations of neutron-rich nuclei

- ✓ Coulomb breakup of halo nuclei
- Giant and Pygmy collective excitations
- Future Developments

The dipole response of neutron-rich nuclei

Experimental Approach: Production of (fission-)fragment beams

Dipole-strength distributions in neutron-rich Sn isotopes

Low-lying strength in ¹³²Sn mass neighborhood

odd nuclei allow extending (γ ,n) measurements to lower excitation energies

 \rightarrow comparison to (γ . γ ') data for stable isotopes

<u>Stable nuclei, Photoabsorption, from:</u> A.Zilges et al., Phys.Lett. B 542,43 (2003) S.Volz et al., Nucl.Phys. A 779, 1 (2006) N. Ryezayeva et al., Phys.Rev.Lett. 89 (2002) K. Govaert et al., Phys. Rev. C 57,2229 (1998)

Symmetry energy $S_2(\rho)$ and neutron skin in ²⁰⁸Pb

Symmetry energy and neutron skin form dipole strength

Theory: Precise knowledge of neutron-skin thickness could constrain the density dependence of $S(\rho)$

Work Hypothesis: Pygmy-Strength (since related to skin) should do the same job, *but, experimentally, is accessed much easier !*

Inspired by recent article of Piekarewicz (*Phys. Rev. C* 73, 044325 (2006)) Here:

> Quantitative attempt by means of RHB + RQRPA, (density-dependent meson-exchange DD-ME) <u>Paar</u>, Vretenar, Ring et al. (Phys. Rev. C67, 34312 (2003))

PDR strength versus a₄, p_o

RQRPA – DD-ME N. Paar et al. Result (*averaged* $^{130,132}Sn$): **a**₄ = **32.0** ± **1.8** MeV

 $p_o = 2.3 \pm 0.8 \text{ MeV/fm}^3$

S(ρ) : moderate stiffness

Neutron skin thickness

 $R_n - R_p$: ¹³⁰Sn: 0.23 ± 0.04 fm ¹³²Sn: 0.24 ± 0.04 fm

111

²⁰⁸Pb analysis

 $\Sigma B_{pdr}(E1)=1.98 e^2 fm^2$ from N.Ryezayeva et al., PRL 89(2002)272501 $\Sigma B_{gdr}(E1)=60.8 e^2 fm^2$ from A.Veyssiere et al.,NPA 159(1970)561

$$R_n - R_p = 0.18 \pm 0.035$$
 fm

Conclusion

- Low-lying dipole strength observed in light and medium-mass neutron-rich nuclei
- Threshold strength (halo nuclei) established as spectroscopic tool
- Peak-like structure below the GDR in ^{130,132}Sn at about 10 MeV excitation energy exhausting about 5% of the energy-weighted sum rule
- Parameters of GDR in agreement with systematic trends derived from stable nuclei
- Symmetry energy and neutron-skin thickness from dipole strength: a first attempt

Outlook:

- *Systematic measurements* of dipole strength in neutron-proton asymmetric nuclei
- Theory+experiment: Relation of low-lying dipole strength to *symmetry energy and neutron skin*
- Decay characteristics (e.g., γ decay branch)
 (γ,γ') in ⁶⁸Ni (RISING), (γ,n) with LAND setup
- Monopole and quadrupole strength:

internal gas target in a storage ring (GSI, FAIR), electron-heavy-ion collider (FAIR)

- ✓ Introduction: Physics, Experiments, Production
- ✓ At and beyond the drip line: knockout reactions
- ✔ Dipole excitations of neutron-rich nuclei
 - Coulomb breakup of halo nuclei
 - Giant and Pygmy collective excitations

Future Developments: Experimental Program at FAIR

FAIR – Facility for Antiproton and Ion Research

FAIR – Facility for Antiproton and Ion Research

FAIR

Topology of FAIR (FBTR 03/2006)

