Effective theory for deformed nuclei

Thomas Papenbrock

and OAK RIDGE NATIONAL LABORATORY

Aim: Example of an effective theory with spontaneous symmetry breaking relevant for atomic nuclei. Pedagogical treatment to a model-independent theory of nuclear rotation. Introduction to [TP, Nucl. Phys. 852, 36 (2011), TP and Weidenmüller, Phys. Rev. C 89, 014334 (2014)].

13th CNS Summer School

August 21-27, 2014

Research partially supported by the US Department of Energy

Energy scales and relevant degrees of freedom

Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)

2

Energy scales and relevant degrees of freedom

3

Energy scales and relevant degrees of freedom

The fundamental laws of physics are invariant under rotations. How can non-spherical things (e.g. eggs, grains of rice, chopsticks) exist?

- 1. Non-spherical things have a ground state with nonzero spin and spin projection.
- 2. The non-spherical things are not in their ground states.
- 3. Macroscopic things, even in their ground states, do not need to be invariant under rotations.

The fundamental laws of physics are invariant under rotations. How can non-spherical things (e.g. eggs, grains of rice, chopsticks) exist?

- 1. Non-spherical things have a ground state with nonzero spin and spin projection.
- 2. The non-spherical things are not in their ground states.
- Macroscopic things, even in their ground states, do not need to be invariant under rotations.

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Q1: Consider a macroscopic object in quantum mechanics. What is the excitation energy for horizontal motion of a macroscopic object in this room?

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Q1: Consider a macroscopic object in quantum mechanics. What is the excitation energy for horizontal motion of a macroscopic object in this room?

A1: $E = \hbar^2/(2mL^2) \approx 10^{-70}$ Joule

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Q1: Consider a macroscopic object in quantum mechanics. What is the excitation energy for horizontal motion of a macroscopic object in this room?

A1: E = $\hbar^2/(2mL^2) \approx 10^{-70}$ Joule

Consequence: Superpositions of practically degenerate plane wave states of the center-of-mass will yield a localized ground state that spontaneously breaks translation invariance.

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Q1: Consider a macroscopic object in quantum mechanics. What is the excitation energy for horizontal motion of a macroscopic object in this room?

A1: $E = \hbar^2/(2mL^2) \approx 10^{-70}$ Joule

Consequence: Superpositions of practically degenerate plane wave states of the center-of-mass will yield a localized ground state that spontaneously breaks translation invariance.

Q2: What is the excitation energy for rotational motion of a macroscopic object in this room?

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Q1: Consider a macroscopic object in quantum mechanics. What is the excitation energy for horizontal motion of a macroscopic object in this room?

A1: $E = \hbar^2/(2mL^2) \approx 10^{-70}$ Joule

Consequence: Superpositions of practically degenerate plane wave states of the center-of-mass will yield a localized ground state that spontaneously breaks translation invariance.

Q2: What is the excitation energy for rotational motion of a macroscopic object in this room?

A2: E = $\hbar^2 J(J+1)/(2mR^2) \approx 10^{-64}$ Joule

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Q1: Consider a macroscopic object in quantum mechanics. What is the excitation energy for horizontal motion of a macroscopic object in this room?

A1: $E = \hbar^2/(2mL^2) \approx 10^{-70}$ Joule

Consequence: Superpositions of practically degenerate plane wave states of the center-of-mass will yield a localized ground state that spontaneously breaks translation invariance.

Q2: What is the excitation energy for rotational motion of a macroscopic object in this room?

A2: E = $\hbar^2 J(J+1)/(2mR^2) \approx 10^{-64}$ Joule

Consequence: Superpositions of practically degenerate states with different angular momentum J will yield a deformed ground state because of spontaneous symmetry breaking.

Def.: Spontaneous symmetry breaking happens when an arbitrarily small external perturbation yields a ground state that breaks the symmetry.

Comment: Strictly speaking, this can only happen in a <u>macroscopic system</u>.

Q1: Consider a macroscopic object in quantum mechanics. What is the excitation energy for horizontal motion of a macroscopic object in this room?

A1: $E = \hbar^2/(2mL^2) \approx 10^{-70}$ Joule

Consequence: Superpositions of practically degenerate plane wave states of the center-of-mass will yield a localized ground state that spontaneously breaks translation invariance.

Q2: What is the excitation energy for rotational motion of a macroscopic object in this room?

A2: E = $\hbar^2 J(J+1)/(2mR^2) \approx 10^{-64}$ Joule

Consequence: Superpositions of practically degenerate states with different angular momentum J will yield a deformed ground state because of spontaneous symmetry breaking.

