CISS07 8/30/2007

Comprehensive treatment of correlations at different

energy scales in nuclei using Green's functions

Lecture 1: 8/28/07 Propagator description of single-particle motion and the

link with experimental data

Lecture 2: 8/29/07 From Hartree-Fock to spectroscopic factors < 1:

inclusion of long-range correlations

Lecture 3: 8/29/07 Role of short-range and tensor correlations

associated with realistic interactions

Lecture 4: 8/30/07 Dispersive optical model and predictions for nuclei towards

the dripline

Adv. Lecture 1: 8/30/07 Saturation problem of nuclear matter

& pairing in nuclear and neutron matter

Adv. Lecture 2: 8/31/07 Quasi-particle density functional theory

Wim Dickhoff
Washington University in St. Louis

The two "most elusive" numbers in nuclear physics

- What are these numbers?
- In what sense are they elusive?
- What is the history?
- Three-body forces? Relativity? Give up?
- What has been learned from (e,e'p)?
- What really decides the saturation density?
- Nuclear Matter with SRC? No LRC?
- Conclusions

Empirical Mass Formula

Global representation of nuclear masses (Bohr & Mottelson)

$$B = b_{vol}A - b_{surf}A^{2/3} - \frac{1}{2}b_{sym}\frac{(N-Z)^2}{A} - \frac{3}{5}\frac{Z^2e^2}{R_c}$$

$$b_{vol} = 15.56 \text{ MeV}$$

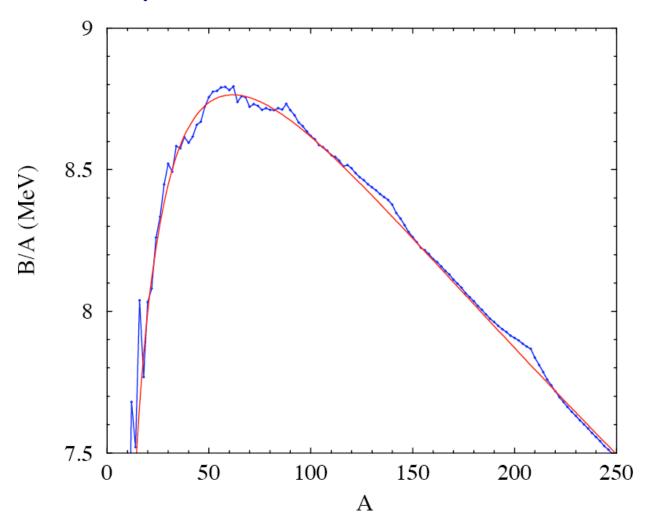
$$b_{surf} = 17.23 \text{ MeV}$$

$$b_{sym} = 46.57 \text{ MeV}$$

$$R_c = 1.24 A^{1/3} \text{ fm}$$

· Pairing term must also be considered

Empirical Mass Formula



Plotted: most stable nucleus for a given A

Central density of nuclei

Multiply charge density at the origin by A/Z

- \Rightarrow Empirical density = 0.16 nucleons / fm³
- \Rightarrow Equivalent to $k_F = 1.33 \text{ fm}^{-1}$

Nuclear Matter

N = Z

No Coulomb

 $A \Rightarrow \infty$, $V \Rightarrow \infty$ but $A/V = \rho$ fixed

"Two most important numbers"

 b_{vol} = 15.56 MeV and $k_{\rm F}$ = 1.33 fm⁻¹

Historical Perspective

- First attempt using scattering in the medium
- Formal development (linked cluster expansion)
- Low-density expansion
- Reorganized perturbation expansion (60s)
 involving ordering in the number of hole lines
- Variational Theory vs. Lowest Order BBG (70s)
- Variational results & next hole-line terms (80s)
- Three-body forces? Relativity? (80s)
- Confirmation of three hole-line results (90s)
- New insights from experiment
 about what nucleons are up to in the nucleus (90s & 00s)

Brueckner 1954

Goldstone 1956

Galitskii 1958

Bethe & students

BBG-expansion

Clark, Pandharipande

Day, Wiringa

Urbana, CUNY

Baldo et al.

NIKHEF Amsterdam

JLab

Green's function V 6

Old pain and suffering!

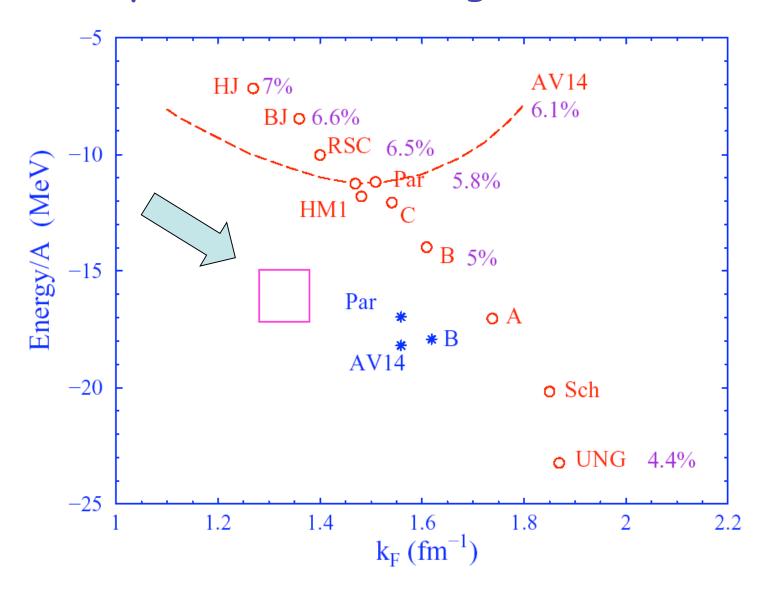


Figure adapted from Marcello Baldo (Catania)

Lowest-order Brueckner theory (two hole lines)

