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Proton elastic scattering at intermediate energies is reviewed. After the
introduction of the global potential in Dirac phenomenology, relations be-
tween Schrödinger potentials and Dirac potentials are explained. Microscopic
treatments are compared and modified to explain the scattering precisely in
the case of 58Ni. By applying the microscopic treatment neutron density
distribution is extracted for the case of 120Sn. Recoiled particle spectrometer
is poropsed to measure elastic scattering and to deduce the density distribu-
tions of unstable nuclei.

1 Introduction

When we bombard a nucleus with a nucleon or with light ions like deuterons,
helium-3, alpha particles, etc., various nuclear phenomena occur, including
elastic scattering, inelastic scattering, nucleon transfer reactions and projec-
tile fragmentation, depending on the projectile species and the bombarding
energy. The simplest among these phenomena — and at the same time the
phenomenon with the smallest amount of internal freedom — is the elastic
scattering of a nucleon by a nucleus which we treat in this lecture.

In elastic scattering the target nucleus is not excited. Thus its initial and
final states are the same. Furthermore, the initial states in such experiments
are the target ground states, the charge distributions of which can be mea-
sured precisely by electron scattering. The wave function of the proton part
of the target ground state is restricted and almost defined by the experiment.
Thus elastic scattering is a good type of reaction to use as a probe of the
interactions and the dynamics which occur inside the nucleus. It is quite
understandable that the first successful attempt to explain nuclear reactions
microscopically began with elastic scattering.

1.1 Microscopic optical potential

When a nucleon enters into the nucleus, the nucleon seems to feel a mean
field, because the phenomenological optical potential discussed in the previ-
ous section explains the scattering very precisely. In this section we briefly
review the microscopic optical potential for energies below 100 MeV. When
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we use the word Microscopic, it means to explain the nucleon-nucleus elastic
scattering from only the superposition of the nucleon-nucleon interaction. If
we superimpose the bare nucleon-nucleon interaction, it overestimates the
depth of the resultant potentials. If we estimate the imaginary potential
from the mean free path derived from the free nucleon-nucleon cross section,
we obtain an absorptive potential which is too deep. We need to consider
the effects of Pauli-blocking inside the nucleus and also various correlation
effects. Because of such effects, the nucleon-nucleon interaction inside the
nucleus differs from that in the free space.

The nuclear matter theory developed at the end of 1950’s[17] gives us a
guideline to construct an effective nucleon-nucleon interaction, namely the
G-matrix theory, taking into account the Pauli-blocking effect and the cor-
relation effect in an approximate way. The G-matrix is then folded[25] with
the density distributions of protons and neutrons in the nuclear ground state
to give a microscopic optical potential. Proton density distributions are esti-
mated from charge distributions, but neutron density distributions are only
inferred from model calculations, such as Hartree-Fock calculations with the
simplified interactions or from various assumptions.

There exist some problems involved in using the microscopic optical po-
tential. In particular, there are problems with the imaginary part of the mean
field, which do not appear in the binding energy case. If the incident energy
of the nucleon is so high that quasi-free scattering is the main source of the
imaginary part, the above formula for the mean field will be a good approx-
imation. However, if the incident energy of the projectile is sufficiently low
and the collective excitations or the process of the compound nucleus forma-
tion occupy the larger part of the reaction, the approximation given above
becomes less accurate. Thus for comparison of the microscopic theory with
experimental data, calculations employing a renormalized imaginary part are
often used.

Experimental data for En =21.3 MeV[23] along with the microscopic
calculation[20], [21]. For the solid curves in Fig. 4, both the depths of the
real and imaginary parts of the optical potential are renormalized. However,
at higher energy, for example at Ep = 65 MeV they are not renormalized[21].

These nonrelativistic treatments have been applyed to the scattering be-
low 100 MeV of proton energy. In order to explain the real scattering, these
microscopic optical potential have to be renormalized. Especially the imag-
inary part of the microscopic optical potential have to be multiplied by the
normalization factor, since these microscopic approaches do not take into ac-
count the collective excitation, which important at the low incident energy.
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1.2 Scattering at intermediate energies

At intermediate energies nuclear reaction mechanism becomes simpler,
since the velocity of the projectile is much faster than the fermi motion of
the bound nucleons. The main part of the reaction cross section is governed
by the quasi-free scattering. Thus we expect to treat even the imaginary part
of the optical potential by microscopic theories. If we can treat the scattering
microscopically, we can deduce the wave fuction or density distribution of the
target ground state.

