CISS07 8/29/2007

Comprehensive treatment of correlations at different energy scales in nuclei using Green's functions

Lecture 1: 8/28/07	Propagator description of single-particle motion and the link with experimental data
Lecture 2: 8/29/07	From Hartree-Fock to spectroscopic factors < 1: inclusion of long-range correlations
Lecture 3: 8/29/07	Role of short-range and tensor correlations associated with realistic interactions
Lecture 4: 8/30/07	Dispersive optical model and predictions for nuclei towards the dripline
Adv. Lecture 1: 8/30/07	Saturation problem of nuclear matter & pairing in nuclear and neutron matter
Adv. Lecture 2: 8/31/07	Quasi-particle density functional theory

Wim Dickhoff Washington University in St. Louis

Outline

- Link between sp and two-particle propagator
- Self-consistent Green's functions
- Hartree-Fock
- Dynamical self-energy and spectroscopic factors < 1
- Self-energy using "G-matrix" in second order
- Qualitative features; missing ingredients!
- Excited states and $G \Leftrightarrow G$ and excited states
- Conserving approximations; $HF \Leftrightarrow RPA e.g.$
- E(xtended) RPA & results (Giant Resonances)
- Collective excitations in the self-energy
- Influence of "long-range" correlations
- Recent developments (Faddeev summation)
- Why does (e,e´p) yield "absolute" spectroscopic factors

Looks like the propagator equation for a single particle

$$G(\alpha,\beta;E) = G^{(0)}(\alpha,\beta;E) + \sum_{\gamma,\delta} G^{(0)}(\alpha,\gamma;E) \Sigma^*(\gamma,\delta;E) G(\delta,\beta;E)$$

with the irreducible self-energy acting as the in-medium (complex) potential. Green's functions II 3

Link with two-particle propagator

Equation of motion for G

$$i\hbar\frac{\partial}{\partial t}G(\alpha,\beta;t-t') = \delta(t-t')\delta_{\alpha,\beta} + \varepsilon_{\alpha}G(\alpha,\beta;t-t') - \sum_{\delta}\langle\alpha|U|\delta\rangle G(\delta,\beta;t-t') + \frac{1}{2}\sum_{\delta\zeta\vartheta}\langle\alpha\delta|V|\vartheta\zeta\rangle \left\{-\frac{i}{\hbar}\langle\Psi_{0}^{N}|T[a_{\delta_{H}}^{+}(t)a_{\zeta_{H}}(t)a_{\theta_{H}}(t)a_{\beta_{H}}^{+}(t')]|\Psi_{0}^{N}\rangle\right\}$$

Diagrammatic analysis of G^{II} yields

 Γ is the effective interaction (vertex function) between correlated particles in the medium.

Dyson equation and vertex function

Fourier transform of equation of motion for G yields again the Dyson equation with the self-energy

$$\Sigma^{*}(\gamma,\delta;E) = -\langle \gamma | U | \delta \rangle - i \int_{C\uparrow} \frac{dE'}{2\pi} \sum_{\mu\nu} \langle \gamma \mu | V | \delta \nu \rangle G(\nu,\mu;E')$$

+
$$\frac{1}{2} \int \frac{dE_{1}}{2\pi} \int \frac{dE_{2}}{2\pi} \sum_{\epsilon\mu\nu\xi\rho\sigma} \langle \gamma \mu | V | \epsilon \nu \rangle G(\epsilon,\xi;E_{1}) G(\nu,\rho;E_{2}) G(\sigma,\mu;E_{1}+E_{2}-E) \langle \xi \rho | \Gamma(E_{1},E_{2};E) | \delta \sigma \rangle$$

In diagram form

Physics is in the choice of the approximation to the self-energy

Hartree-Fock

For weakly interacting particles: independent propagation dominates \Rightarrow neglect vertex function in self-energy