 G^{f}_{BG} angle-average of

$$G_{BG}^{f}(k_1, k_2; E) = \frac{\theta(k_1 - k_F)\theta(k_2 - k_F)}{E - \varepsilon(k_1) - \varepsilon(k_2) + i\eta}$$

$$\langle k\ell | G^{JST}(K,E) | k'\ell' \rangle = \langle k\ell | V^{JST} | k'\ell' \rangle + \frac{1}{2} \sum_{\ell''} \int_{0}^{\infty} \frac{dq}{(2\pi)^3} q^2 \langle k\ell | V^{JST} | q\ell'' \rangle G_{BG}^{f}(q;K,E) \langle q\ell'' | G^{JST}(K,E) | k'\ell' \rangle$$

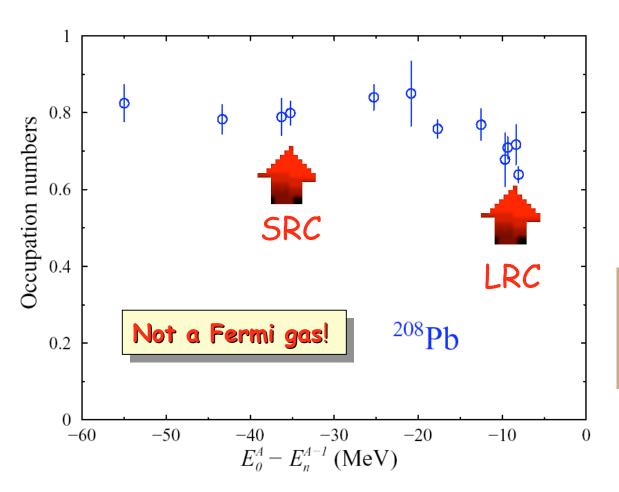
Spectrum
$$\varepsilon_{BHF}(k) = \frac{\hbar^2 k^2}{2m} + \Sigma_{BHF}(k; \varepsilon_{BHF}(k))$$
 $k < k_F \Rightarrow$ standard choice all $k \Rightarrow$ continuous choice

$$\mathbf{Self-energy} \qquad \Sigma_{\mathit{BHF}} \left(k; E \right) = \frac{1}{\nu} \sum_{m,m'} \int \frac{d^3k'}{\left(2\pi \right)^3} \theta \left(k_F - k' \right) \left\langle \vec{k} \vec{k}' m m' \middle| G \left(\vec{k} + \vec{k}'; E + \varepsilon_{\mathit{BHF}} \left(k' \right) \right) \middle| \vec{k} \vec{k}' m m' \right\rangle$$

Energy
$$\frac{E}{A} = \frac{4}{\rho} \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \frac{\hbar^2 k^2}{2m} + \frac{1}{2\rho} \sum_{m,m'} \int \frac{d^3k}{(2\pi)^3} \theta(k_F - k) \int \frac{d^3k'}{(2\pi)^3} \theta(k_F - k') \left\langle \vec{k}\vec{k}'mm' \middle| G(\vec{k} + \vec{k}'; \varepsilon_{BHF}(k) + \varepsilon_{BHF}(k')) \middle| \vec{k}\vec{k}'mm' \right\rangle$$

M. van Batenburg (thesis, 2001) & L. Lapikás from ²⁰⁸Pb (e,e'p) ²⁰⁷Tl

Occupation of deeply-bound proton levels from EXPERIMENT



Up to 100 MeV missing energy and 270 MeV/c missing momentum

Covers the whole mean-field domain for the FIRST time!!

Confirmation of theory

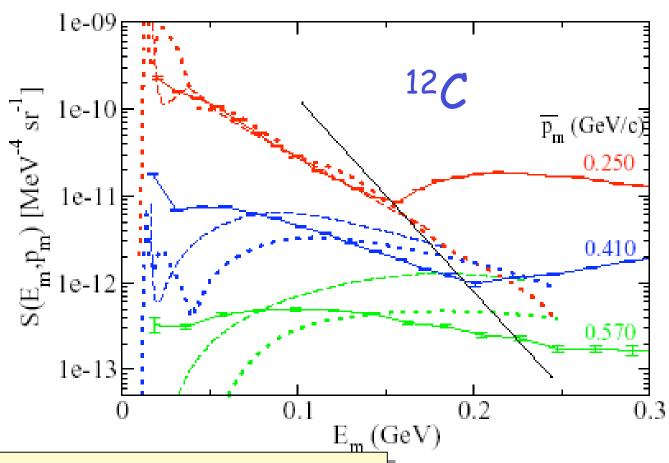
Green's function V 9

Where are the last protons? Answer is coming!

Jlab data PRL**93**,182501 (2004) Rohe et al.

Location of highmomentum component

integrated strength OK!



There are high-momentum components

in the nuclear ground state!

Green's function V 10

Energy Sum Rule (Migdal, Galitskii, Koltun ...)

Finite nuclei

$$E_0^A = \left\langle \Psi_0^A \middle| \hat{H} \middle| \Psi_0^A \right\rangle = \frac{1}{2} \sum_{\alpha\beta} \left\langle \alpha \middle| T \middle| \beta \right\rangle n_{\alpha\beta} + \frac{1}{2} \sum_{\alpha} \int_{-\infty}^{\varepsilon_F} dE \ E S_h(\alpha; E)$$

$$n_{\alpha\beta} = \left\langle \Psi_0^A \left| a_{\alpha}^+ a_{\beta} \right| \Psi_0^A \right\rangle = \frac{1}{\pi} \int_{-\infty}^{\varepsilon_F^-} dE \operatorname{Im} G(\beta, \alpha; E)$$

$$S_h(\alpha; E) = \sum_{n} \left| \left\langle \Psi_n^{A-1} \left| a_\alpha \right| \Psi_0^A \right\rangle \right|^2 \delta \left(E - \left(E_0^A - E_n^{A-1} \right) \right) = \frac{1}{\pi} \operatorname{Im} G(\alpha, \alpha; E)$$

Nuclear matter

$$\frac{E}{A} = \frac{1}{2} \left\{ \frac{4}{\rho} \int \frac{d^3k}{\left(2\pi\right)^3} \int_{-\infty}^{\varepsilon_F} dE \left(\frac{\hbar^2 k^2}{2m} + E \right) S_h(k; E) \right\}$$

- Presumes only two-body interactions!
- · Correct description of experimental spectral function should yield good E/A!!

