#### CISS07 8/30/2007

## Comprehensive treatment of correlations at different energy scales in nuclei using Green's functions

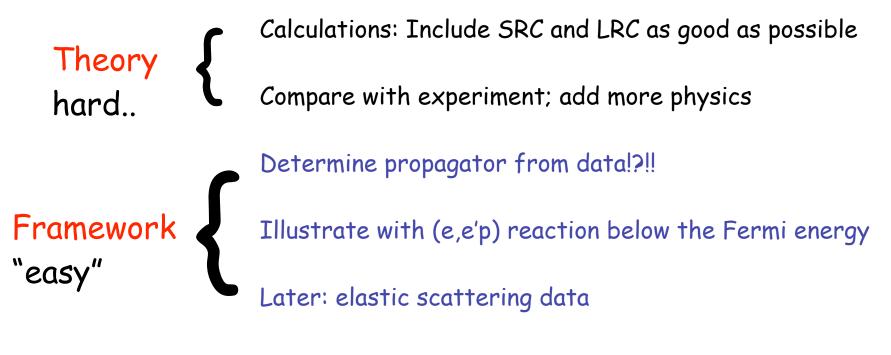
| Lecture 1: 8/28/07      | Propagator description of single-particle motion and the link with experimental data    |
|-------------------------|-----------------------------------------------------------------------------------------|
| Lecture 2: 8/29/07      | From Hartree-Fock to spectroscopic factors < 1:<br>inclusion of long-range correlations |
| Lecture 3: 8/29/07      | Role of short-range and tensor correlations associated with realistic interactions      |
| Lecture 4: 8/30/07      | Dispersive optical model and predictions for nuclei towards the dripline                |
| Adv. Lecture 1: 8/30/07 | Saturation problem of nuclear matter<br>& pairing in nuclear and neutron matter         |
| Adv. Lecture 2: 8/31/07 | Quasi-particle density functional theory                                                |

#### Wim Dickhoff Washington University in St. Louis

## Outline

- Dispersion relation for self-energy
- Self-energy and nucleon optical potential
- Description of elastic nucleon scattering
- Empirical information on optical potentials
- Subtracted dispersion relation
- Discussion of time and space nonlocality
- Dispersive optical model fits for <sup>40</sup>Ca and <sup>48</sup>Ca
- Extrapolation to the dripline
- Data-driven extrapolations & missing data
- Inclusion of nonlocal potentials

# Theory & Framework



#### Answers:

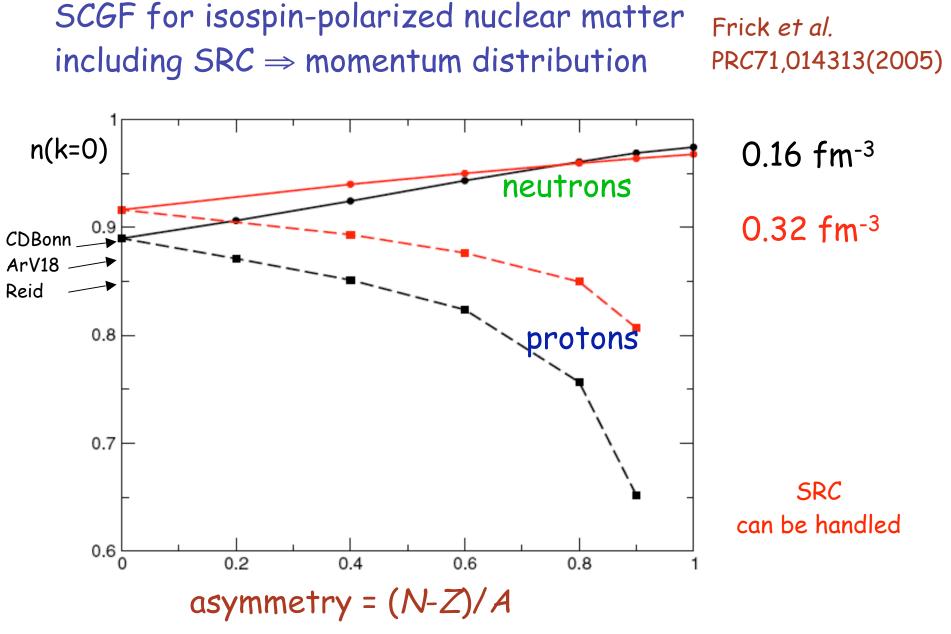
What do nucleons do in the nucleus and how does their behavior change as a function of asymmetry

## Correlations for nuclei with N very different from Z? ⇒ Radioactive beam facilities

Nuclei are TWO-component Fermi liquids

- SRC about the same between pp, np, and nn
- Tensor force disappears for n when N >> Z but ...
- Empirically p more bound with increasing asymmetry (N-Z)/A
- Any surprises?
- Ideally: quantitative predictions based on solid foundation

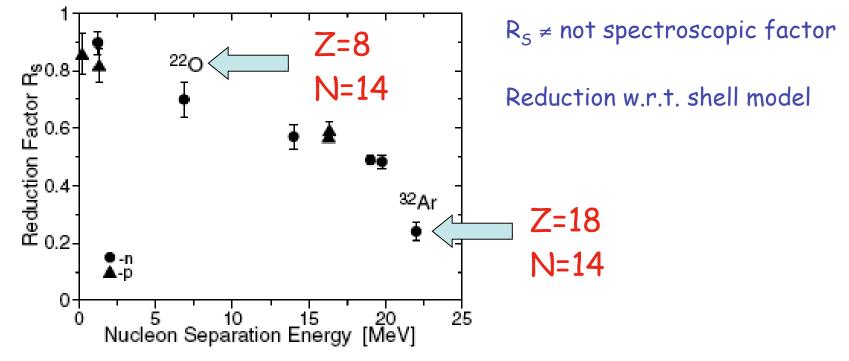
Some pointers: one from theory and one from experiment



Green's functions IV 5

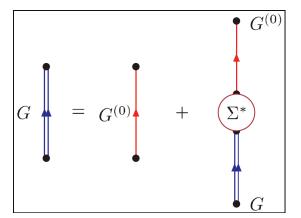
### A. Gade et al., Phys. Rev. Lett. 93, 042501 (2004)

Program at MSU initiated by Gregers Hansen P. G. Hansen and J. A. Tostevin, Annu. Rev. Nucl. Part. Sci. **53**, 219 (2003)



neutrons more correlated with increasing proton number and accompanying increasing separation energy.