Elastic scattering of protons has been successfully employed as a probe to
discern various microscopic approaches to nuclear interactions. The ground
state wave function of the target nucleus used for elastic scattering is re-
stricted by the charge distribution measured by electron scattering. Thus
ambiguities due to the nuclear structure are relatively small for the elastic
scattering. Moreover, the mean free path of intermediate energy protons in
nuclear matter is large enough to penetrate into the nucleus, thus providing
some sensitivity to the nuclear interior. Therefore, a considerable number of
works have been devoted to proton elastic scattering to determine interac-
tions and nuclear structures even in the nuclear interior.

For unstable nuclei we could apply the nuclear interactions confirmed in
the scattering of stable nuclei to deduce the nuclear densities.

In early years these researches have based on nonrelativistic approaches.
However since 1980s, the relativistic approaches based on Dirac equations
have been applied to the elastic scattering of intermediate energy protons,
and have successfully explained the scattering, especially polarization observ-
ables. For example, analysis on the elastic scattering of 180MeV polarized
protons by 40Ca[1] has shown that the combination of strong attractive scalar
and strong repulsive vector potentials in the Dirac equation has led to a mod-
erate but unusual “wine-bottle” shape of Schrödinger potential, which had
been used in some earlier analysis. The Dirac equation have been employed
but the potentials used in the analysis have been phenomenological Woods-
Saxon type functions. Clark et al. have extended the Dirac phenomenology
and finally released the “Global potentials”[2], which have been able to ex-
plain elastic proton scattering off spin zero nuclei from 20MeV to 1040MeV
for 12C to 208Pb targets.

In order to relate the scattering to the ground state wave function, we
need to have a more fundamental and microscopic approach to the scattering.
McNeil, Shepard and Wallace[3] who also have found a dramatic improve-
ments for spin dependent observables for 16O and 40Ca at 500MeV by using
the Dirac equation. They have applied impulse approximation to the Dirac
approach, and determined directly from nucleon–nucleon (NN ) phase shifts.
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Following the success of this relativistic impulse approximation (RIA), Mur-
dock and Horowitz[4, 5] have calculated the elastic scattering off 16O, 40Ca
and 208Pb between 200 and 400MeV using the RIA and obtained qualitative
agreement with experimental data, especially polarization observables.
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2 Relativistic impulse approximation

In the intermediate energy region the impulse approximation is thought
to describe the elastic and quasi-elastic scattering of protons qualitatively,
because here the velocity of the projectile is much larger than the velocity of
Fermi motion of the nucleon in the nucleus. The word of relativistic means
the application of impulse approximation to the Dirac approach. Namely,
in the relativistic impulse approximation (RIA), the mean field is obtained
directly by folding the nucleon-nucleon interaction in the relativistic formal-
ism with the density distribution. Thus the RIA seems to relate the coupling
constants and the masses of the exchanged mesons directly to nuclear re-
actions. By using the RIA formalism, we can now investigate the medium
effects of the nucleon-nucleon interaction inside the nucleus. Our analysis is
essentially based on the relativistic impulse approximation (RIA) of Murdock
and Horowitz (MH model)[4] because of its simpleness. Anyway in order to
describe the scattering we need to modify the interaction in a reasonable way.
In the MH model, an NN scattering amplitude of the relativistic Love-Franey
model of the form

F = F S + F V γµ
(0)γ(1)µ − F PV

/qγ5
(0)

2M

/qγ5
(1)

2M
+F T σµν

(0)σ(1)µν + F Aγ5
(0)γ

µ
(0)γ

5
(1)γ(1)µ, (1)

is used. Here the subscripts (0) and (1) refer to the projectile and target
nucleons, respectively. The superscripts S, V, PV, T , and A designate scalar,
vector, pseudo-vector, tensor and axial-vector parts of the NN amplitude.
Note that the pseudo-scalar piece F PSγ5

(0)γ
5
(1) is replaced by the pseudo-

vector one in (1). They are equivalent for free NN scattering, but may be
different in a nucleus. Indeed pseudo-vector coupling is desirable to give
meaningful agreements at lower energies[4, 5].