Where does binding come from (really)?

lj	ϵ	"BHF"	ΔE	ϵ		ΔE	¹⁶ O PR <i>C</i> 51,3040(1995)
$s \frac{1}{2} \text{ qh}$ $s \frac{1}{2} \text{ c}$ $p \frac{3}{2} \text{ qh}$ $p \frac{3}{2} \text{ c}$ $p \frac{1}{2} \text{ qh}$ $p \frac{1}{2} \text{ c}$ $\ell > 1 \text{ c}$	-36.9 -15.4 -11.5	11.8 17.6 16.6	-50.3 9.1 10.3	-34.3 -90.4 -17.9 -95.2 -14.1 -103.6 -98.9	11.2 17.1 18.1 35.2 17.2 35.9 63.2	-36.0 -22.9 0.4 -10.0 5.5 -5.8 -12.3	 ← ← ← ← ← ←
$\frac{E/A(\text{MeV})}{\langle r \rangle(\text{fm})}$		-1.9 2.59			-5.1 2.55		

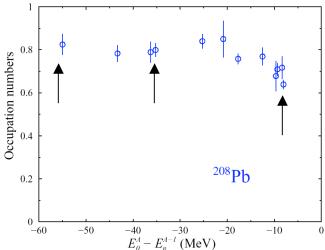
Quasiholes contribute 37% to the total energy High-momentum nucleons (continuum) contribute 63% but represent **only** about 10% of the particles!!

Saturation density and SRC

- Saturation density related to nuclear charge density at the origin. Data for $^{208}\text{Pb} \Rightarrow A/Z * \rho_{ch}(0) = 0.16 \ fm^{-3}$
- Charge at the origin determined by protons in s states

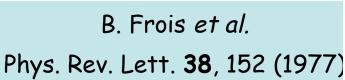
 Occupation of 0s and 1s totally dominated by SRC as can be concluded from recent analysis of ²⁰⁸Pb(e,e'p) data and theoretical calculations of occupation numbers in nuclei and nuclear matter.

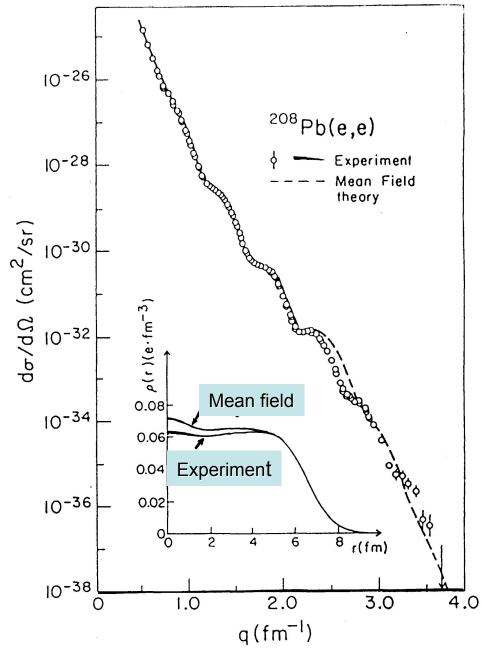
• Depletion of 2s proton also dominated by SRC: 15% of the total depletion of 25% ($n_{2s} = 0.75$)



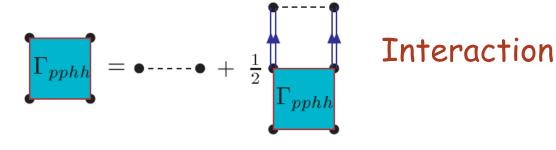
Conclusion: Nuclear saturation dominated by SRC
 and therefore high-momentum components

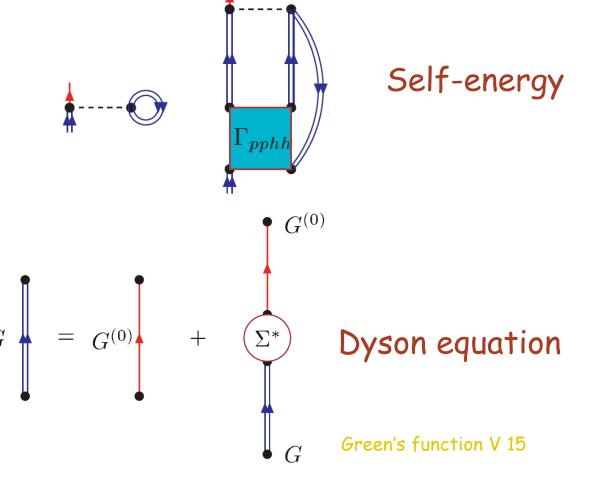
Elastic electron scattering from ²⁰⁸Pb





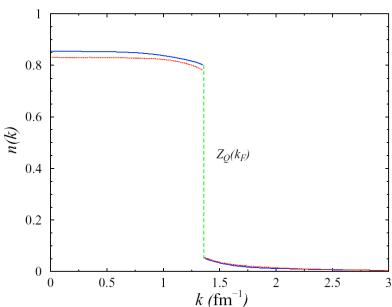
Self-consistent treatment of SRC in nuclear matter