No energy dependence ⇒ static mean field Not a valid strategy for realistic NN interactions With "effective" interactions can yield good quasihole wave functions HF levels full or empty; spectroscopic factors 1 or 0 accordingly

HF for "closed"-shell atoms

		Removal energies		Total	energy
		$_{ m HF}$	Exp.	HF	Exp.
He	1s	-0.918	-0.9040	-2.862	-2.904
Be	1s	-4.733	-4.100	-14.573	-14.667
	2s	-0.309	-0.343		
Ne	1s	-32.77	-31.70	-128.547	-128.928
	2s	-1.930	-1.782		
	2p	-0.850	-0.793		
Mg	1s	-49.03	-47.91	-199.615	-200.043
	2s	-3.768	-3.26		
	2p	-2.283	-1.81		
	3s	-0.253	-0.2811		
Ar	1s	-118.6	-117.87	-526.818	-527.549
	2s	-12.32	-12.00		
	2p	-9.571	-9.160		
	3s	-1.277	-1.075		
	3p	-0.591	-0.579		

Energies in atomic units (Hartree)

HF good starting point for atoms but total energy dominated by core electrons.

Description of valence electrons not good enough to do chemistry.

Spectroscopic factors not OK. Wave functions 🗸

Beyond $HF \Rightarrow$ dynamical self-energy

Approximate vertex function by $\Gamma = V$

Use HF propagator to initiate self-consistent solution $\Sigma^{(2)}(\gamma,\delta;E) = \frac{1}{2} \left\{ \sum_{p_1p_2h_3} \frac{\langle \gamma h_3 | V | p_1p_2 \rangle \langle p_1p_2 | V | \delta h_3 \rangle}{E - (\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3}) + i\eta} + \sum_{h_1h_2p_3} \frac{\langle \gamma p_3 | V | h_1h_2 \rangle \langle h_1h_2 | V | \delta p_3 \rangle}{E - (\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_3}) - i\eta} \right\}$

Poles at 2p1h and 2h1p energies Interesting consequences for solution of Dyson equation Green's functions II 9

Diagonal approximation

Further simplification: assume no mixing between major shells

$$\Sigma^{(2)}(\alpha; E) = \frac{1}{2} \left\{ \sum_{p_1 p_2 h_3} \frac{\left| \left\langle \alpha h_3 \left| V \right| p_1 p_2 \right\rangle \right|^2}{E - \left(\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3} \right) + i\eta} + \sum_{h_1 h_2 p_3} \frac{\left| \left\langle \alpha p_3 \left| V \right| h_1 h_2 \right\rangle \right|^2}{E - \left(\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_3} \right) - i\eta} \right\}$$

Corresponding Dyson equation

$$G(\alpha; E) = G^{HF}(\alpha; E) + G(\alpha; E) \Sigma^{(2)}(\alpha; E) G^{HF}(\alpha; E) = \frac{1}{E - \varepsilon_{\alpha} - \Sigma^{(2)}(\alpha; E)}$$

Assume discrete poles in Σ , then discrete solution (poles of G) for

$$E_{n\alpha} = \varepsilon_{\alpha} + \Sigma^{(2)} \big(\alpha; E_{n\alpha} \big)$$

With residue (spectroscopic factor)

$$R_{n\alpha} = \frac{1}{1 - \frac{\partial \Sigma^{(2)}(\alpha; E)}{\partial E}}\Big|_{E_{n\alpha}}$$

Green's functions II 10

Solutions

Explains all qualitative features of sp strength distribution in nuclei!

Self-consistent calculation with Skyrme force

Data: ⁴⁸Ca(e,e´p) Kramer NIKHEF (1990)

Qualitatively OK No relation with realistic Vyet!

Van Neck et al. NPA530,347(1991)

Self-consistent Green's functions and the energy of the ground state of atoms

<u>Atoms</u> : total ground state energies (a.u.)