Each of F L(L = S, V, PV, T or A) may be written in the MH model as

F L(q, Ec) = i
M2

2Eckc

[

F L
D(q) + F L

X(Q)
]

, (2)

F L
D(q) =

∑

j

δL,L(j) {~τ0 · ~τ1}
Ij f j(q), (3)

F L
X(Q) = (−1)T

∑

i

BL(j),L {~τ0 · ~τ1}
Ij f j(Q), (4)

f j(q) =
g2

j

q2 + m2
k

(

Λ2
j

Λ2
j + q2

)2

−
ḡ2

j

q2 + m̄2
k

(

Λ̄2
j

Λ̄2
j + q2

)2

, (5)

where D and X indicate the direct and exchange terms. , q and Q are
direct and exchange three-momentum transfers. Ij and L(j) denotes the
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j-th meson’s isospin and Lorentz type of coupling to nucleon. BL(j),L is
the (L(j), L) component of the Fierz transformation matrix. The coupling
constant, mass and cut-off parameter for the j-th meson denoted by gj, mj

and Λj are fitted to the free NN amplitudes at several different laboratory
energies. The full set of parameters can be found in Ref. [4, 5]. These NN
amplitudes are folded with scalar ,vector and tensor densities to give Dirac
mean fields.

In general a tensor potential UT has to be included even for a spin zero
nucleus, however, it is found to be small and neglected in this model. Thus
the Dirac equation for the projectile is written as

{

−i~α · ~∇ + UV (r; E) + β
[

M + US(r; E)
]}

U0(r) = E U0(r). (6)

Here U0 is the incident projectile wave function, E is the total energy in
nucleon–nucleus cm coordinate system, and M is the mass of the proton,
~α, β are Dirac matrices. Coulomb potential should be included into UV . The
scattering observables, cross sections, analyzing powers and spin rotation
parameters, are obtained by solving the Dirac equation.

3 Comparison with various microscopic mod-

els

First we compare our experimental data with the RIA calculations of
Murdock and Horowitz [32] (MH). The solid curves in Fig. 1, 2 represent the
RIA calculations with the Pauli-blocking effect correction used in the method
of MH .

The density distributions (vector and scalar densities for protons and
neutrons) used for the 58Ni target nuclei were calculated using the relativistic
Hartree (RH) approximation of Horowitz and Serot. These are shown in Fig.
3.

Although the solid curves in Fig. 1, 2 reproduce the analyzing power pre-
cisely, the angular distributions of the cross section are poorly reproduced,
especially at backward angles (larger than 30◦), where the momentum trans-
fer is more than 2 fm−1. Since cross sections at forward angles, where the
Rutherford scattering is the dominant mechanism, are reproduced quite well
by the calculation, the ambiguity in the absolute value of the experimental
cross section is small. This tendency is the same for all three energies. The
dashed curves in the figure represent the calculation employing the RIA IA2
by Tjon and Wallace. The density distribution was calculated with the RH
approximation using the parameter TM2 of Toki et al., which is capable of
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Figure 1: The experimental data of cross sections and analyzing powers of
proton elastic scattering from 58Ni at 200, 300 and 400MeV indicated by solid
circles are compared to original (unmodified) impulse approximation models.
The solid lines and dashed lines indicate the relativistic impulse approxima-
tions of Horowitz et al. and Wallace et al., respectively. The dotted lines
represent the nonrelativistic microscopic optical potential calculations using
the G-matrix of von Geramb. None of these models satisfactorily explain the
experimental data, especially angular distributions of cross sections.
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Figure 2: Same as Fig. 1, but for spin rotation parameters.
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Figure 3: Various densities used in the RIA calculations. (a) Point pro-
ton densities are shown. The solid curve is a density distribution deduced
from the charge distribution measured by electron scattering. The dashed
curve represents the proton density determined by the relativistic Hartree
calculation of Horowitz and Serot. The dotted curve represents a relativis-
tic Hartree calculation performed by Kaki with different parameters and the
nonlinear meson field of Toki. (b) Relative shapes for the point proton and
the point neutron distribution are compared. The solid curve is the calculated
point proton distribution multiplied by 30/28, which is equal to the neutron
distribution, assuming the proton and neutron distributions are the same.
The dotted curve is the neutron distribution calculated using the relativis-
tic Hartree code. (c) The baryon density for protons and the scalar density
for protons are compared for the 58Ni nucleus. (d) The baryon densities for
protons and neutrons are compared for the 58Ni nucleus.9