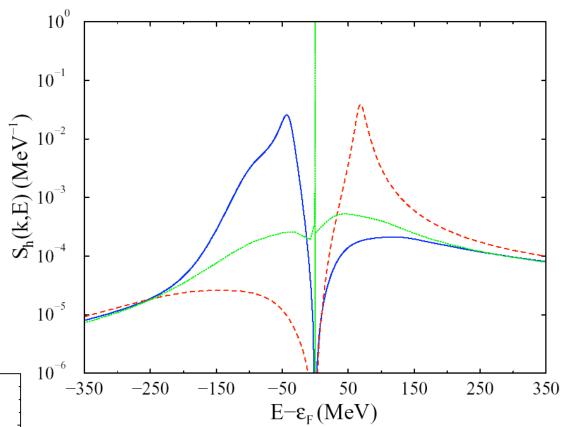




Results from Nuclear Matter 2nd generation (2000)

- Spectral functions for $k = 0, 1.36, \& 2.1 \text{ fm}^{-1}$
- Common tails on both sides of ϵ_{F}





Momentum distribution:

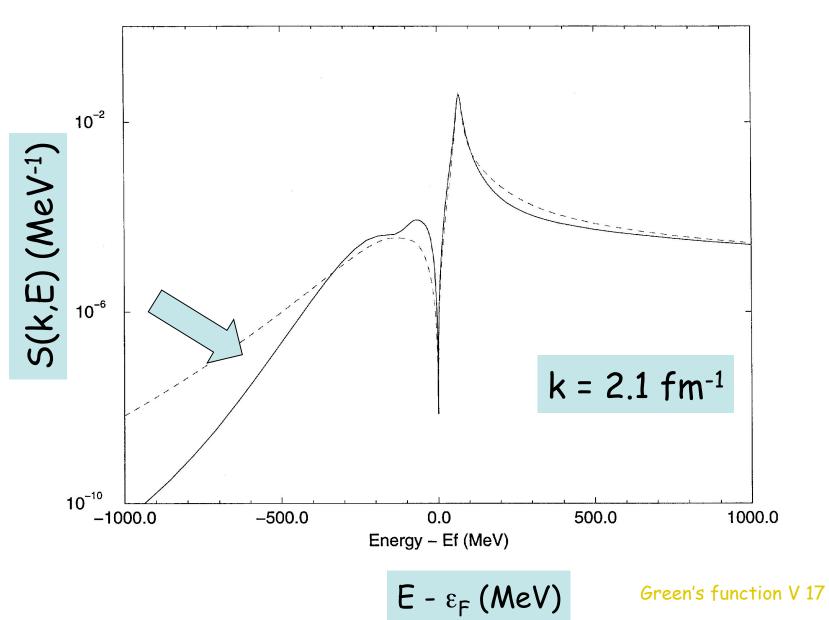
only minor changes

occupation in nuclei

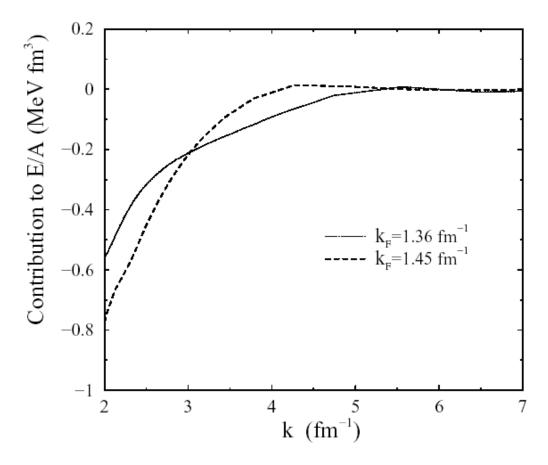
depleted similarly!?!

Green's function V 16

Self-consistent spectral functions



Saturation with self-consistent spectral functions in nuclear matter \Rightarrow reasonable saturation properties

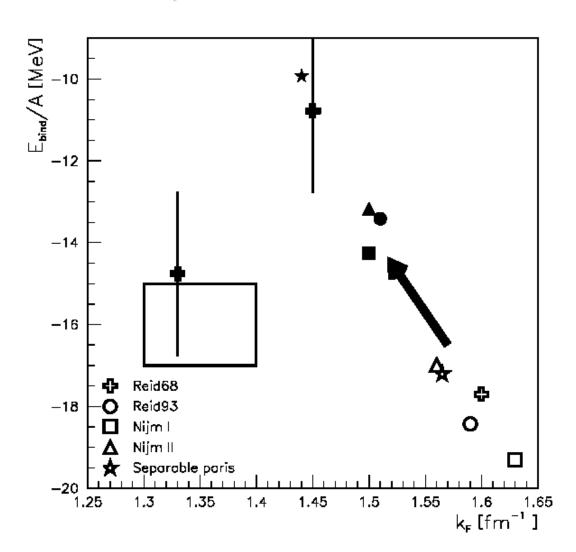


Contribution to the energy per particle before integration over the single-particle momentum at high momentum for two densities

Green's function V 18

Saturation of Nuclear Matter Ladders and self-consistency for Nuclear Matter

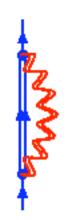
- Ghent group
 Dewulf, Van Neck &
 Waroquier
- St. Louis
 Stoddard, WD



Self-consistent spectral functions

- Distribution below ϵ_F broadens for high momenta and develops a common tail at high missing energy
- Slight increase in occupation $k < k_F$ to 85% at $k_F = 1.36 \text{ fm}^{-1}$ compared to Phys. Rev. C44, R1265 (1991) & Nucl. Phys. A555, 1 (1993)
- · Self-consistent treatment of Pauli principle
- Interaction between dressed particles weaker (reduced cross sections for both pn and nn)
- Pairing instabilities disappear in all channels
- Saturation with lower density than before and reasonable binding
- Contribution of long-range correlations excluded

Self-consistent Green's functions and the energy of the ground state of the electron gas



GW approximation

G self-consistent sp propagatorW screened Coulomb interaction

⇒ RPA with dressed sp propagators

Electron gas: -XC energies (Hartrees)

Method	$r_s = 1$	$r_s=2$	$r_s=4$	$r_s=5$	r _s =10	r _s =20	Reference
QMC	0.5180	0.2742	0.1464	0.1197	0.0644	0.0344	CA80
	0.5144	0.2729	0.1474	0.1199	0.0641	0.0344	OB94;OHB99
GW	0.5160	0.2727	0.1450	0.1185	0.0620	0.032	<i>GG</i> 01
		0.2741	0.1465			Green's f	HB98/21
RPA	0.5370	0.2909	0.1613	0.1340	0.0764	0.0543	

What about long-range correlations in nuclear matter?