Nambu-Goldstone modes are low-lying excitations in the presence of spontaneous symmetry breaking

Spontaneous symmetry breaking of rotational symmetry: ferromagnet

<u>ተ ተ ተ ተ ተ ተ</u>

• Axially symmetric ground state breaks SO(3) rotational symmetry.

• Nambu-Goldstone modes generate local (i.e. position and time dependent) rotations of the spins.

• exp(-i $\psi_x(x,y,z,t) J_x$ -i $\psi_y(x,y,z,t) J_y$) with Nambu-Goldstone fields (ψ_x , ψ_y) and angular momentum operators (J_x , J_y)

• Spin waves (or magnons) are low-energy excitations with long wave length

Picture: www-llb.cea.fr

Spontaneous breaking of translational symmetry: crystal

- Crystal lattice breaks translational symmetry.
- Nambu-Goldstone modes generate local (i.e. position and time dependent) translations of the lattice points (ions).

• exp(-i $\psi_x(x,y,z,t) P_x$ - i $\psi_y(x,y,z,t) P_y$ - i $\psi_z(x,y,z,t) P_z$) with Nambu-Goldstone fields (ψ_x , ψ_y , ψ_z) and momentum operators (P_x , P_y , P_z)

• Phonons are low-energy excitations (wave length λ much larger than lattice spacing)

Atomic nuclei are (small) finite systems. There can not be spontaneous symmetry breaking

- In infinite deformed systems, different orientations correspond to inequivalent Hilbert spaces.
- The overlap between states in inequivalent Hilbert spaces is zero.
- Rotations of the whole system are not considered.
- Such rotations are "zero modes": "Nambu-Goldstone" modes that depend only on time but not on position.
- In finite systems, states corresponding to different orientations have finite overlap.
- Nevertheless, in systems with "emergent symmetry breaking" exhibit low-lying excitations.
- Quantized rotations ("zero modes") are the low lying excitations.

Spectra of two heavy nuclei

"almost" spontaneously broken rotational symmetry

Which of the following is correct?

- 1. Nuclei with rotational spectrum (such as ¹⁷²Yb) are deformed, i.e. rotational symmetry is spontaneously broken. They literally have an oblate or a prolate shape.
- 2. There is no spontaneous symmetry breaking in finite systems, and there are no deformed nuclei. States of atomic nuclei have good spin, and thus cannot be deformed.

Which of the following is correct?

- 1. Nuclei with rotational spectrum (such as ¹⁷²Yb) are deformed, i.e. rotational symmetry is spontaneously broken. They literally have an oblate or a prolate shape.
- 2. There is no spontaneous symmetry breaking in finite systems, and there are no deformed nuclei. States of atomic nuclei have good spin, and thus cannot be deformed. ✓

What do we mean by (intrinsically) "deformed" nuclei?

- Nuclei with much enhanced strength in electric quadrupole transitions and (if they are even-Z, even-N) low-lying 2⁺ states.
- 2. Nuclei that exhibit rotational bands and a separation of scale ($\xi << \Omega$) that reflects the precursors of spontaneous symmetry breaking in a finite system.
- 3. Mean-field computations of such nuclei would yield a deformed density of the single-particle ground state.
- 4. Intrinsic deformation: In the co-rotating (body-fixed) coordinate system, the nucleus is deformed
- 5. All of the above.

What do we mean by (intrinsically) "deformed" nuclei?

- Nuclei with much enhanced strength in electric quadrupole transitions and (if they are even-Z, even-N) low-lying 2⁺ states.
- 2. Nuclei that exhibit rotational bands and a separation of scale ($\xi << \Omega$) that reflects the precursors of spontaneous symmetry breaking in a finite system.
- 3. Mean-field computations of such nuclei would yield a deformed density of the single-particle ground state.
- 4. Intrinsic deformation: In the co-rotating (body-fixed) coordinate system, the nucleus is deformed
- 5. All of the above. 🗸

- Q: How can we economically solve a physical problem (by employing appropriate degrees of freedom)?
- A: Exploit a separation of scales.

Examples:

1. Multipole expansion for the electromagnetic field.

Q: Why does it work?

- Q: How can we economically solve a physical problem (by employing appropriate degrees of freedom)?
- A: Exploit a separation of scales.

Examples:

1. Multipole expansion for the electromagnetic field.

Q: Why does it work?