# Dyson Equation and "experiment"



Equivalent to ...

Schrödinger-like equation with:  $E_n^- = E_0^N - E_n^{N-1}$ Self-energy: non-local, energy-dependent potential With energy dependence: spectroscopic factors < 1  $\Rightarrow$  as observed in (e,e'p)

$$-\frac{\hbar^{2}\nabla^{2}}{2m}\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}m}\right|\Psi_{0}^{N}\right\rangle+\sum_{m'}\int d\vec{r}'\Sigma'^{*}(\vec{r}m,\vec{r}'m';E_{n}^{-})\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}'m'}\right|\Psi_{0}^{N}\right\rangle=E_{n}^{-}\left\langle\Psi_{n}^{N-1}\left|a_{\vec{r}m}\right|\Psi_{0}^{N}\right\rangle$$

$$S = \left| \left\langle \Psi_{n}^{N-1} \middle| a_{\alpha_{qh}} \middle| \Psi_{0}^{N} \right\rangle \right|^{2} = \frac{1}{1 - \frac{\partial \Sigma'^{*} \left(\alpha_{qh}, \alpha_{qh}; E\right)}{\partial E}} \\ \frac{1 - \frac{\partial \Sigma'^{*} \left(\alpha_{qh}, \alpha_{qh}; E\right)}{\partial E}}{\frac{\partial E}{\partial E}} \\ = \psi_{n}^{N-1} \left| a_{\vec{r}_{n}} \middle| \Psi_{0}^{N} \right\rangle = \psi_{n}^{N-1} (\vec{r}m) \\ \left\langle \Psi_{0}^{N} \middle| a_{\vec{r}m} \middle| \Psi_{k}^{N+1} \right\rangle = \psi_{k}^{N+1} (\vec{r}m) \\ \left\langle \Psi_{E}^{c,N-1} \middle| a_{\vec{r}m} \middle| \Psi_{0}^{N} \right\rangle = \chi_{c}^{N-1} (\vec{r}m; E) \\ \left\langle \Psi_{0}^{N} \middle| a_{\vec{r}m} \middle| \Psi_{E}^{c,N+1} \right\rangle = \chi_{c}^{N+1} (\vec{r}m; E)$$

 $\alpha_{qh}$  solution of DE at  $E_n^-$ 

Bound states in N-1 Bound states in N+1 Scattering states in N-1 Elastic scattering in N+1

Elastic scattering wave function for (p,p) or (n,n)

#### General dispersion relation

$$\operatorname{Re}\Sigma(\gamma,\delta;E) = \Sigma^{"HF"}(\gamma,\delta) - \frac{1}{\pi}P\int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im}\Sigma(\gamma,\delta;E')}{E-E'} + \frac{1}{\pi}P\int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im}\Sigma(\gamma,\delta;E')}{E-E'}$$

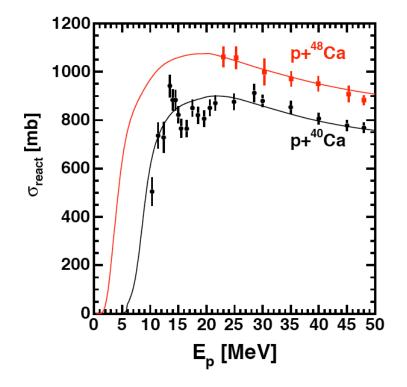
At  $E_0$  for example the Fermi energy

$$\operatorname{Re}\Sigma(\gamma,\delta;E_{0}) = \Sigma^{"HF"}(\gamma,\delta) - \frac{1}{\pi}P\int_{E_{T}^{+}}^{\infty} dE' \frac{\operatorname{Im}\Sigma(\gamma,\delta;E')}{E_{0} - E'} + \frac{1}{\pi}P\int_{-\infty}^{E_{T}^{-}} dE' \frac{\operatorname{Im}\Sigma(\gamma,\delta;E')}{E_{0} - E'}$$
  
Subtract  
$$\operatorname{Re}\Sigma(\gamma,\delta;E) = \operatorname{Re}\Sigma(\gamma,\delta;E_{0})$$

$$-\frac{1}{\pi} (E_0 - E) P \int_{E_T^+}^{\infty} dE' \frac{\operatorname{Im}\Sigma(\gamma, \delta; E')}{(E - E')(E_0 - E')} + \frac{1}{\pi} (E_0 - E) P \int_{-\infty}^{E_T} dE' \frac{\operatorname{Im}\Sigma(\gamma, \delta; E')}{(E - E')(E_0 - E')}$$

Note here:  $Im\Sigma < 0$  for "2p1h" energies but >0 for "2h1p" energies

Does the nucleon self-energy also have an imaginary part above the Fermi energy?



Loss of flux in the elastic channel



#### FRAMEWORK FOR EXTRAPOLATIONS BASED ON EXPERIMENTAL DATA

"Mahaux analysis"  $\Rightarrow$  Dispersive Optical Model (DOM)

C. Mahaux and R. Sartor, Adv. Nucl. Phys. 20, 1 (1991)

There is empirical information about the nucleon self-energy!!