- Collective excitations in nuclei very different from those in nuclear matter
- · Long-range correlations normally associated with small q
- Contribution to the energy like $dq q^2 \Rightarrow \text{very small (except for e-gas)}$
- Contributions of collective excitations to the binding energy of nuclear matter dominated by pion-exchange induced excitations?!?

Inclusion of Δ -isobars as "3N-" and "4N-force"

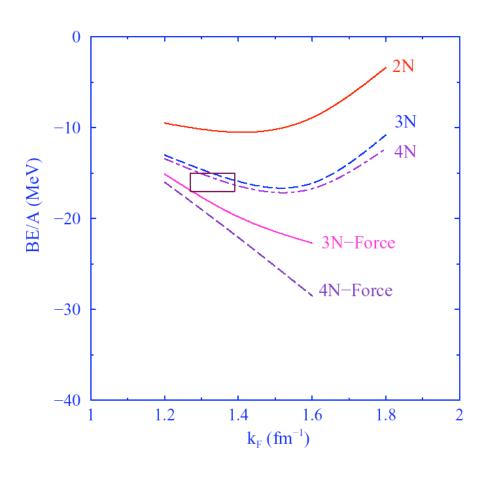
Nucl. Phys. **A389**, 492 (1982)

a)	b)	c)
d)	() (e)	

k _F [fm ⁻¹] 1.0 third order		1.2	1.4	1.6
a)	-0.303	-1.269	-3.019	-5.384
b)	-0.654	-1.506	-2.932	-5.038
c)	-0.047	-0.164	-0.484	-1.175
d)	0.033	0.095	0.220	0.447
e)	-0.104	-0.264	-0.589	-1.187
f)	0.041	0.137	0.385	0.962
Sum	-1.034	-2.971	-6.419	-11.375

Green's function V 23

Inclusion of Δ -isobars as 3N- and 4N-force



2N,3N, and 4N from B.D.Day, PRC24,1203(81)

Rings with Δ -isobars:

Nucl. Phys. A389, 492 (1982)

PPNPhys 12, 529 (1983)

 \Rightarrow No sensible convergence with Δ -isobars

Nuclear Saturation without π -collectivity

- Variational calculations treat LRC (on average) and SRC simultaneously (Parquet equivalence) so difficult to separate LRC and SRC
- Remove 3-body ring diagram from Catania hole-line expansion calculation ⇒ about the correct saturation density
- · Hole-line expansion doesn't treat Pauli principle very well
- Present results improve treatment of Pauli principle by selfconsistency of spectral functions => more reasonable saturation density and binding energy acceptable
- Neutron matter: pionic contributions must be included (Δ)

Pion collectivity: nuclei vs. nuclear matter

- Pion collectivity leads to pion condensation at higher density in nuclear matter (including Δ -isobars) => Migdal ...
- No such collectivity observed in nuclei ⇒ LAMPF / Osaka data
- Momentum conservation in nuclear matter dramatically favors amplification of π -exhange interaction at fixed q
- In nuclei the same interaction is sampled over all momenta Phys. Lett. B146, 1(1984)

$$V_{\pi}(q) = -\frac{f_{\pi}^{2}}{m_{\pi}^{2}} \frac{q^{2}}{m_{\pi}^{2} + q^{2}}$$

Needs further study

⇒ Exclude collective pionic contributions to nuclear matter binding energy

Two Nuclear Matter Problems

The usual one

- With π -collectivity and only nucleons
- Variational + CBF and three hole-line results presumed OK (for E/A) but not directly relevant for comparison with nuclei!
- NOT OK if Δ -isobars are included
- Relevant for neutron matter

The relevant one?!

- Without π -collectivity
- Treat only SRC
- But at a sophisticated level by using self-consistency
- Confirmation from Ghent results ⇒ Phys. Rev. Lett.
 90, 152501 (2003)
- 3N-forces difficult $\Rightarrow \pi$...
- Relativity?

Comments

Relativity

- Saturation depends on NNocoupling in medium but underlying correlated twopion exchange behaves differently in medium
- $m^* \rightarrow 0$ with increasing ρ opposite in liquid 3He appears unphysical
- Dirac sea under control?
- sp strength overestimated too many nucleons for k<k_F

Three-body forces

- Microscopic models yield only attraction in matter and more so with increasing ρ
- Microscopic background of phenomenological repulsion in 3Nforce (if it exists)?
- 4N-, etc. forces yield increasing attraction with ρ
- Needed in light nuclei and attractive!
- Mediated by π -exchange
- Argonne group can't get nuclear matter right with new 3N-force

Green's function V 28

Conclusions

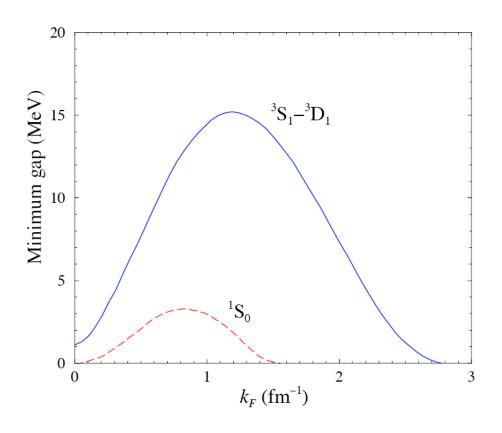
- Good understanding of role of short-range correlations
 - Depletion of Fermi sea: nuclear matter OK for nuclei
 - Confirmed by experiment
 - High-momentum components
 - # of protons experimentally confirmed
- Long-range correlations crucial for distribution of sp strength
- Energy per particle from self-consistent Green's functions
- Better understanding of nuclear matter saturation
 ⇒ SRC dominate (don't treat LRC from pions)
- We know what protons are up to in nuclei!!