A: Distance from charge distribution >> extension of charge distribution

- Q: How can we economically solve a physical problem (by employing appropriate degrees of freedom)?
- A: Exploit a separation of scales.

Examples:

1. Multipole expansion for the electromagnetic field.

Q: Why does it work?

A: Distance from charge distribution >> extension of charge distribution

2. Quantum chemistry employs the Coulomb potential and not QED

Q: Why does it work?

- Q: How can we economically solve a physical problem (by employing appropriate degrees of freedom)?
- A: Exploit a separation of scales.

Examples:

1. Multipole expansion for the electromagnetic field.

Q: Why does it work?

A: Distance from charge distribution >> extension of charge distribution

2. Quantum chemistry employs the Coulomb potential and not QED

Q: Why does it work?

A: $e^+ e^-$ pair production threshold (~ 1MeV) >> chemical bonds (~ eV)

- Q: How can we economically solve a physical problem (by employing appropriate degrees of freedom)?
- A: Exploit a separation of scales.

Examples:

1. Multipole expansion for the electromagnetic field.

Q: Why does it work?

A: Distance from charge distribution >> extension of charge distribution

2. Quantum chemistry employs the Coulomb potential and not QED

Q: Why does it work?

A: $e^+ e^-$ pair production threshold (~ 1MeV) >> chemical bonds (~ eV)

3. Nuclei are described in terms of protons and neutrons and not via quarks and gluons

Q: Why does it work?

- Q: How can we economically solve a physical problem (by employing appropriate degrees of freedom)?
- A: Exploit a separation of scales.

Examples:

1. Multipole expansion for the electromagnetic field.

Q: Why does it work?

A: Distance from charge distribution >> extension of charge distribution

2. Quantum chemistry employs the Coulomb potential and not QED

Q: Why does it work?

A: $e^+ e^-$ pair production threshold (~ 1MeV) >> chemical bonds (~ eV)

3. Nuclei are described in terms of protons and neutrons and not via quarks and gluons

Q: Why does it work?

A: Excitation of nucleon (~300 MeV) >> excitation energies of nuclei (~ 1MeV)

Intrinsic deformation of atomic nuclei

Atomic nuclei with intrinsic deformation

Atomic nuclei with intrinsic deformation Rotors: $E(4^+)/E(2^+) = 10/3$ Vibrators: $E(4^+)/E(2^+) = 2$ Z=82 N=126 Z=50 8 Proton Separation Energy in Lead 'N=82 Protons, Neutrons Z=28 N=50 Effective 1.32 Vibrational State in Tin Z=20 theory! Nucleonic Densities and Currents Z=8 'N=28 N=20 0.043 Rotational State in Uranium N=8 **Collective Coordinates**

Construction of an EFT

- 1. Identify the **relevant degrees of freedom** for the resolution scale of interest
- 2. Identify the **relevant symmetries** of low-energy nuclear physics and investigate if and how they are broken
- 3. Construct the **most general Lagrangian** consistent with those symmetries and the symmetry breaking.
- 4. Design an **organizational scheme** (power counting) that can distinguish between more and less important contributions

Useful references:

S. Weinberg, The Quantum Theory of Fields, Vol.II, chap. 19

H. Leutwyler, Phys. Rev. D 49 (1994) 3033, arXiv:hep-ph/9311264

C. P. Burgess, Physics Reports 330 (2000) 193

Data is needed for the construction of an effective theory

1. Identify relevant degrees of freedom

1. Identify relevant degrees of freedom

Q: What field would be able to reproduce spins and parities of low-lying states?

1. Identify relevant degrees of freedom

Q: What field would be able to reproduce spins and parities of low-lying states?

Quadrupole degrees of freedom describe spins and parity of low-energy spectra

2. Identify relevant symmetries and symmetry breaking

2. Identify relevant symmetries and symmetry breaking Q: What are the symmetries, and are they spontaneously broken?

2. Identify relevant symmetries and symmetry breaking Q: What are the symmetries, and are they spontaneously broken?

2. Identify relevant symmetries and symmetry breaking Q: What are the symmetries, and are they spontaneously broken?

3. Construct the most general Hamiltonian consistent with the symmetry and the symmetry breaking

There will be 3-1=2 Nambu-Goldstone bosons

Nambu-Goldstone modes parameterize the coset SO(3)/SO(2) ~ S², i.e. the two-sphere: [Weinberg 1967; Coleman, Callan, Wess & Zumino 1969; H. Leutwyler, Phys. Rev. D 49 (1994) 3033, arXiv:hep-ph/9311264

$$\vec{n}(\theta,\phi) = \begin{pmatrix} \cos\phi\sin\theta\\ \sin\phi\sin\theta\\ \cos\theta \end{pmatrix} = \vec{e_r}$$