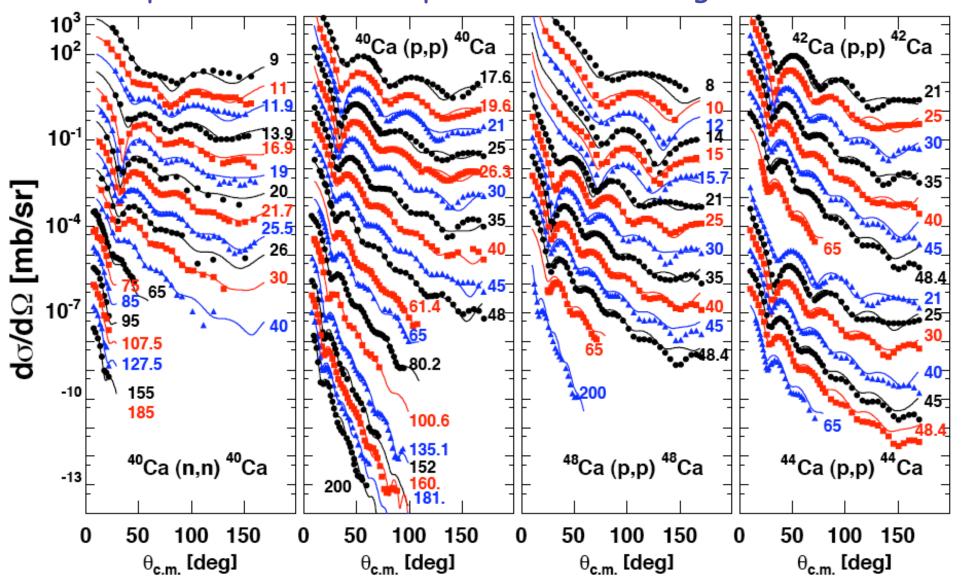
- $\Rightarrow$  Optical potential to analyze elastic nucleon scattering data
- $\Rightarrow$  Extend analysis from A+1 to include structure information in A-1  $\Rightarrow$  (e,e'p) data
- ⇒ Employ dispersion relation between real and imaginary part of self-energy

#### Recent extension

Combined analysis of protons in <sup>40</sup>Ca and <sup>48</sup>Ca Charity, Sobotka, & WD nucl-ex/0605026, Phys. Rev. Lett. **97**, 162503 (2006)

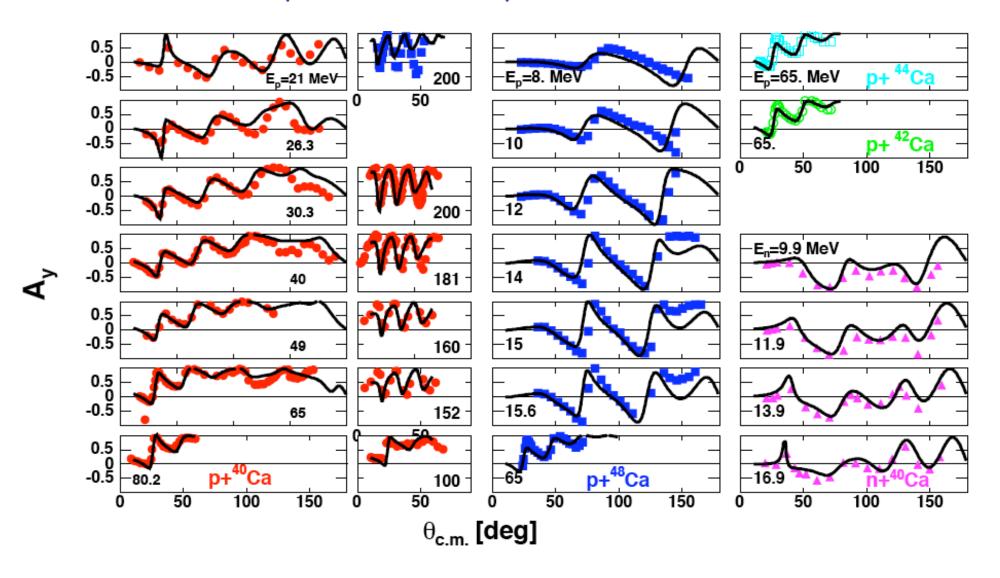
Large energy window (> 200 MeV)

Goal: Extract asymmetry dependence  $\Rightarrow \delta = (N - Z)/A$   $\Rightarrow$  Predict proton properties at large asymmetry  $\Rightarrow {}^{60}Ca$   $\Rightarrow$  Predict neutron properties ... the dripline based on data!

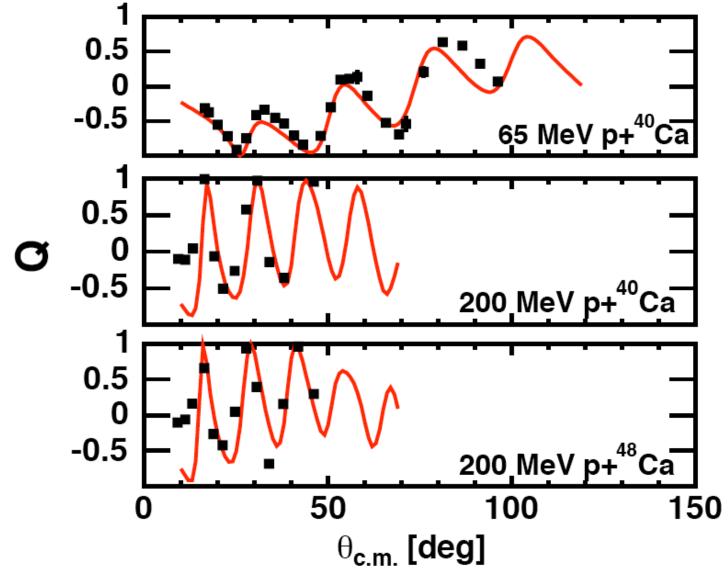


Fit and predictions of n & p elastic scattering cross sections

### Present fit and predictions of polarization data

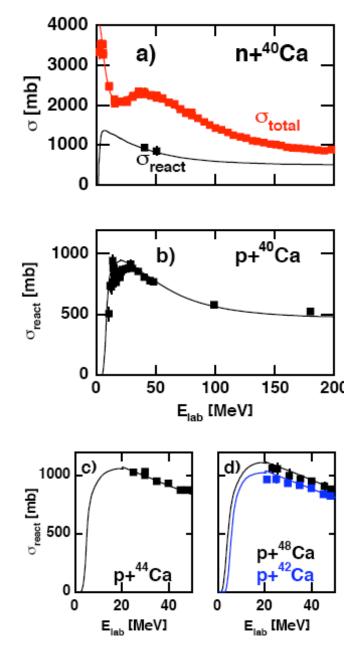


Spin rotation parameter (not fitted)