Some pairing issues in infinite matter

- · Gap size in nuclear matter & neutron matter
- · Density & temperature range of superfluidity
- Resolution of ${}^3S_1 {}^3D_1$ puzzle (size of pn pairing gap)
- Influence of short-range correlations (SRC)
- Influence of polarization contributions
- Relation of infinite matter results & finite nuclei

Review: e.g. Dean & Hjorth-Jensen, RMP75, 607 (2003)

Puzzle related to gap size in ${}^3S_1 - {}^3D_1$ channel



Mean-field particles

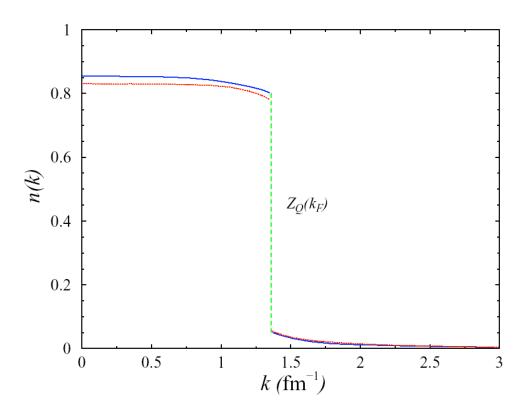
Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990) Vonderfecht et al. PLB253,1 (1991) Baldo et al. PLB283, 8 (1992)

Dressing nucleons is expected to reduce pairing strength as suggested by in-medium scattering

Results from Nuclear Matter (N=Z)

2nd generation (2000)



Momentum distribution: only minor changes when self-consistency is included

Occupation in nuclei: Depleted similarly!

Thesis Libby Roth Stoddard (2000)

Green's function and Γ -matrix approach (ladders)

Single-particle Green's function $G(k,t_1,t_2) = -i \langle T c_k(t_1) c_k^{\dagger}(t_2) \rangle$

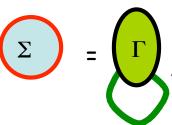
$$G(k,t_1,t_2) = -i \langle T c_k(t_1) c_k^+(t_2) \rangle$$

Dyson equation:

$$=$$
 $+$ Σ

$$G(k,\omega) = G^{(0)}(k,\omega) + G^{(0)}(k,\omega)\Sigma(k,\omega)G(k,\omega)$$

$$G(k,\omega) = \frac{1}{\omega - k^2/2m - \Sigma(k,\omega)}$$
 \Rightarrow $S(k,\omega) = -2\operatorname{Im}G(k,\omega)$



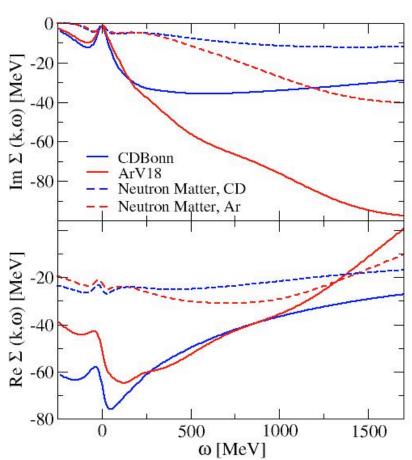
Self-energy
$$\Sigma$$
 = Γ , Γ -matrix Γ = +

- Pairing instability possible
- Finite temperature calculation can avoid this

Self-energy

$$G(k,\omega) = \frac{1}{\omega - k^2/2m - \Sigma(k,\omega)}$$

$$\Rightarrow$$
 $S(k,\omega) = -2 \operatorname{Im} G(k,\omega)$



Real and imaginary part of the retarded self-energy

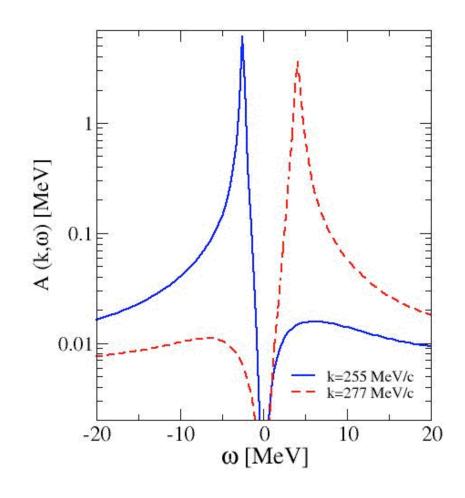
•
$$k_F = 1.35 \text{ fm}^{-1}$$

•
$$k = 1.14 \text{ fm}^{-1}$$

Note differences due to NN interaction

Spectral functions

- Strength above and below the Fermi energy as in BCS
- But broad distribution in energy
- BCS not just a cartoon of SCGF
 but both features must be
 considered in a consistent way
- CDBonn interaction at "T=0"



BCS: a reminder

NN correlations on top of Hartree-Fock:

$$\varepsilon_k$$
, c_k^+

Bogoliubov transformation

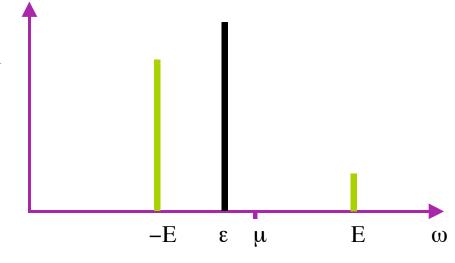
$$a_k^+ = u_k c_k^+ + v_k c_{\bar{k}}$$

with
$$u_k^2$$
 = $\frac{1}{2} \left[1 \pm \frac{\varepsilon_k - \mu}{\sqrt{(\varepsilon_k - \mu)^2 + \Delta(k)^2}} \right]$, $E(k) = \sqrt{(\varepsilon_k - \mu)^2 + \Delta(k)^2}$

