Lecture at 2007 CNS Summer School

Di-neutron correlation and collective excitation in neutron-rich nuclei

M. Matsuo (Niigata University)

Outline

1. Introduction: What is the di-neutron correlation

2. Origin of the di-neutron correlation: dilute neutron matter

Strong coupling pairing and relation to Bose-Einstein condensation

3. di-neutron correlation in medium and heavy mass n-rich nuclei

Density functional theory and Hartree-Fock-Bogoliubov method

4. Exotic modes of excitation and surface di-neutron mode

Linear response in the density functional theory and continuum QRPA method

New region of nuclear physics

RIBF website

1. Introduction

What is the di-neutron correlation?

Exotic features in n-rich nuclei Weakly bound many e_{sp} , neutrons protons U_n **Neutron skin** Up density **Dilute(unsaturated) matter** neutrons **r**_n $r_n/r_0 = 1/2 - 10^{-2}(?)$ ¹¹Li density distribution $\mathbf{r}_{n}/\mathbf{r}_{p} >> N/Z$ Nucleon density thikness < 1-2fm(?) ' **r**p 2a - wave H-F $\mathbf{r}_{\rm n}/\mathbf{r}_{\rm 0} < 10^{-2}(?)$ ¹¹Li Long tail **Neutron halo** Tanihata et al. 10-5-10 Ó PLB287 (1992)

Exotic features in n-rich nuclei (2)

Exotic features in n-rich nuclei (3) Di-neutron correlation

Many predictions since ~late 1980' for 2n-halo nuclei ¹¹Li and ⁶He

Coulomb breakup and soft dipole excitation

2n halo nuclei, eg. 11Li

New Coulomb break-up exp. on 11Li at RIKEN Nakamura et al. PRL30,252502 (2006)

Suggesting a spatial di-neutron correlation

Condensation of di-neutrons ? Possible new feature of the pair correlation

Di-neutrons = spatially compact pairs = boson like objects in nuclei

Several weakly bound neutrons in medium mass n-rich nuclei

Many-body correlation like boson condensation ??? (BEC like)

 $D << e_F$ much smaller than Fermi energy ~40MeV

Weak coupling pairing => hard to expect the di-neutron correlation

2. Origin of the di-neutron correlation

Strong coupling pairing and Bose-Einstein condensation

Dilute neutron matter

Pairing correlation in uniform matter

Electrons in metal

Neutrons in a neutron star Etc.

Density

$$\boldsymbol{r} = 2\int_{0}^{k_{F}} d\vec{k} = \frac{k_{F}^{3}}{3\boldsymbol{p}^{2}}$$

Pairing correlation in uniform matter

Bardeen-Cooper-Schrieffer 1957 Theory of superconducting metal

 $e_F - D < e_k < e_F + D$

Weak coupling pairing

Small pairing gap $D < < e_F$, small binding energy of the correlated pair

a narrow interval energy interval $e_F - D < e_k < e_F + D$ S.p. states in a momentum interval kF-dk < k < kF + dk

$$\Delta = \frac{de_k}{dk} \boldsymbol{d}k = \frac{\hbar^2 k_F}{m} \boldsymbol{d}k$$

Size of Cooper pair (coherence length)

$$\boldsymbol{x} \approx \frac{1}{\boldsymbol{d}k} = \frac{\hbar^2 k_F}{m\Delta}$$

Cf. average interparticle distance $d = r^{-1/3} \approx 3k_F$

Pair size / interparticle distance

$$\frac{\boldsymbol{x}}{d} \approx \frac{\hbar^2 k_F^2}{2m} \approx \frac{\boldsymbol{e}_F}{\Delta} >> 1$$

Pair size is much larger than the average interparticle distance

Strong coupling pairing & Bose-Einstein condensation

If the interaction is sufficiently strong, then the Fermion pairs form tightly bound states

Size of pairs
$$x = \frac{\hbar}{\sqrt{2mE_{bind}}}$$

E_{bind}= binding energy of a pair

Pair size / interparticle distance

$$\frac{\mathbf{X}}{d} \approx \sqrt{\frac{e_F}{E_{bind}}} < 1 \quad \text{For } \mathbf{E}_{bind} > \mathbf{e}_{F}$$

If the pair size \mathbf{x} is smaller than interparticle distance d, the pairs are almost like "boson"s.