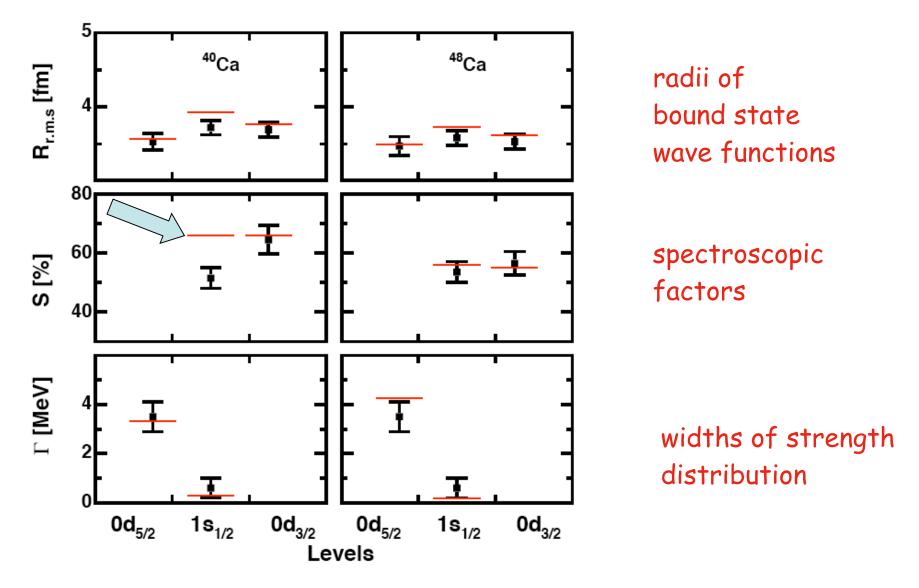
Green's functions IV 13

## Fit and predictions Of reaction cross sections



Green's functions IV 14

Present fit to (e,e'p) data



### Employed equations

 $\Sigma(\mathbf{r}\mathbf{m},\mathbf{r}'\mathbf{m}';E) \Rightarrow \mathcal{U}(r,E) = -\mathcal{V}(r,E) + V_{so}(r) + V_C(r)$  $-iW_v(E)f(r,r_v,a_v) + 4ia_sW_s(E)f'(r,r_s,a_s)$ 

$$f(r, r_i, a_i) = \left(1 + e^{\frac{r - r_i A^{1/3}}{a_i}}\right)^{-1}$$

Woods-Saxon form factor

 $\Delta \mathcal{V}(r,E) = \Delta V_{\nu}(E) f(r,r_{\nu},a_{\nu}) - 4a_{s} \Delta V_{s}(E) f(r,r_{s},a_{s})$ 

"*HF*" includes main effect of nonlocality ⇒ *k*-mass

$$\Delta V_i(E) = \frac{P}{\pi} \int_{-\infty}^{\infty} W_i(E') \left(\frac{1}{E' - E} - \frac{1}{E' - E_F}\right) dE'$$

Subtracted dispersion relation IV 16 equivalent to previous page Features of simultaneous fit to  $^{40}\mbox{Ca}$  and  $^{48}\mbox{Ca}$  data

- Surface contribution assumed symmetric around  $E_F$ 
  - Represents coupling to low-lying collective states (GR)
- Volume term asymmetric w.r.t.  $E_F$  taken from nuclear matter
- Geometric parameters  $r_i$  and  $a_i$  fit but the same for both nuclei
- Decay (in energy) of surface term identical also
- Possible to keep volume term the same (consistent with exp) and independent of asymmetry
- *HF* and surface parameters different and can be extrapolated to larger asymmetry
- Surface potential stronger and narrower around  $E_F$  for <sup>48</sup>Ca

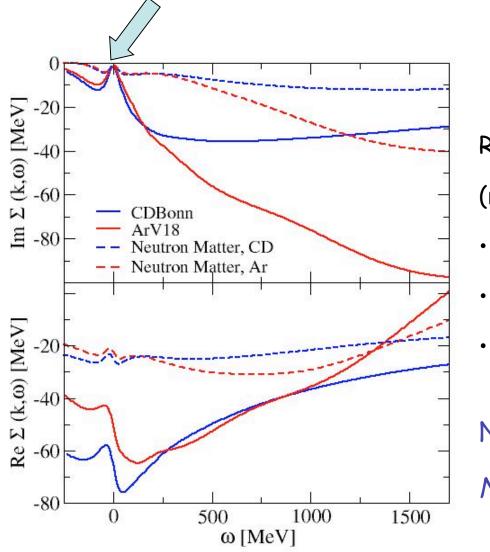
Locality and other approximations

Mahaux 
$$V_{HF}(\vec{r}m,\vec{r}'m') = \operatorname{Re}\Sigma(\vec{r}m,\vec{r}'m';E_F) \Rightarrow V_{HF}(r;E) = U_{HF}(E)f(X_{HF})$$
  
with  $f(X_{HF}) = [1 + \exp(X_{HF})]^{-1}$   
 $X_{HF} = \frac{r - R_{HF}}{a_{HF}}$   
 $R_{HF} = r_{HF}A^{1/3}$   
 $U_{HF}(E) = U_{HF}(E_F) + [1 - \frac{m_{HF}^*}{m}](E - E_F)$ 