Parameters of the sphere: coordinates ϑ and ϕ

$$\vec{n}(\theta,\phi) = \begin{pmatrix} \cos\phi\sin\theta\\ \sin\phi\sin\theta\\ \cos\theta \end{pmatrix} = \vec{e}_r$$

velocity ("lives" in tangent plane): $\partial_t \vec{n} = \dot{\phi} \sin \theta \vec{e}_{\phi} + \dot{\theta} \vec{e}_{\theta}$ $= v_{\phi} \vec{e}_{\phi} + v_{\theta} \vec{e}_{\theta}$

 $v_{\phi} \equiv \dot{\phi} \sin \theta$ $v_{\theta} \equiv \dot{\theta}$

Question: How do the velocity components transform under a rotation?

Question: How does the vector $n(\vartheta, \phi)$ transform under a rotation?

Transformation properties under rotations

Rotations do this

 $\delta \vec{n} = \delta \vec{\omega} \times \vec{n}$

Change of vector n (in tangent plane!) $\delta \vec{n} = \delta \phi \sin \theta \vec{e}_{\phi} + \delta \theta \vec{e}_{\theta}$

Result:

$$\begin{pmatrix} \delta\phi\\\delta\theta \end{pmatrix} = \begin{pmatrix} -\cos\phi\cot\theta & -\sin\phi\cot\theta & 1\\\sin\phi & \cos\phi & 0 \end{pmatrix} \begin{pmatrix} \delta\omega_x\\\delta\omega_y\\\delta\omega_z \end{pmatrix}$$

Transformation of velocity components under rotations

$$\delta \begin{pmatrix} \dot{\phi} \sin \theta \\ \dot{\theta} \end{pmatrix} = \begin{pmatrix} \cos \gamma & -\sin \gamma \\ \sin \gamma & \cos \gamma \end{pmatrix} \begin{pmatrix} \dot{\phi} \sin \theta \\ \dot{\theta} \end{pmatrix}$$

with

Key result: velocity components v_ϕ and v_ϑ transform as x- and y-components of a vector under SO(2) rotations, albeit with a complicated angle γ

 \rightarrow "Nonlinear realization" of rotational symmetry

Simplest invariant:

$$v_{\theta}^2 + v_{\phi}^2 = \dot{\theta}^2 + \dot{\phi}^2 \sin^2 \theta$$

Question: I thought rotations do not commute, but the law above appears as axial symmetry [i. e. SO(2)] and not as from SO(3)

Physics of Nambu-Goldstone modes

Lagrangian
$$L = rac{C_0}{2} \left(\dot{ heta}^2 + \dot{\phi}^2 \sin^2 heta
ight)$$

Hamiltonian
$$H = \frac{1}{2C_0} \left(p_{\theta}^2 + \frac{p_{\phi}^2}{\sin^2 \theta} \right)$$

Quantization

$$p_{\theta}^{2} \equiv \frac{1}{\sin \theta} \partial_{\theta} \sin \theta \partial_{\theta}$$
$$p_{\phi} \equiv -i \partial_{\phi}$$

Spectrum

$$\hat{H}Y_{IM}(\theta,\phi) = \frac{I(I+1)}{2C_0}Y_{IM}(\theta,\phi)$$

Rotational bands are quantized Nambu-Goldstone modes (Superposition of differently oriented deformed nuclei). Low-energy constant C₀ is moment of inertia and fit to data.

Let us first understand dimensional analysis

- 1. Low-energy scale is $\boldsymbol{\xi}$
- 2. Leading-order Lagrangian $L = \frac{C_0}{2} (\partial_t \vec{n}) \cdot (\partial_t \vec{n})$ must scale as: L~ ξ
- 3. Energy-time uncertainty implies (\hbar =1): d_t ~ ξ
- 4. Thus $C_0 \sim 1/\xi$

Let us first understand dimensional analysis

- 1. Low-energy scale is $\boldsymbol{\xi}$
- 2. Leading-order Lagrangian $L = \frac{C_0}{2} (\partial_t \vec{n}) \cdot (\partial_t \vec{n})$ must scale as: L~ ξ
- 3. Energy-time uncertainty implies (\hbar =1): d_t ~ ξ
- 4. Thus $C_0 \sim 1/\xi$