reproducing even the density distribution of unstable nuclei[?]. The TM2 pa-
rameter gives almost the same baryon density as the calculation of Horowitz
and Serot as indicated by the dotted curve in Fig. 3a. The IA2 calculation
reproduces the experimental results at 400 MeV quite well, except at back-
ward angles. At 192 MeV and 295 MeV it overestimates the cross section,
as shown in Fig. 1, 2. The predicted analyzing powers deviate from those
observed experimentally at 192 MeV. The IA2 model seems to predict the
cross sections better than the approach of MH at all three energies. However
with regard to the analyzing power the IA2 prediction is worse than that of
MH. The dotted curves in Fig. 1, 2 represent the calculation of the scattering
using a non-relativistic Schröedinger type optical potential. We have calcu-
lated the non-relativistic Schrödinger optical potential using the G-matrix of

von Geramb[37], following the procedure of Rikus and von Geramb[?]. The
density distribution used was obtained by unfolding the free proton charge

form factor from the charge distribution of the sum of Gaussian type[?] de-
duced from electron scattering experiments. At 192 MeV the non-relativistic
optical potential explains the experiments fairly well, providing a description
nearly equivalent to that provided by the RIA approaches. It also overesti-
mates the cross section at backward angles. For Ay the prediction deviates
from the experiments even at 192 MeV. In general, as the incident energy
increases, the deviation between the prediction given by the method of von
Geramb and the experimental values increases. In particular, this deviation
is large in analyzing powers at 400 MeV. In summary, none of the three mod-
els listed above can satisfactorily explain the experimental data. This is true
in particular with regard to differential cross section data. Among the three
models, only that of MH explains the analyzing power precisely.

Since cross sections at forward angles, where the Rutherford scattering
is the dominant mechanism, are reproduced quite well, the ambiguity in the
absolute value of the cross section is small.

4 Tuning the medium effect parameters in

nuclei

In order to explain the scattering we need to modify the NN scatteing
amplitudes by especially in the nuclear interiaor. For the calibration of the
effective nucleon-nucleon interaction we use the scattering from the nucleus,
whose density distribution is well known.
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Fig.4 58Ni(p,p) at Ep=300 MeV and the RIA calculations. Broken curves
are RIA with the medium effect and the solid curves are original calculation
by the code of Horowitz[ref.2]

We used elastic scattering from 58Ni to tune the interaction, since 58Ni is the
heaviest stable nucleus with N ≈ Z and the density distribution of neutrons in
58Ni is well assumed to be the same as the one for protons. The relativistic
Hartree (RH) calculation predicts the same shape for proton and neutron
density distributions. In the density matrix expansion for the nonrelativistic
Hartre Fock calculation the difference of the root mean square radii of neutron
and proton distributions is calculated to be 0.00fm. Thus our assumption is
thought to be reasonable. In the RIA calculation we need scalar densities
both for protons and neutrons, which are assumed to be 0.96 times of usual
densties (vector densities). In the RH calculation for the medium and heavy
nuclei the ratio of scalar to vector densities is well approximated to be 0.96.

The result of the RIA calculation is compared with our experimental data
[ref.1] in Fig.3. Solid curves are the original Horowitz type calculations, which
deviate from the experimental cross section data. In order to explain the
experiment we have found that we have to modify the scattering amplitudes
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of ’Relativistic Love-Franey Interaction’[ref. 2] inside the nucleus as follows;

g2
j , ḡ2

j −→
g2

j

1 + aj

(

ρ(r)
ρ0

) ,
ḡ2

j

1 + āj

(

ρ(r)
ρ0

)

mj, m̄j −→ mj

(

1 + bj

(

ρ(r)

ρ0

))

, m̄j

(

1 + b̄j

(

ρ(r)

ρ0

))

, j = σ, ω.