Dispersive part: - assumed large *E* contribution and  $m^*_{HF}$  correlated  $\Rightarrow$  can use nuclear matter model and introduces asymmetry in Im part - nonlocality of Im  $\Sigma$  smooth

⇒ replace by local form identified with the imaginary part of the optical-model potential with volume and surface contributions<sup>Green's functions IV</sup> 18

#### Infinite matter self-energy



Real and imaginary part of the (retarded) self-energy

- $k_F = 1.35 \text{ fm}^{-1}$
- T= 5 MeV
- $k = 1.14 \text{ fm}^{-1}$

Note differences due to NN interaction

Asymmetry w.r.t. the Fermi energy related to phase space for  $p_{10}p_{10}p_{10}nd_V h_0$ 

# Extrapolation in $\delta$

Naïve: 
$$p/n \Rightarrow D_1 \Rightarrow \pm (N-Z)/A$$

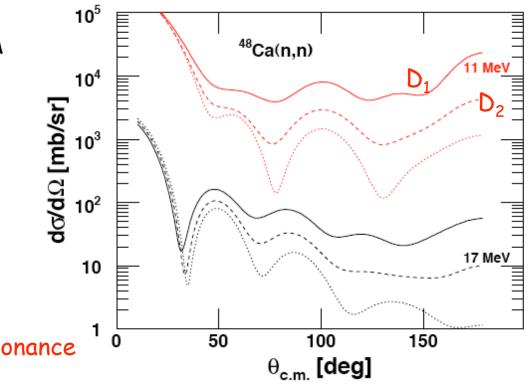
Cannot be extrapolated for n

Less naïve:

$$D_2 \Rightarrow p \Rightarrow +(N-Z)/A$$
$$D_2 \Rightarrow n \Rightarrow 0$$

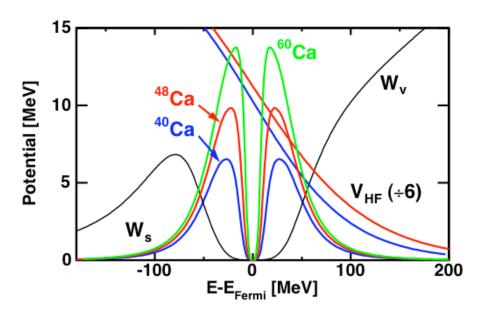
Emphasizes coupling to GT resonance Consistent with n+<sup>A</sup>Mo data

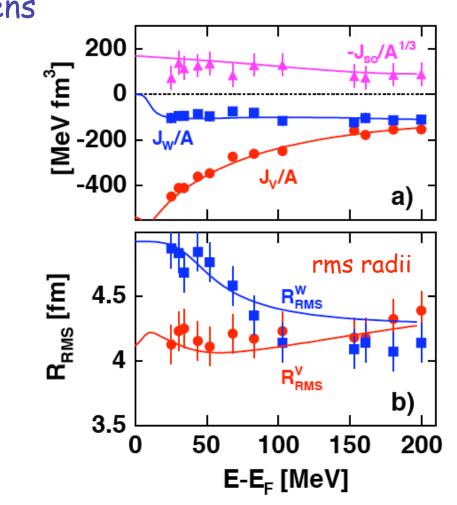
Need *n*+<sup>48</sup>Ca elastic scattering data!!!



## Potentials

Surface potential strengthens with increasing asymmetry for protons

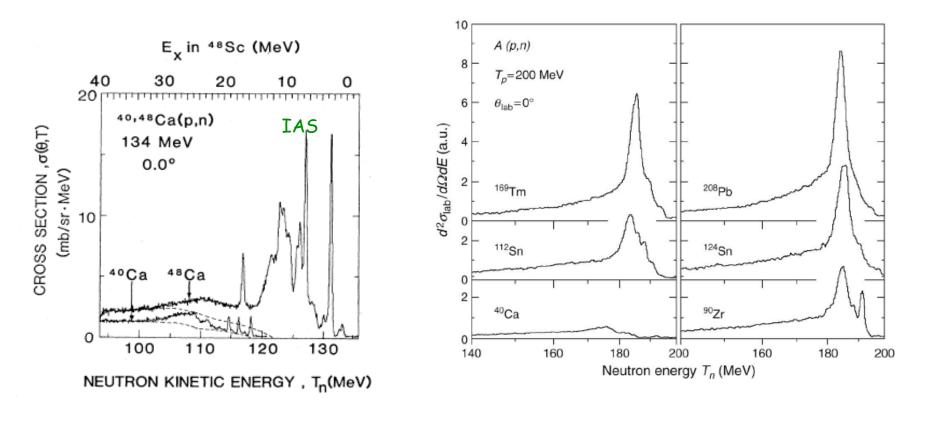




Volume integrals

Green's functions IV 21

## What's the physics? GT resonance?

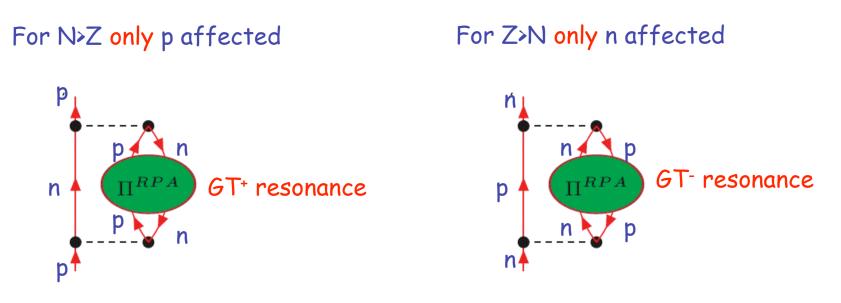


NPA369,258(1981)

PRC31,1161(1985)