Dyson(2)

Van Neck, Peirs, Waroquier J. Chem. Phys. **115**, 15 (2001) Dahlen & von Barth J. Chem. Phys. **120**,6826 (2004)

<u>Method</u>	He	Be	Ne	Mg	Ar
DFT	-2.913	-14.671	-128.951	-200.093	-527.553
HF	-2.862	-14.573	-128.549	-199.617	-526.826
CI	-2.891	-14.617	-128.733	-199.63	-526.807
Dyson(2)	-2.899	-14.647	-128.939	-200.027	-527.511
Exp.	-2.904	-14.667	-128.928	-200.043	-527.549

How to proceed from a realistic V?

Must take effects of short-range and tensor correlations into account. Well known procedure: from V to "G"-matrix.

$$\left\langle \alpha\beta \left| G(E) \right| \gamma\delta \right\rangle = \left\langle \alpha\beta \left| V \right| \gamma\delta \right\rangle + \frac{1}{2} \sum_{\sigma\tau} \left\langle \alpha\beta \left| V \right| \sigma\tau \right\rangle \frac{\theta(\sigma - M)\theta(\tau - M)}{E - \varepsilon_{\sigma} - \varepsilon_{\tau}} \left\langle \sigma\tau \left| G(E) \right| \gamma\delta \right\rangle$$

Well-behaved; takes excitations outside configuration space M into account. Used inside $M \Rightarrow$ therefore this procedure doesn't **yet** completely include the effect of short-range and tensor correlations on sp motion.

Neglect energy dependence of G then

$$\Sigma^{(2)}(\gamma,\delta;E) = \frac{1}{2} \left\{ \sum_{p_1p_2h_3} \frac{\langle \gamma h_3 | G | p_1p_2 \rangle \langle p_1p_2 | G | \delta h_3 \rangle}{E - (\varepsilon_{p_1} + \varepsilon_{p_2} - \varepsilon_{h_3}) + i\eta} + \sum_{h_1h_2p_3} \frac{\langle \gamma p_3 | G | h_1h_2 \rangle \langle h_1h_2 | G | \delta p_3 \rangle}{E - (\varepsilon_{h_1} + \varepsilon_{h_2} - \varepsilon_{p_3}) - i\eta} \right\}$$

Summations only inside M!

Spectral function ⁴⁸Ca (e,e' p) ⁴⁷K ($\ell=2$)

NIKHEF data G. Kramer, Thesis

Brand *et al.* Nucl. Phys. **A531**, 253 (1991). Rijsdijk *et al.* Nucl.Phys. **A550**, 159 (1992)

Configuration space: includes three major shells above $\epsilon_{\rm F}$

Distribution of fragments ± 100 MeV around $\epsilon_{\rm F}$

G-matrix strong enough to distribute strength in this interval

Excited states and G ... G and excited states ...

Before improving self-energy with a better description of the intermediate 2p1h and 2h1p states, it is instructive to clarify the deep relation between excited states and the sp propagator *G*. \Rightarrow Study time-dependent external fields that can probe excited states

$$\hat{\phi}(t) = \sum_{\gamma\delta} \langle \gamma | \phi(\vec{x}, t) | \delta \rangle a_{\gamma}^{+} a_{\delta} \quad \text{So Hamiltonian reads} \quad \hat{H}^{\phi}(t) = \hat{H} + \hat{\phi}(t)$$

Equations of motion as before

Conserving approximations (Baym, Kadanoff, Pitaevskii, Luttinger, Ward)

Conservation laws implied by the Hamiltonian are fulfilled by imposing certain conditions on the approximate self-energy and, consequently, the vertex function Γ : in particular the issue of self-consistency is critical!