Thus we have changed phenomenologically the masses of exchanged mesons
and the coupling constants, depending on the nuclear densities, which is
called medium effects. Then we can explain the scattering precisely as shown
in the broken curves in Fig.3. The form of density dependence is explained
as follows by Kohmura[ref.4]. The medium effect of exchanged mesons is
considered to be the change of the mass operator of meson propagator.

g2
j

q2 + m2
j

−→
g2

j

q2 + m2
j + Πj

, Πj = aj

(

ρ

ρ0

)

+ bj

(

′
ρ

ρ0

)

q2 + .. (7)

Here the additional term Πj in the above meson propagator is introduced as
a medium effect. If we expand Πj in terms of the density ρ and the square
of the transfered momentum q2 , we have

g2
j

q2 + m2
j + Πj

≈





g2
j

1 + bj(
ρ
ρ0

)









1

q2 + m2
j + (aj − bj)(

ρ
ρ0

)



 . (8)

The medium effect is thought to be one of the presentations for the partial
restoration of chiral symmetry, Pauli- blocking, and multi-step processes.

5 Application of medium effects

In the previous section we have tuned the interaction in the RIA with the
experimental data by introducing the medium effect. If this medium effect
is a global one, we can predict the proton elastic scattering by using known
density distributions and the same medium effect parameters as for 58Ni. As
an example we compare the proton elastic scattering data for 208Pb measured
at TRIUMF[ref. 5] with the RIA modified by the medium effect in Fig 4.
The solid curves are the results of the original Horowits type calculation. If
we adopt the point
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Fig.5 208Pb(p,p) data of TRIUMF and the predicton by using the medium
effect(the broken curve)

proton distribution unfolded from the charge distribution, the neutron
density distribution measured at LAMPF and use the same medium effect
parameters as in 58Ni, the result of RIA calculation explains the scattering as
shown by the broken curves remarkably. In this calculation there is no free
parameter to tune the calculation. Thus we have confirmed the applicabilty
of our medium effect. Since we now know the interaction, we can determine
the density distribution from the scattering. In the case of stable nuclei we
know already the density distribution of protons. Then we can deduce the
neutron density distributions from the proton elastic scattering.

6 Measurements of proton elastic scattering

for Tin isotopes

We have performed a new experiment to measure the neutron density
distributions of tin isotopes. In a naive shell model the 3s 1

2

neutron orbit in
120Sn is closed. We have measured differential cross sections and analyzing
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powers of proton elastic scattering off 116,118,120,122,124Sn at Ep = 300 MeV.
The experiment was performed at the Research Center for Nuclear Physics,
using the Grand Raiden spectrometer and the focal plane detector system.
In order to achieve an accurate measurement of relative cross sections we
have installed a newly developed rapid target changer, which can change

116,118,120,122,124Sn(p,p)    Ep=295MeV
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Fig.6 116,118,120,122,124Sn(p,p) data and RIA analysis

the target within 0.5 seconds and measured 3 isotopes in a single run. During
the movement of the target changer the beam is stopped at the exit of the
ion source. The precision of the target position reproducibility is better
than 0.1 mm. Energy resolution of the beam was 200 keV in FWHM, which
is due to the energy width of the beam itself, but is enough to separate
elastic scattering from the inelastic peaks. Differential cross sections and the
analyzing powers were measured up to the 50 degree( momentum transfer of
4.5 fm−1) as shown in Fig.5. In order to deduce neutron density distributions
from the scattering, we have used point proton density distribution unfolded
from the charge distribution by electron scattering[ref.7]. For unfolding we
used the sum of monopole type proton charge form factor obtained from the
e-p scattering[ref.8]. The point proton density distribution are shown in Fig.
7 in the broken curves.
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Fig. 7 Deduced neutron density distributions. The broken curves are point
proton densities.

7 Neutron density distributions

As for the form of neutron distribution we have used sum of Gaussian
type form shown as follows; For neutron density search we have used 12
parameters of Ni . Other parameters such as γ, Ri , were taken from the
SOG type charge distribution by Sick[ref.6].

ρn(r) =
N

2π3/2γ3

12
∑

i=1

Ni

1 + 2R2
i /γ

2

(

e−(r−Ri)2/γ2

+ e−(r+Ri)2/γ2
)

,

12
∑

i=1

Ni = 1,
∫

ρn(r)dr = N.