Influence of Gamow-Teller Giant Resonance or  $\sigma_1.\sigma_2 \tau_1.\tau_2$  (& tensor force) ph interaction

Sum rule for strength:  $S(\beta^+)-S(\beta^-)=3(N-Z)$ 

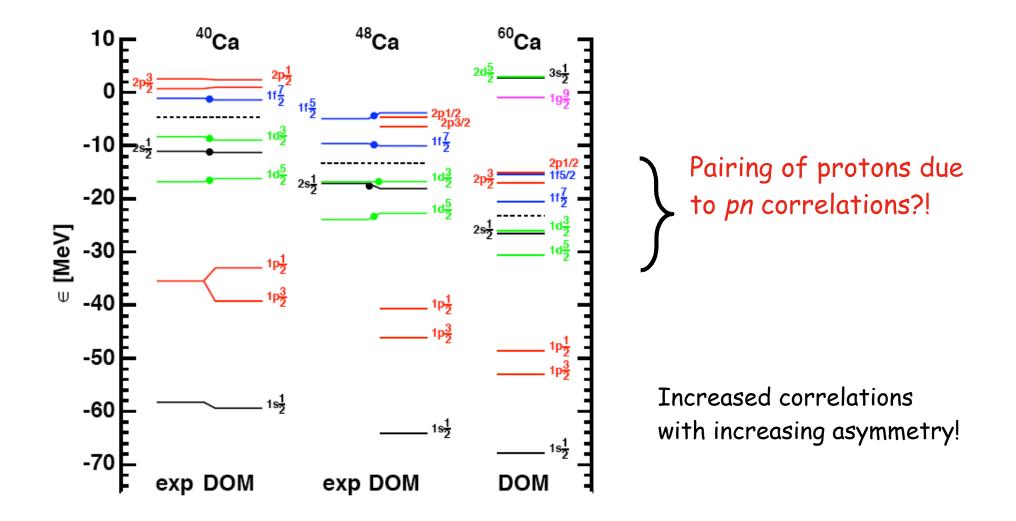


Related issue:

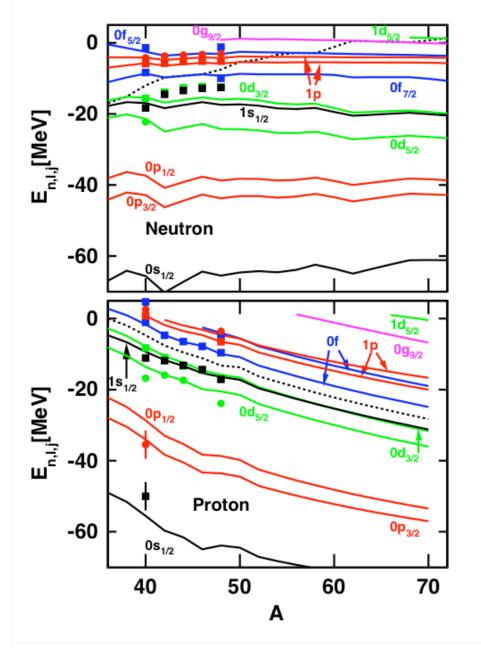
Change in magic numbers with increasing asymmetry

e.g. Otsuka et al., Phys. Rev. Lett. 95, 232502 (2005)

Proton single-particle structure and asymmetry

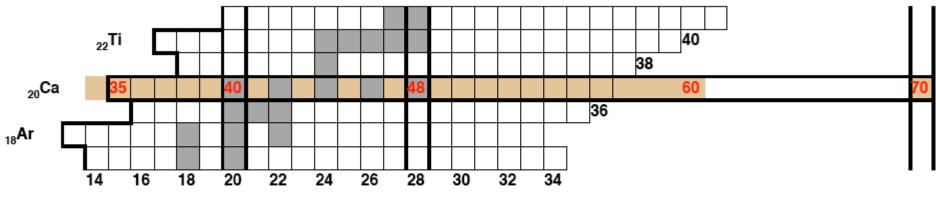


Extrapolation for large N of sp levels



Green's functions IV 25

# Driplines



Ν

Proton dripline wrong by 1

Neutron dripline more complicated:

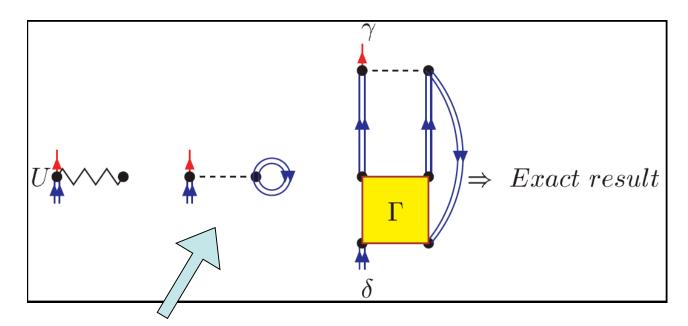
<sup>60</sup>Ca and <sup>70</sup>Ca particle bound Intermediate isotopes unbound Reef?

# Outlook

- Explore the Gamow-Teller connection
  - link with excited states
- More experimental information from elastic nucleon scattering is important!
  - lots of informative experiments to be done with radioactive beams
- Neutron experiments on  ${}^{48}Ca$  and  ${}^{48}Ca(p,d)$  in the  ${}^{47}Ca$  continuum
- Data-driven extrapolations to the neutron dripline
- More DOM analysis
- Exact solution of the Dyson equation with nonlocal potentials (in progress)
- Employ information of nucleon self-energy to generate functionals for QP-DFT = Quasi-Particle Density Functional Theory (Van Neck et al. => PRA)
   DFT that includes a correct description of QP properties!!

# Inclusion of $V_{NN}$ (or parts of it)

### Self-energy



Requires one-body density matrix Already "determined" from experiment Can take explicit realistic tensor force  $V_T$ Refit to data Useful for asymmetry dependence!