Next-to-leading order term (scalar in NG modes that we can write down)

$$L = (C_2/4) ((\partial_t \vec{n}) \cdot (\partial_t \vec{n}))^2$$

Let us first understand dimensional analysis

- 1. Low-energy scale is $\boldsymbol{\xi}$
- 2. Leading-order Lagrangian $L = \frac{C_0}{2} (\partial_t \vec{n}) \cdot (\partial_t \vec{n})$ must scale as: L~ ξ
- 3. Energy-time uncertainty implies (\hbar =1): d_t ~ ξ
- 4. Thus $C_0 \sim 1/\xi$

Next-to-leading order term (scalar in NG modes that we can write down)

$$L = (C_2/4) ((\partial_t \vec{n}) \cdot (\partial_t \vec{n}))^2$$

Q2: What is the dimension of C_2 in powers of energy?

Let us first understand dimensional analysis

- 1. Low-energy scale is $\boldsymbol{\xi}$
- 2. Leading-order Lagrangian $L = \frac{C_0}{2} (\partial_t \vec{n}) \cdot (\partial_t \vec{n})$ must scale as: L~ ξ
- 3. Energy-time uncertainty implies (\hbar =1): d_t ~ ξ
- 4. Thus $C_0 \sim 1/\xi$

Next-to-leading order term (scalar in NG modes that we can write down)

$$L = (C_2/4) ((\partial_t \vec{n}) \cdot (\partial_t \vec{n}))^2$$

Q2: What is the dimension of C₂ in powers of energy? A2: It must have dimensions of energy⁻³ (We have two energy scales $\xi \ll \Omega$)

Let us first understand dimensional analysis

- 1. Low-energy scale is $\boldsymbol{\xi}$
- 2. Leading-order Lagrangian $L = \frac{C_0}{2} (\partial_t \vec{n}) \cdot (\partial_t \vec{n})$ must scale as: L~ ξ
- 3. Energy-time uncertainty implies (\hbar =1): d_t ~ ξ
- 4. Thus $C_0 \sim 1/\xi$

Next-to-leading order term (scalar in NG modes that we can write down)

$$L = (C_2/4) ((\partial_t \vec{n}) \cdot (\partial_t \vec{n}))^2$$

Q2: What is the dimension of C₂ in powers of energy? A2: It must have dimensions of energy⁻³ (We have two energy scales $\xi << \Omega$) Q2: How should the term C₂ scale precisely? A2: ξ^{-3} , $\xi^{-2}\Omega^{-1}$, $\xi^{-1}\Omega^{-2}$, Ω^{-3} ...?

Let us first understand dimensional analysis

- 1. Low-energy scale is $\boldsymbol{\xi}$
- 2. Leading-order Lagrangian $L = \frac{C_0}{2} (\partial_t \vec{n}) \cdot (\partial_t \vec{n})$ must scale as: L~ ξ
- 3. Energy-time uncertainty implies (\hbar =1): d_t ~ ξ
- 4. Thus $C_0 \sim 1/\xi$

Next-to-leading order term (scalar in NG modes that we can write down)

$$\mathsf{L} = (\mathsf{C}_2/4) \left(\left(\partial_t \vec{n} \right) \cdot \left(\partial_t \vec{n} \right) \right)^2 \sim \xi \left(\xi/\Omega \right)^2 << \xi$$

Q2: What is the dimension of C_2 in powers of energy?

- A2: It must have dimensions of energy⁻³ (We have two energy scales $\xi \ll \Omega$)
- Q2: How should the term C₂ scale precisely? A2: ξ^{-3} , $\xi^{-2}\Omega^{-1}$, $\xi^{-1}\Omega^{-2}$, Ω^{-3} ...?
- A2: $C_2/C_0 \sim \text{energy}^{-2}$ and is due to omitted physics at a high-energy scale Ω Thus: $C_2/C_0 \sim \Omega^{-2}$ assuming *naturalness*

Lagrangian at next-to-leading

$$L = (C_0/2)(\partial_t \vec{n}) \cdot (\partial_t \vec{n}) + (C_2/4) ((\partial_t \vec{n}) \cdot (\partial_t \vec{n}))^2$$

Spectrum:
$$J(J+1)/(2C_0) - (J(J+1))^2 (C_2/4C_0^4)$$

→Bohr & Mottelson (of course!)

Lagrangian at next-to-leading

$$L = (C_0/2)(\partial_t \vec{n}) \cdot (\partial_t \vec{n}) + (C_2/4) ((\partial_t \vec{n}) \cdot (\partial_t \vec{n}))^2$$

Spectrum:
$$J(J+1)/(2C_0) - (J(J+1))^2 (C_2/4C_0^4)$$

→Bohr & Mottelson (of course!)