As initial densities for the search we have used 3 different forms. The set1
has a dip in the nuclear center, whereas set3 has a small bump due to the
3s1/2 orbit in the nuclear center. The set2 has the same shape as the proton
distribution. In Fig.5 we show experimental data together with the results

15



of the search( shown by solid curves ) and the calculations using initial set1
neutron density distributions( broken curves). As for the medium effects we
have used the same parameter defined by the scattering from the 58Ni target.

In Fig.8 we show the obtained neutron density distributions for tin iso-
topes. The error bands shown by the hatched area in the figures are defined
by the contour curves of the density distributions generated by the Monte
Carlo calculation with the increase of the reduced χ2 less than the number of
fitting parameters as shown in the following formula, which take into account
even the ambiguities of our RIA model.

χ2
ν ≤ χ2

νmin + ν χ2
ν =

1

N

∑

i

(xi
calcu − xi

exp)
2

δxi
exp

The point proton densities are also shown by the curves without hatched
area in the same figure. In this figure we can notice only a gradual change of
density due to the large ambiguity at the nuclear center. In this search and
calculation we have taken into account the ambiguities of the medium effect
parameters of the 58Ni data and also of experimental ambiguities of the tin
data by the Monte-Calro calculation. Fig. 8 displays the differences of root
mean square radii between point protons and point neutron distributions. We
can observe a small staggering of the difference at 120Sn, which also shows
the effect of the 3s1/2 orbit filling.
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Fig. 9 Differences between proton and neutron RMS radii
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8 Recoil Particle Spectrometer

Recent success of relativistic impulse approximation( RIA ) to explain
the proton elastic scattering from various nuclei at intermediate energies has
opened a way to deduce density distribution for unstable nuclei. For unstable
nuclei, various peculiar shapes of density distribution are predicted/estimated
theoretically and experimentally, but until now measurements of proton elas-
tic scattering from unstable nuclei have been performed mainly at an energy
region of 30-75 MeV and would not provide direct information on the density
distribution. From the experiences at IUCF, TRIUMF, LAMPF and RCNP
we think that the best energy region to deduce density distribution in nuclei
is between 200 MeV and 400 MeV per nucleon, where the mean free path
of nucleon in nuclei is expected to be large and the scattering doesn’t suffer
much from the meson production. Only the new facility at RIKEN will be
able to supply the sufficient unstable nuclear beam in this energy region.

8.1 How to measure elastic proton scattering for un-

stable nuclei

In the case of unstable nuclei we need exchange the role of the beam and
the target. We use a solid hydrogen target bonbarded by the unstable nu-
clear beam. As is already discussed in the previous section, we are going to
use intermediate energy protons in the center of mass system, namely we are
going to use unstable nuclear beam of 300 MeV/A. For the measurements of
the elastic scattering we are going to detect recoil protons between 70 deg.
and 85 deg. in laboratory system. As a test apparatus we have constructed
a recoil particle spectrometer. The detector system consists of beam line
tagging system and the counter arrays to detect recoiled protons surround-
ing the target area. The beam line tagging system detects the scattering
position at the target and gives information on the momentum and the im-
pinging angle for each particle in the beam. The counter arrays to detect
the recoiled particles are composed of drift chambers, plastic scintillators and
the NaI(Tl) calorimeters in the angular region between 70 deg. and 82 deg.
Since the energy of the recoiled particles strongly depends on angles as shown
in the figure, the required total angular resolution is about 0.3 mrad. For
the energy measurement of recoiled protons we are using NaI(Tl) scintillator
at present. In the case of NaI(Tl) calorimeters the total estimated FWHM
energy resolutions depends on the energy of the recoiled protons; 290 keV
for the 20 MeV protons and 680 keV for the 116 MeV protons, including the
effects of multiple scattering and the range struggling. Temperature control
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of ±0.3deg for the calorimeter is also necessary.
Last summer we have successfully performed a test experiment to measure
elastic scatterinf of 300 MeV/A oxygen 20 at heavy ion synchrotron for mead-
ical use in Chiba near Tokyo. In the lecture new experimental data will be
shown together with the proton elastic scattering data for 16O and 18O of
Ep= 300 MeV.
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Fig.9 Kinematics of recoiled protons. Recoiled energy of protons is calculated
as a function of recoil angle for the 58Ni beam of E58Ni/A = 400 MeV. In
order to obtain a energy resolution of 200 keV at 70 degrees we need an
angular resolution of 0.3 mrad.
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