The g.s. is a Bose-Einstein condensation of "bosons"

BCS-BEC crossover

Leggett 1980, Nozieres & Schmitt-Rink 1985

Observed in ultra cold Fermionic atom gas in a trap

Regal et at. PRL 92(2004)040403

Demonstration of BCS-BEC crossover

A solvable BCS-BEC crossover model Engelbrecht 1997, Marini et al 1998

Fermions in uniform matter

An attractive contact interaction v(r-r')=-V₀ d(r-r')

 V_0 is related to the scattering length **a** of NN interaction

Dimensionless parameter 1/k_Fa

The force strength V_0 is varied

From weak coupling to strong coupling

Variation of the pair structure

Occupation probability

Pair wave function

Occupation probability

Pair wave function

Signatures of BCS-BEC crossover

	Weak BCS	crossover region	BEC
D/e _F	< 0.2	0.2 ~ 1.3	> 1.3
x/d	> 1.1	1.1 ~ 0.2	< 0.2
1/k _F a	<-1	-1 ~ 1	> 1

Pair gap vs Fermi energy

r.m.s. radius vs av. inter-particle distance

Variational BCS theory for the pair correlatedFermi systemBardeen, Cooper, Schrieffer 1957 ~

pair correlated variational state

$$\Psi \rangle = \prod_{k} \left(u_{k} + v_{k} c_{k\uparrow}^{+} c_{-k\downarrow}^{+} \right) \left| 0 \rangle$$

Time reversal orbits \mathbf{k} and $-\mathbf{k}$ are pairwise occupied with amplitudes $\mathbf{v}_{\mathbf{k}}$ (& unoccupied amplitudes $\mathbf{u}_{\mathbf{k}}$)

Variational BCS theory for the pair correlated Fermi system

Energy variation and minimum

$$\mathbf{0} = \mathbf{d} \langle H \rangle = \mathbf{d} \langle h \rangle \qquad \langle H \rangle = \sum_{i} (e_{i} - \mathbf{I}) \langle c_{i}^{+} c_{i} \rangle + \frac{1}{4} \sum_{ij} \langle i\bar{i} | v | j\bar{j} \rangle \langle c_{i}^{+} c_{\bar{i}}^{+} \rangle \langle c_{\bar{j}} c_{j} \rangle$$

Generalized mean-field Hamiltonian

$$h = \sum_{i} (e_{i} - \mathbf{I})c_{i}^{\dagger}c_{i} + \frac{1}{2}\sum_{i} \left\langle i\bar{i}\left|v\right|j\bar{j}\right\rangle \left(\left\langle c_{i}^{\dagger}c_{\bar{i}}^{\dagger}\right\rangle c_{j}c_{\bar{j}} + c_{i}^{\dagger}c_{\bar{i}}^{\dagger}\left\langle c_{j}c_{\bar{j}}\right\rangle\right)$$
$$= \sum_{i} (e_{i} - \mathbf{I})c_{i}^{\dagger}c_{i} + \frac{1}{2}\sum_{i} \Delta_{i}^{*}c_{i}c_{\bar{i}} + \Delta_{i}c_{i}^{\dagger}c_{\bar{i}}^{\dagger}$$

Pair potential & pair gap

Equivalent to solve single-particle states for h

$$\Delta_{i} = \frac{\partial \langle H \rangle_{pair}}{\partial \langle c_{i}^{+} c_{\bar{i}}^{+} \rangle}$$

$$\begin{pmatrix} e_i - \mathbf{I} & \Delta_i \\ \Delta_i & -(e_i - \mathbf{I}) \end{pmatrix} \begin{pmatrix} u_i \\ v_i \end{pmatrix} = E_i \begin{pmatrix} u_i \\ v_i \end{pmatrix}$$

Bogoliubov equation

Density $\langle c_i^+ c_i \rangle = v_i^2$ Pair density $\langle c_i c_{\bar{i}} \rangle = u_i v_i$ Pair wave fn $\Psi_{pair}(r_{12}) = \sum_k e^{ikr_{12}} u_k v_k$

Dilute neutron matter

Cf. inner crust of neutron star

Pairing property in dilute nucleon matter

1. **n-n** interaction in ¹*S* channel

Strong attraction at low k: scat. length *a*=-18.5 fm (exp) Less attractive with increasing $k > l^{-1} \sim 0.5$ fm

Bare force G3RS with core (Tamagaki 1968) Gogny force (finite range effective int.)