FAIR characteristics

Research fields at FAIR

The rare-isotope beam facility NuSTAR

FAIR

NuSTAR - Nuclear Structure, Astrophysics, and Reactions

Production of radioactive beams by fragmentation and fission

FAIR

Martin Winkler

Superconducting Fragment Separator Super-FRS

FAIR

 \rightarrow High transmission for fission fragment (intensity gain by a factor of ~10)

RIB intensities after Super-FRS

Accepted NuSTAR Experiments at FAIR

- 2004/2005: Lols and Proposals submitted - early 2006: Technical Proposals submitted <i>Evaluation by NuSTAR PAC</i>	Formation of the NuSTAR collaboration 667 users
 1.) Low Energy Branch (LEB) High-resolution In-Flight Spectroscopy (HISPEC)/ Decay Spectroscopy with Implanted Ion Beams (DESPEC) Precision Measurements of very short-lived Nuclei using an Advanced Trapping System for highly-charged Ions (MATS) LASER Spectroscopy for the Study of Nuclear Properties (LASPE Neutron Capture Measurements (NCAP) 	Zs.Podolyak Surrey + B. Rubio Valencia K.Blaum Mainz P. Campbell Manchester M.Heil GSI
 2.) High Energy Branch (R3B) - A Universal Setup for Kinematical Complete Measurements of Reactions with Relativistic Radioactive Beams (R3B) 	T. Aumann GSI
 3.) Ring Branch (STORIB) Study of Isomeric Beams, Lifetimes and Masses (ILIMA) Exotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring (EXL) Electron-Ion Scattering in a Storage Ring (e-A Collider) (ELISe) Antiproton-Ion Collider: A Tool for the Measurement of Neutron a Proton rmsradii of Stable and Radioactive Nuclei (AIC) 	Y .Novikov SPNPI M. Chartier Liverpool H. Simon GSI nd R. Krücken TUM

Low-energy radioactive beams

Energy-bunched slowed-down and stopped beams

FAIR

Decay spectroscopy

(DESPEC)

- In-flight γ spectroscopy
 - (3 100 MeV/u) (HISPEC)
- Laser spectroscopy (LASPEC)
- Ion traps (MATS)
- Neutron capture (NCAP)

Experiments at the LEB

FAIR

mesurements

A universal setup for kinematical complete measurements of Reactions with Relativistic Radioactive Beams

The R³B experiment:

- identification and beam "cooling" (tracking and momentum measurement, $\Delta p/p \sim 10^{-4}$)
- exclusive measurement of the final state:
 - identification and momentum analysis of fragments
 - (large acceptance mode: $\Delta p/p \sim 10^{-3}$, high-resolution mode: $\Delta p/p \sim 10^{-4}$)
 - coincident measurement of neutrons, protons, gamma-rays, light recoil particles
- · applicable to a wide class of reactions

A universal setup for kinematical complete measurements of Reactions with Relativistic Radioactive Beams

Experiments

- elastic scattering
- knockout and quasi-free scattering
- \succ electromagnetic excitation
- charge-exchange reactions
- \succ fission

FAIR

- \succ spallation
- ➢ fragmentation

Physics goals

radii, matter distribution

single-particle occupancies, spectral functions,

correlations, clusters, resonances beyond the drip lines
single-particle occupancies, astrophysical reactions (S factor), soft coherent modes, giant resonance strength, B(E2)
Gamov-Teller strength, spin-dipole resonance, neutron skins
shell structure, dynamical properties
reaction mechanism, applications (waste transmutation, ...)
γ-ray spectroscopy, isospin-dependence in multifragmentation

Low-lying dipole strength in the context of r-process nucleosynthesis

Reactions with Relativistic Radioactive Beams

Experiments at storage rings

- Mass measurements
- Reactions with internal targets

- Elastic p scatt.
- (p,p') (α,α')
- charge-exchange
- transfer
- Electron scattering
 - elastic scattering
 - inelastic
- Antiproton-A collider

Storage Rings at FAIR

Storage rings: Cooled beams

Schottky frequency spectra

Schottky frequency spectra

Schottky frequency spectra

FAIR Mass measurements at NuSTAR/FAIR (ILIMA)