Gap equation

$$\Delta(k) = \int k'^2 dk' < k, \bar{k} | V | k', \bar{k}' > \frac{\Delta(k')}{-2E(k)}$$

Spectral function $S(k,\omega)$



Green's function V 36

Solution of the gap equation

$$\Delta(k) = \sum_{k'} \langle k, \overline{k} | V | k', \overline{k'} \rangle \frac{\Delta(k')}{\omega - 2E(k)} \quad \text{with} \quad E(k) = \sqrt{(\varepsilon_k - \mu)^2 + \Delta(k)^2} \quad \text{and} \quad \omega = 0$$

Define:
$$\delta(k) = \frac{\Delta(k)}{\omega - 2E(k)}$$

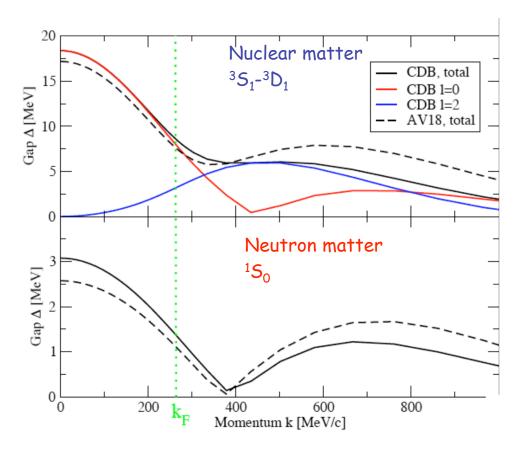
$$\begin{pmatrix} 2E(k) + \langle k | V | k \rangle, & \dots, & \langle k | V | k' \rangle \\ \vdots & & \ddots & \vdots \\ \langle k' | V | k \rangle, & \dots, & 2E(k') + \langle k' | V | k' \rangle \end{pmatrix} \begin{pmatrix} \delta(k) \\ \vdots \\ \delta(k') \end{pmatrix} = \omega \begin{pmatrix} \delta(k) \\ \vdots \\ \delta(k') \end{pmatrix}$$
 Eigenvalue problem for a pair of nucleons at $\omega = 0$

Steps of the calculation:

- $*Assume \Delta(k)$ and determine E(k)
- * Solve eigenvalue equation and evaluate new $\Delta(k)$
 - •If lowest eigenvalue ω <0 enhance $\Delta(k)$ (resp. $\delta(k)$)
 - •If lowest eigenvalue ω >0 reduce $\Delta(k)$

Green's function V 37

Gaps from BCS for realistic interactions



T = 0 Mean-field particles

- momentum dependence $\Delta(k)$
- different NN interactions
- very similar to pairing gaps in finite nuclei for like particles...!?
- for np pairing no strong empirical evidence...?!

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990) Vonderfecht et al. PLB253,1 (1991) Baldo et al. PLB283, 8 (1992)

Beyond BCS in the framework of SCGF

Generalized Green's functions: Extend $G(k,t_1,t_2) = -i \langle T c_k(t_1) c_k^{\dagger}(t_2) \rangle$

Anomalous propagators

$$G(k, t_1, t_2) = \begin{pmatrix} -i \left\langle Tcc^+ \right\rangle & -i \left\langle Tcc \right\rangle \\ i \left\langle Tc^+c^+ \right\rangle & i \left\langle Tc^+c \right\rangle \end{pmatrix} = \begin{pmatrix} G & F \\ F^+ & \overline{G} \end{pmatrix}$$

Generalized Dyson equation: Gorkov equations

$$\begin{pmatrix} \omega - t_k - \Sigma(k, \omega) & -\Delta(k, \omega) \\ -\Delta^+(k, \omega) & \omega + t_k + \Sigma(k, \omega) \end{pmatrix} \begin{pmatrix} G_{pair}(k, \omega) & F(k, \omega) \\ F^+(k, \omega) & \overline{G}_{pair}(k, \omega) \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Leads to e.g.

$$G_{pair} = G - G \Delta F$$

G includes all normal self-energy terms

Anomalous self-energy: Δ & generalized Gap equation

$$\Delta(k) = \int k'^2 dk' \left\langle k \middle| V \middle| k' \right\rangle \int d\omega \int d\omega' \frac{1 - f(\omega) - f(\omega')}{-\omega - \omega'} S(k', \omega) S_{pair}(k', \omega') \quad \Delta(k')$$

$$f(\omega) = \frac{1}{e^{\beta \omega} + 1}$$

Fermi function

If we replace $S(k,\omega)$ by "HF" approx. and $S_{pair}(k,\omega)$ by BCS:

⇒ Usual Gap equation

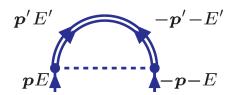
If we take $S_{pair}(k,\omega) = S(k,\omega)$:

 \Rightarrow Corresponds to the homogeneous solution of Γ -matrix eq.