2. Solve the variational BCS eq.

Pairing gap

$$\Delta(k) = \sum_{p} V(\vec{k} - \vec{p}) \frac{\Delta(p)}{\sqrt{(e_p - m)^2 + \Delta(p)^2}}$$
Cooper pair wave function

$$\Psi_{pair}(r_{12}) = \sum_{k} e^{ikr_{12}} u_k v_k$$
r.m.s radius of Cooper pair)

$$\mathbf{x}_{rms} = \int_{r < r_d} |\Psi_{pair}(\vec{r})|^2 r^2 d\vec{r}$$

NB. The results at the BCS level is well established

But large ambiguity in the higher order effects: polarization, induced interaction etc..)

For a review, see Dean, Hjorth-Jensen, Rev. Mod. Phys. 75 (2003), Lombardo and Schulze, Lecture Notes in Physics 578

Pairing gap in dilute nucleon matter

Maximum pairing gap at around

Neutron Cooper pair wave function

Size of Cooper pair

Strong di-neutron correlation at these densities

Di-neutron correlation is an BCS-BEC crossover phenomenon

Stronger interaction at low density

Dilute symmetric matter is more complex: deuteron (pn pair) & alpha condensations

BEC's at low density

 $r/r_0 < 10^{-1}$

Alpha condensation (pnpn-quartetting)

Correlations at dilute matter

asymmetric matter

3. Di-neutron correlation in medium & heavy mass n-rich nuclei

Selfconsistent mean-field methods: A promising theoretical framework

Hartree-Fock theory Hartree-Fock-Bogoliubov theory Density functional theory

> As a review, Bender,Heenen, Reinhard, RMP75 (2003)

Skyrme functional and pairing energy functional

The Skyrme functional Pair correlation energy functional $E = E_{Skyrme}[\mathbf{r}, \vec{\nabla}\mathbf{r}, \Delta\mathbf{r}, \mathbf{t}, \mathbf{j}, \mathbf{s}, \mathbf{J}] + E_{mair}[\mathbf{r}, \mathbf{\tilde{r}}_{+}, \mathbf{\tilde{r}}_{-}]$ **Density and derivatives** Pair density Kinetic energy density **Current density** Spin density Parameter sets Spin orbit tensor SIII $E_{Skyrme} = \int d\boldsymbol{r} \mathcal{H}(\boldsymbol{r})$ SkM* SLy4, etc $\mathcal{H}(\boldsymbol{r}) = \frac{\hbar^2}{2m} \tau(\boldsymbol{r}) + B_1 \rho^2(\boldsymbol{r}) + B_2 \sum_q \rho_q^2(\boldsymbol{r})$ + $B_3[\rho(\mathbf{r})\tau(\mathbf{r}) - \mathbf{j}^2(\mathbf{r})] + B_4 \sum_q [\rho_q(\mathbf{r})\tau_q(\mathbf{r}) - \mathbf{j_q}^2(\mathbf{r})]$ As a review, Bender, Heenen, + $B_5\rho(\boldsymbol{r})\Delta\rho(\boldsymbol{r}) + B_6\sum_a \rho_q(\boldsymbol{r})\Delta\rho_q(\boldsymbol{r})$ Reinhard, RMP75 (2003) + $B_7 \rho^{\alpha+2}(\boldsymbol{r}) + B_8 \rho^{\alpha}(\boldsymbol{r}) \sum_{\alpha} \rho_q^2(\boldsymbol{r})$ + $B_9\{(\rho(\boldsymbol{r})\nabla\cdot\boldsymbol{J}(\boldsymbol{r}) + \boldsymbol{j}(\boldsymbol{r})\cdot\nabla\times\boldsymbol{\rho}(\boldsymbol{r})) + \sum_{q}(\rho_q(\boldsymbol{r})\nabla\cdot\boldsymbol{J}_q(\boldsymbol{r}) + \boldsymbol{j}_q(\boldsymbol{r})\cdot\nabla\times\boldsymbol{\rho}_q(\boldsymbol{r}))\}$ + $B_{10}\rho^{2}(\mathbf{r}) + B_{11}\sum_{q}\rho_{q}^{2}(\mathbf{r}) + B_{12}\rho^{\alpha}(\mathbf{r})\rho^{2}(\mathbf{r}) + B_{13}\rho^{\alpha}(\mathbf{r})\sum_{q}\rho_{q}^{2}(\mathbf{r})$

Pair density functional, less known

An example: ⁶²Cr

Neutron density

Neutron pair density

Pairs in ⁸⁴Ni 6 weakly bound neutrons above N=50

Di-neutron correlation and high-L orbits

The coherent superposition of high-L oribts *l*=3-8 in the continuum forms the di-neutron correlation

Di-neutron correlation in medium-mass n-rich nuclei

HFB calculation using a finite range effective force (Gogny)

FIG. 7. (Color online) W(R, r) for ¹²⁰Sn.