# Improvements in progress

Replace treatment of nonlocality in terms of local equivalent but energy-dependent potential by explicitly nonlocal potential  $\Rightarrow$  Necessary for exact solution of Dyson equation

- Yields complete spectral density as a function of energy
- Yields one-body density
  - Yields natural orbits
  - Yields charge density
  - Yields neutron density
  - Data for charge density can be included in fit
  - Data for (e,e'p) cross sections near  $E_F$  can be included in fit
  - High-momentum components can be included (Jlab data)
  - $\cdot$  E/A can be calculated/ used as constraint  $\Rightarrow$  TNI
  - NN Tensor force can be included explicitly
  - Generate functionals for QP-DFT

OK

OK

OK

OK

OK

## Exact solution of Dyson equation

Coordinate space technique employed for atoms can be employed to solve Dyson equation including any true nonlocality (Van Neck) Yields  $S_h(\alpha,\beta;E) = \sum_n \langle \Psi_0^N | a_\beta^\dagger | \Psi_n^{N-1} \rangle \langle \Psi_n^{N-1} | a_\alpha | \Psi_0^N \rangle \delta \left( E - \left( E_0^N - E_n^{N-1} \right) \right)$ 

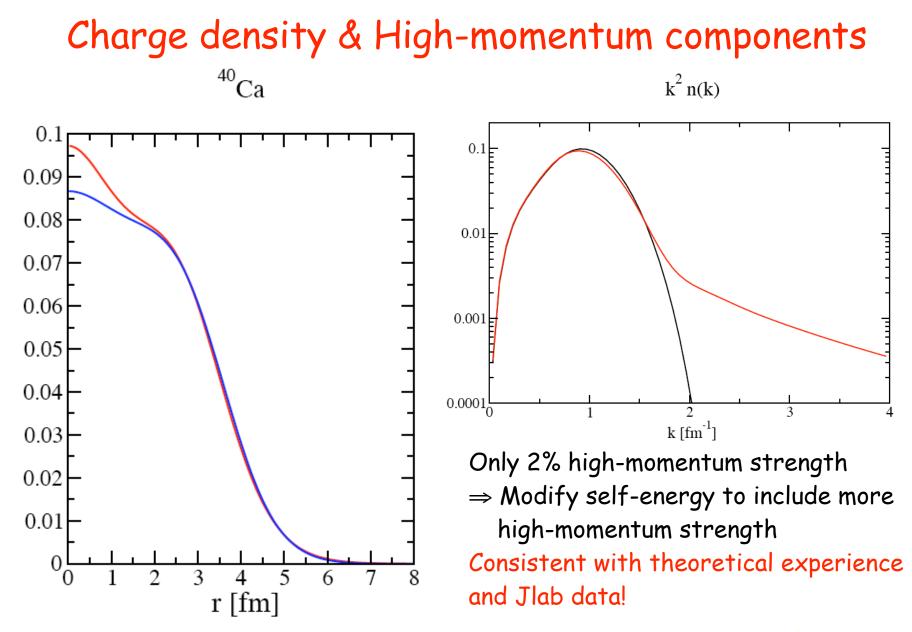
spectral density (spectral function for  $\alpha = \beta$ ) and therefore

$$n(\beta,\alpha) = \int_{-\infty}^{\varepsilon_{F}^{-}} dE S_{h}(\alpha,\beta;E) = \sum_{n} \left\langle \Psi_{0}^{N} \left| a_{\beta}^{\dagger} \right| \Psi_{n}^{N-1} \right\rangle \left\langle \Psi_{n}^{N-1} \left| a_{\alpha} \right| \Psi_{0}^{N} \right\rangle = \left\langle \Psi_{0}^{N} \left| a_{\beta}^{\dagger} a_{\alpha} \right| \Psi_{0}^{N} \right\rangle$$
  
the one-body density matrix including occupation numbers ( $\alpha = \beta$ ) charge

density, etc. and last but not least

$$E_0^N = \frac{1}{2} \left( \sum_{\alpha,\beta} \langle \alpha | T | \beta \rangle n(\alpha,\beta) + \sum_{\alpha} \int_{-\infty}^{\varepsilon_F^-} dE \ E \ S_h(\alpha;E) \right)$$
$$= \frac{1}{2} \left( \sum_{\ell j} \int_{0}^{\infty} dk \ k^2 (2j+1) \frac{\hbar^2 k^2}{2m} n_{\ell j}(k) + \sum_{\ell j} (2j+1) \int_{0}^{\infty} dk \ k^2 \int_{-\infty}^{\varepsilon_F^-} dE \ E \ S_{\ell j}(k;E) \right)$$

the ground state energy  $\Rightarrow$  useful constraints (includes also Z & N)



# Summary

Proton sp properties in stable closed-shell nuclei understood (mostly)

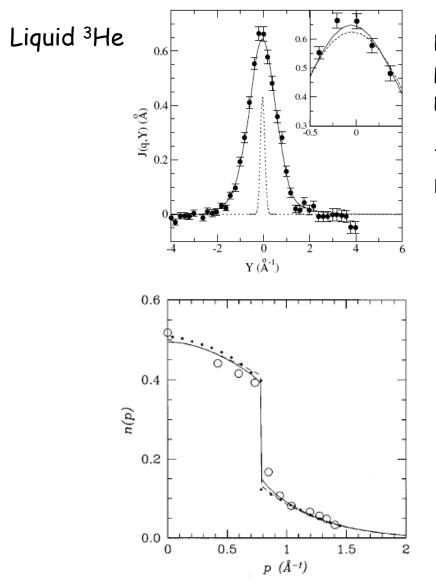
Study of N≠Z nuclei based on DOM framework and experimental data

- Description of huge amounts of data
- Sensible extrapolations to systems with large asymmetry
- More data necessary to improve/pin down extrapolation
- More theory