The collective response of the nucleus: Giant Resonances

Light-ion scattering in the storage ring (EXL)

Scattering in inverse kinematics

Low-momentum transfer region often most important, e.g.,

- giant monopole excitation
- elastic scattering

Experimental difficulty

- low recoil energies
- thin targets (low luminosity)

EXL solution:

FAIR

in-ring scattering at internal gas-jet targets

gaining back luminosity due to circulation frequency of $\sim 10^6$

The EXL experiment

FAIR

EXotic Nuclei Studied in Light-Ion Induced Reactions at the NESR Storage Ring

Scattering at internal targets

Light-ion / electron scattering

density distributions	elastic scattering (p,p) , (α,α) (e,e)	radii, skin, halo
shell structure in-medium interactions N-N correlations	quasi-free scattering (p,2p), (p,np) (e,e'p)	shell occupancy spectral S(ω,q)
collective modes	inelastic scattering (p,p'), (α,α') (e.e')	mixed isoscalar- isovector modes
spin-isospin excitations	charge exchange (p,n), (d, ² He), (³ He,t) (e,e')	weak transition rates GT (astrophysics) M1
cluster correlations	quasi-free scattering (p, p α) , (p,p2n) (e, e'α)	cluster knockout

ELISe The Electron-Ion (eA) Collider

FAIR

Luminosities

Electron and Proton scattering

Elastic proton scattering: Matter distribution

Elastic electron scattering: Charge distribution

Both combined: Halos, skins, diffuseness

→ Symmetry energy, Equation of State, spin-orbit term

Typical luminosity: 10^{28} cm⁻² s⁻¹ \rightarrow possible for a wide range of nuclei

NuSTAR Letters of Intent

FAIR

Content	NuSTAR collaboration	
Introduction	(~700 scientists)	3
Super-FRS the Next-Generation In-flight	Separator for Exotic Nuclei at Relativistic Er	9 nergies
Theory Network Initiative		21
Letters of Intent		
Low Energy Branch (LEB)		29
High-resolution in-flight spectroscopy (HISPEC)		41
Decay spectroscopy with implanted beams (DESPEC) Precision measurements of very short-lived nuclei using an advanced		55
trapping system for highly-charged ions (MATS)		63
LASER spectroscopy for the study of nuclear properties (LASPEC)		73
Neutron-capture measurements (NCAP)		81
Antiprotonic radioactive nuclides (Exo+pbar)		89
High Energy Branch (R3B)		95
A universal setup for kinemati with Relativistic Radioactive I	ical complete measurements of Reactions Beams (R3B)	
Ring Branch (STORIB)		111
Study of Isomeric Beams, Lifetimes and Masses (ILIMA)		115
Exotic nuclei studied in light-ion reactions at the NESR storage ring (EXL)		125
Electron-Ion scattering in a Storage Ring (eA collider) (ELISe)		141
Antiproton-Ion Collider: A tool for the measurement of neutron and proton rms radii of stable and radioactive nuclei. (pbarA)		157
Spectroscopy of Pionic Atoms w	with Unstable Nuclei (PIONIC)	

http://www-w2k.gsi.de/superfrs/documents/NUSTAR/Lol/NUSTAR-LOI.pdf

Conclusion

Experimental concepts utilizing reactions with high-energy fragmentation beams to study nuclear structure of radioactive nuclei were developed and optimized successfully in the past 15 years

Radioactive beams:

large emittance

low intensity

tracking, dispersion matching, cooling, ...

efficient setups (kinematical forward focusing, high energy, inverse kinematics, storage ring)

thick targets (high energy)

selective reactions

quantitative reaction models
(high beam energy allows approximations)

precise nuclearstructure information

Future: higher intensities, optimized experimental setups Access to very neutron-(proton-)rich nuclei New experimental methods

Review: Reactions with fast radioactive beams of neutron-rich nuclei, T. Aumann, EPJ A 26 (2005) 441-478