Pillet, Sandulescu, Schuck, PRC76, 024310 (2007)

4. Exotic modes of excitation and surface di-neutron mode

Experimental facts: low-energy E1 strength

Light halo nuclei ¹¹Li

Nakamura et al. PRL 2006

Very large B(E1) strength at lowenergy, just above threshold E_{th} =0.3 MeV

Heavy mass n-rich nuclei

Leistenschneider et al. PRL 2001

Adrich et al. PRL 2006

Experimental facts: Low-energy E1 strength

Exotic modes of excitation ?

Microscopic theory to describe exotic modes of excitations in n-rich nuclei

"Microscopic" means that the model incorporates all the three aspects.

- 1. Collective vibrations
- 2. Weakly bound orbits and particle emission (unbound continuum states)
- 3. Pair correlation/ di-neutron correlation

The Quasiparticle Random Phase Approximation (QRPA) based on the density functional theory / selfconsistent mean-field method

As a review, Paar, Vretenar, Khan, Colo, Rep. Prog. Phys. 2007

Time-dependent density functional theory (TDHFB)

Small amplitude limit of TDHFB Quasiparticle Random Phase Approximation (QRPA)

Continuum QRPA

M. Matsuo, Nucl. Phys. A696, 371 (2001) also E. Khan et al. Phys. Rev. C66, 024309 (2002)

Nuclei near the neutron drip-line

Particle escaping in the continuum

Correlation among the continuum and weakly bound orbits

1. Use exact single-particle Green function G(r,r',E) with proper rasymptotics andout-going wave boundary conditionBelyaev's construction 1987

 $G(r, r', E) = \sum_{st=1,2} c^{st} \boldsymbol{j}^{out,s}(r_{>}, E) \boldsymbol{j}^{reg,t}(r_{<}, E)$ Regular and outgoing waves

2. Summing up continuum states using a contour integral in the complex E-plane

$$R_0(\vec{r},\vec{r}',\mathbf{w}) = \frac{1}{2\mathbf{p}i} \int_C dEG(r,r',E)G(r',r,E+\mathbf{w}) + b.w.$$

Physical quantities obtained in QRPA

Linear response equation

$$\begin{pmatrix} d\mathbf{r}(r) \\ d\mathbf{\tilde{r}}(r) \\ d\mathbf{\tilde{r}}^{*}(r) \end{pmatrix} = \int dr' \left(R^{\mathbf{ab}}_{0}(r, r', \mathbf{w}) \right) \begin{pmatrix} d\Gamma(r') + V_{ext}(r') \\ d\Delta(r') \\ d\Delta^{*}(r') \end{pmatrix}$$

Response function (ph, pp, hh) $R_0(\vec{r}, \vec{r}', \mathbf{w}) = \int_C dEG(r, r', E)G(r', r, E + \mathbf{w})$ Solve the linear response equation at each excitation energy ω

$$dr(r, w), d\tilde{r}(r, w), d\tilde{r}^*(r, w)$$

E1 Strength function as a function of w

Transition density at a given w Profiles of density oscillation

particle-hole transition density $\mathbf{ph}(\mathbf{r}) = \langle i | \Sigma_{\sigma} \psi^{\dagger}(r\sigma) \psi(r\sigma) | 0 \rangle$

particle-pair transition density

$$\mathbf{P}^{\mathbf{p}\mathbf{p}}(\mathbf{r}) = \langle i | \psi^{\dagger}(r \downarrow) \psi^{\dagger}(r \uparrow) | 0 \rangle$$

hole-pair transition density

 $\mathbf{P^{hh}(r)} = \langle i | \psi(r \uparrow) \psi(r \downarrow) | 0 \rangle$

Multipole responses in ⁸⁴Ni

Skyrme-HFB + Continuum QRPA calc. with SLy4 (Landau-Migdal approx) & mix-type DDDI

Soft dipole as Surface di-neutron mode

low-lying 2⁺ : surface vibration

Octupole: surface vibration + surface dineutron mode