Predictions

- N≠Z p more correlated while n similar (for N>Z) and vice versa
- Proton closed-shells with N>>Z  $\Rightarrow$  may favor pp pairing
- Neutron dripline may be more complicated (reef)

### Deep-inelastic neutron scattering off quantum liquids



Response at 19.4 Å<sup>-1</sup> Probe: neutrons R.T. Azuah et al., J. Low Temp. Phys. **101**, 951 (1995)

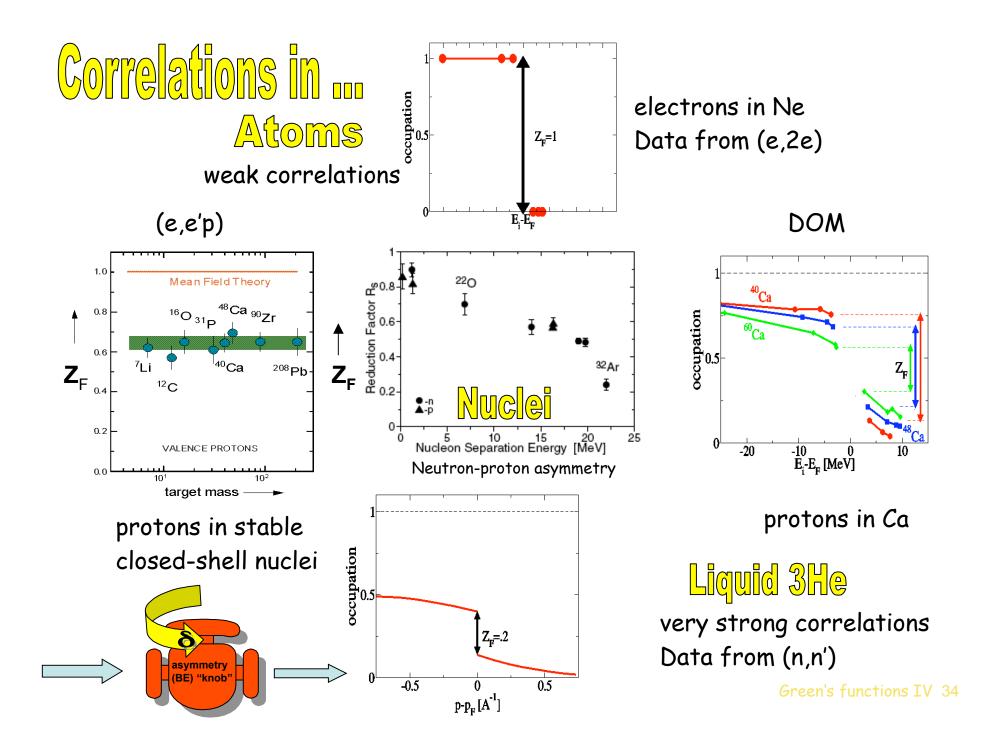
Theory: Monte Carlo n(k) & FSE ( $\rho_2$ ) beyond IA F. Mazzanti et al., Phys. Rev. Lett. **92**, 085301 (2004)

$$J(Y) = \frac{1}{2\pi^2 \rho} \int_{|Y|}^{\infty} dk \, k \, n(k) \qquad \text{IA result}$$

 $Y = \frac{m\omega}{q} - \frac{q}{2} \qquad \text{scaling variable}$ 

Momentum distribution liquid <sup>3</sup>He

S. Moroni et al., Phys. Rev. B**55**, 1040 (1997) Comparison of DMC, GFMC, and VMC & HNC



# New framework to do self-consistent sp theory

Quasiparticle density functional theory  $\Rightarrow$  QP-DFT

D. Van Neck et al., Phys. Rev. A74, 042501 (2006)

Ground-state energy and one-body density matrix from self-consistent sp equations that extend the Kohn-Sham scheme.

Based on separating the propagator into a quasiparticle part and a background, expressing only the latter as a functional of the density matrix.  $\Rightarrow$  in addition yields gp energies and overlap functions

Reminder: DFT does not yield removal energies of atoms

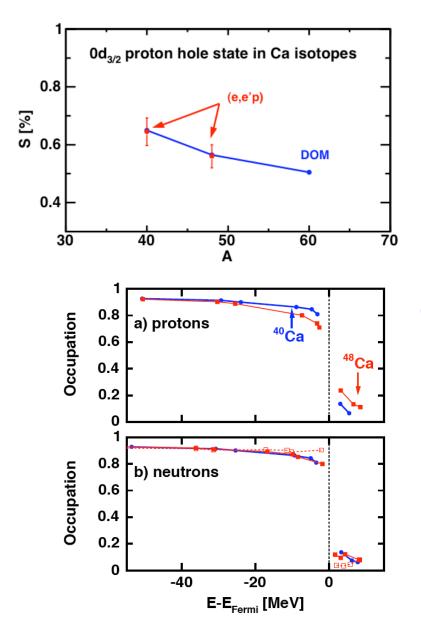
Relative deviation [%] DFT HF He atom 1s 37.4 1.5

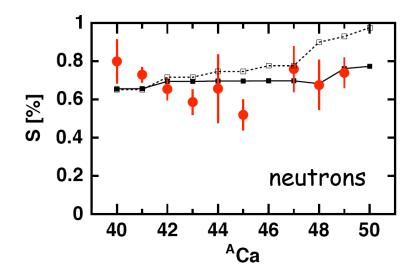
| He atom | 15 | 37.4 | 1.5 |
|---------|----|------|-----|
| Ne atom | 2р | 38.7 | 6.8 |
| Ar atom | Зр | 36.1 | 2.0 |

While ground-state energies are closer to exp in DFT than in HF

Can be developed for nuclei from DOM input!

## Spectroscopic factors as a function of $\delta$





## Occupation numbers

Protons more correlated with  $\boldsymbol{\delta}$ 

Neutrons not much change

# Isospin analysis