- \Rightarrow particle number, momentum, energy, ...conservation
- \Rightarrow study consequences for the description of excited states

Write
$$G^{\phi}(\alpha, \overline{\beta}, t - t') = -\frac{i}{\hbar} \frac{\langle \Psi_0 | T[\hat{S}a_{\alpha_F}(t)a_{\overline{\beta_F}}^+(t')] | \Psi_0 \rangle}{\langle \Psi_0 | T[\hat{S}] | \Psi_0 \rangle}$$
 as an expansion in ϕ

In linear response (lowest order in ϕ): Functional derivative of G^{ϕ} yields $\frac{\delta G^{\phi}(\alpha, \overline{\beta}, t-t')}{\delta \phi_{\nu \overline{\lambda}}(t'')} = \frac{i}{\hbar} \Pi(\alpha t, \beta^{-1}t'; \gamma t'', \delta^{-1}t'')$

corresponding to the *ph* limit of the two-particle propagator.

Conserving description of excited states

Fourier transform of two-time "polarization" propagator

$$\Pi\left(\alpha,\beta^{-1};\gamma,\delta^{-1};E\right) = \sum_{n\neq0} \frac{\left\langle \Psi_{0} \left| a_{\overline{\beta}}^{+}a_{\alpha} \right| \Psi_{n} \right\rangle \left\langle \Psi_{n} \left| a_{\gamma}^{+}a_{\overline{\delta}} \right| \Psi_{0} \right\rangle}{E - \left(E_{n} - E_{0}\right) + i\eta} - \sum_{n\neq0} \frac{\left\langle \Psi_{0} \left| a_{\gamma}^{+}a_{\overline{\delta}} \right| \Psi_{n} \right\rangle \left\langle \Psi_{n} \left| a_{\overline{\beta}}^{+}a_{\alpha} \right| \Psi_{0} \right\rangle}{E + \left(E_{n} - E_{0}\right) - i\eta}$$

contains all relevant information about excited states (location and one-body transition strength).

Integral equation for three-time polarization propagator from Dyson equation!

Particle-hole interaction

$$\Gamma^{ph}(\alpha t_1, \beta^{-1}t_2, \gamma t_3, \delta t_4) = \frac{\delta \Sigma(\alpha, \overline{\beta}; t_1 - t_2)}{\delta G(\gamma, \overline{\delta}; t_3 - t_4)}$$

If G is conserving, so is Π with this Γ^{ph} Looks complicated ... but ...

Hartree-Fock and RPA

$$\frac{\overline{\epsilon}}{\overline{\beta}} \longrightarrow E' \qquad \Rightarrow \quad -i\hbar\delta(t-t')\sum_{\theta\overline{\epsilon}}\left\langle\alpha\overline{\epsilon}\right|V\left|\overline{\beta}\theta\right\rangle G^{HF}(\theta,\overline{\epsilon};t-t^{+})$$

Functional derivative equivalent to breaking internal propagator line so $\Gamma_{HF}^{ph}(\alpha t_1, \beta^{-1}t_2, \gamma t_3, \delta^{-1}t_4) = -i\hbar\delta(t_1 - t_2)\delta(t_1 - t_3)\delta(t_1 - t_4)\langle\alpha\overline{\delta}|V|\overline{\beta}\gamma\rangle$

resulting in the RPA approximation to $\Pi {l\!\!l}$

sp propagators $\Rightarrow \text{HF}$

Green's functions II 19

 Π^{RPA}

Beyond RPA = beyond mean-field for G

Second-order self-energy

Leads to a consistent coupling of 1p1h to 2p2h configurations!

E(xtended)RPA results

Transition densities in ⁴⁸Ca

Brand et al. Nucl. Phys. A509, 1 (1990)

Long-range correlations \Rightarrow typical self-energy contributions

Results for TDA & RPA self-energies

Need:

Calculations yield:

10% strength at more bound energies!