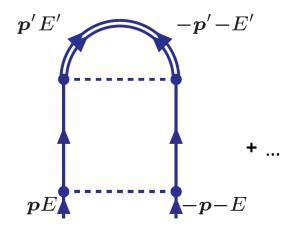
With $S_{pair}(k,\omega)$:

⇒ The above and self-consistency Green's function V 40

Consistency of Gap equation (anomalous self-energy) and Ladder diagrams



Iteration of Gorkov equations for anomalous propagator generates

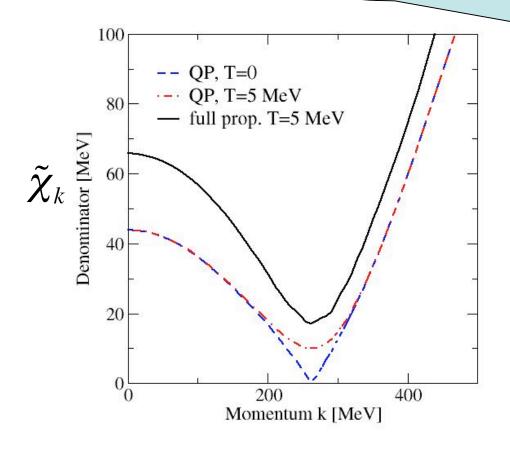


... and all other ladder diagrams at total momentum and energy zero (w.r.t. 2μ) plus anomalous self-energy terms in normal part of propagator

So truly consistent with inclusion of ladder diagrams at other total momenta and energies

Features of generalized gap equation

$$\Delta(k) = \int k'^2 dk' \left\langle k \middle| V \middle| k' \right\rangle \int d\omega \int d\omega' \frac{1 - f(\omega) - f(\omega')}{-\omega - \omega'} S(k', \omega) S_{pair}(k', \omega') \qquad \Delta(k')$$



 $-rac{1}{2 ilde{oldsymbol{\chi}}_{k'}}$

Dashed:

Spectral strength only at 1 energy

Dashed-dot:

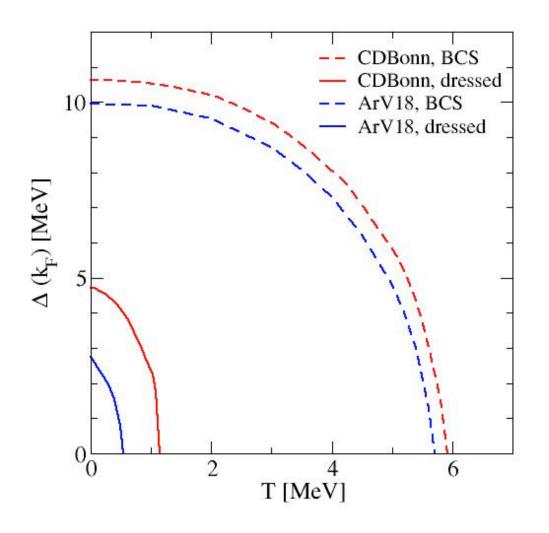
Effect of temperature (5 MeV)

Solid:

Includes complete strength distribution due to SRC

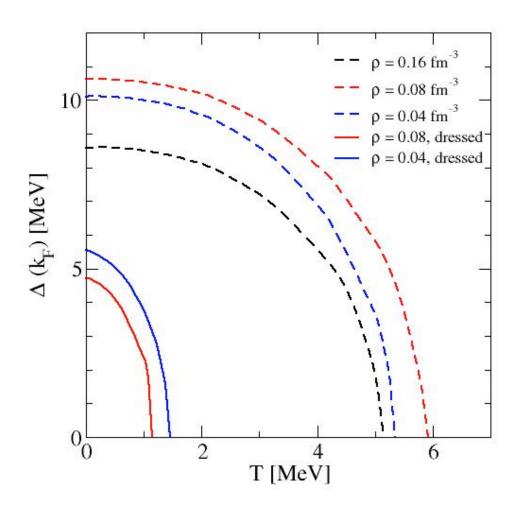
Related studies by Baldo, Lombardo, Schuck et al. use BHF self-energy

Green's function V 42



CDBonn yields stronger pairing than ArV18

Proton-neutron pairing in symmetric nuclear matter



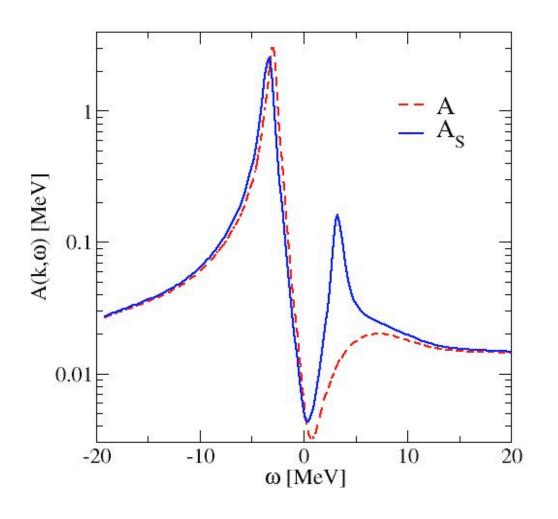
Using CDBonn

Dashed lines: quasiparticle poles

Solid lines: dressed nucleons

No pairing at saturation density!

Pairing and spectral functions



Spectral functions

 $S(k,\omega)$ dashed = $A(k,\omega)$

 $S_{pair}(k,\omega)$ solid = $A_{S}(k,\omega)$

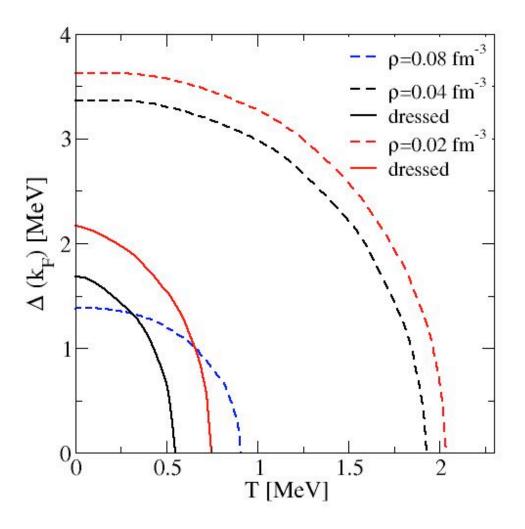
 ρ = 0.08 fm⁻³

T = 0.5 MeV

 $k = 193 \text{ MeV/c} \quad 0.9 k_F$

Expected effect

Pairing in neutron matter



Dressing effects weaker, but non-negligible CDBonn

Comparison for neutron matter with CBF & Monte Carlo PRL95,192501(2005)