10% depletion for states near the Fermi energy

Green's functions II 24

Occupation numbers ⁴⁸Ca

Shell	$\Sigma^{(2)}$	Σ_{ph}^{TDA}	Σ_{ph}^{RPA}	Σ_{pphh}^{TDA}	Σ^{RPA}_{pphh}
$0s_{\frac{1}{2}}$.967	.968	.963	.965	.952
$0p_{\frac{3}{2}}$.955	.956	.944	.950	.930
$0p_{\frac{1}{2}}$.951	.951	.939	.944	.920
$0d_{\frac{5}{2}}$.920	.925	.915	.898	.867
$0d_{\frac{3}{2}}$.877	.885	.891	.842	.780
$1s\frac{1}{2}$.869	.860	.907	.818	.773
$0f\frac{7}{2}$.060	.063	.048	.082	.120
$0f_{\frac{5}{2}}$.048	.044	.043	.064	.092
$1p_{\frac{3}{2}}$.033	.031	.036	.049	.063
$1p_{\frac{1}{2}}$.030	.028	.035	.042	.050
$0g \ 1d \ 2s$.014	.014	.019	.018	.026
$0h \ 1f \ 2p$.006	.006	.006	.007	.009
Total	20.053	20.093	20.125	20.165	20.370

Occupation numbers from low-energy correlations

Shell	n(α)	Including SRC depletion effect by treating energy
0s _{1/2}	0.968	dependence of G-matrix
Op _{3/2}	0.956	
Op _{1/2}	0.951	
0d _{5/2}	0.925	⁴⁸ Ca
Od _{3/2}	0.885	
1s _{1/2}	0.860	- 6.0 -
Of _{7/2}	0.063	
Of _{5/2}	0.044	0.2
Op _{3/2}	0.031	
Op _{1/2}	0.028	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
••••		Energy

Green's functions II 26

Spectroscopic Strength in ¹⁶O

- \bullet Influence of SRC \checkmark \checkmark
- Translational Invariance ×
- Influence of LRC "√"
 TDA for 2p1h and 2h1p
 Geurts et al.
 PRC53, 2207 (1996)
- Influence of LRC √ √
 RPA + Faddeev
 C. Barbieri and WHD,
 PRC65, 064313 (2002)

Still not solved because RPA is not good enough for ¹⁶O!!

Some theoretical results for ¹⁶O

LRC ≈ particle-phonon (GR) coupling

Faddeev technique and Long-Range Correlations

- Both pp (hh) and ph phonons are collective in nuclei using RPA
- Faddeev technique allows correct summation to all orders of these phonons
- Formalism: Phys. Rev. C63, 034313 (2001)
- Results: for ¹⁶O
 Phys. Rev. C65, 064313 (2002)

Faddeev results for Ne atom

	HF	Dyson(2)	F-TDA(3)	F-RPA(3)	Experiment
2р	-0.850	-0.763	-0.797	-0.790	-0.793
2s	-1.930	-1.750	-1.794	-1.785	-1.782

Small basis; large basis in progress (Barbieri, Van Neck, WD)

Excitation spectrum of ¹⁶O

Improving excitation spectra beyond RPA Coupling of two-phonons in ¹⁶O

FSI and (e,e'p)
$$\Leftrightarrow$$
 analysis
 $\hat{O} = \sum_{\alpha\beta} \langle \alpha | O | \beta \rangle a_{\alpha}^{+} a_{\beta}$ Electron Scattering \Rightarrow one-body operator
 $\left| \langle \Psi_{n}^{A} | \hat{O} | \Psi_{0}^{A} \rangle \right|^{2} = \sum \langle \alpha | O | \beta \rangle^{*} \langle \gamma | O | \delta \rangle \langle \Psi_{0}^{A} | a_{\beta}^{+} a_{\alpha} | \Psi_{n}^{A} \rangle \langle \Psi_{n}^{A} | a_{\gamma}^{+} a_{\delta} | \Psi_{0}^{A} \rangle$

Requires (imaginary part of) exact polarization propagator

"Absolute" spectroscopic factors $\sqrt{}$

Difference between RPA and ERPA

GQR

GDR

Gamow-Teller