Q: When does the effective theory break down? How large can J be?

Lagrangian at next-to-leading

$$L = (C_0/2)(\partial_t \vec{n}) \cdot (\partial_t \vec{n}) + (C_2/4) ((\partial_t \vec{n}) \cdot (\partial_t \vec{n}))^2$$

Spectrum:
$$J(J+1)/(2C_0) - (J(J+1))^2 (C_2/4C_0^4)$$

→Bohr & Mottelson (of course!)

Q: When does the effective theory break down? How large can J be?

A1: energy correction << leading-order energy: $C_2/C_0^3 J(J+1) << 1$ A2: Thus: J << Ω/ξ

relative error

What about higher derivatives?

Vector in tangent plane

$$\vec{v} = v_{\phi}\vec{e}_{\phi} + v_{\theta}\vec{e}_{\theta}$$

Its time derivative...

$$\partial_t \vec{v} = \left(\dot{v}_\theta - v_\phi \dot{\phi} \cos \theta \right) \vec{e}_\theta + \left(\dot{v}_\phi + v_\theta \dot{\phi} \cos \theta \right) \vec{e}_\phi \\ - \left(v_\phi \dot{\phi} \sin \theta + v_\theta \dot{\theta} \right) \vec{n}$$

... does not "live" in the tangent plane! 😔

Question: What does one do in this situation?

What about higher derivatives?

Vector in tangent plane

$$\vec{v} = v_{\phi}\vec{e}_{\phi} + v_{\theta}\vec{e}_{\theta}$$

Its time derivative...

$$\partial_t \vec{v} = \left(\dot{v}_\theta - v_\phi \dot{\phi} \cos \theta \right) \vec{e}_\theta + \left(\dot{v}_\phi + v_\theta \dot{\phi} \cos \theta \right) \vec{e}_\phi \\ - \left(v_\phi \dot{\phi} \sin \theta + v_\theta \dot{\theta} \right) \vec{n}$$

... does not "live" in the tangent plane! 😕

Question: What does one do in this situation?

Answer: Introduce a "covariant" derivative (projection of derivative onto tangent plane)!

$$D_t v_\theta \equiv \dot{v}_\theta - v_\phi \dot{\phi} \cos \theta$$
$$D_t v_\phi \equiv \dot{v}_\phi + v_\theta \dot{\phi} \cos \theta$$

Question: What's the key difference between ¹⁷²Yb and ¹⁷³Yb?

Answer:

- 1. We have to explicitly account for the odd neutron and add it as a degree of freedom (e.g. particle-rotor model)
- 2. At low energies, no one knows about the odd neutron, and we shall not add it.

Question: What's the key difference between ¹⁷²Yb and ¹⁷³Yb?

Answer:

- 1. We have to explicitly account for the odd neutron and add it as a degree of freedom (e.g. particle-rotor model)
- At low energies, no one knows about the odd neutron, and we shall not add it. ✓

Question: What's the key difference between ¹⁷²Yb and ¹⁷³Yb?

Answer:

- 1. We have to explicitly account for the odd neutron and add it as a degree of freedom (e.g. particle-rotor model)
- At low energies, no one knows about the odd neutron, and we shall not add it. ✓

Question: Apart from the odd neutron, what's the key difference between ¹⁷²Yb and ¹⁷³Yb?

Question: What's the key difference between ¹⁷²Yb and ¹⁷³Yb?

Answer:

- 1. We have to explicitly account for the odd neutron and add it as a degree of freedom (e.g. particle-rotor model)
- At low energies, no one knows about the odd neutron, and we shall not add it. ✓

Question: Apart from the odd neutron, what's the key difference between ¹⁷²Yb and ¹⁷³Yb?

Answer: ¹⁷³Yb has a finite spin in its ground state. This breaks time reversal invariance and first-order derivatives enter the Lagrangian. Technically, we can add a monopole magnetic field inside the sphere.

Nuclei with finite ground-state spins: Wess Zumino terms

Lagrangian
$$L_{\rm LO} = L_{\rm LO}^{(ee)} + L_{\rm WZ}$$

= $\frac{C_0}{2} \left(\dot{\beta}^2 + \dot{\alpha}^2 \sin^2 \beta \right) - q \dot{\alpha} \cos \beta$ Notation on this slide: $\phi \to \alpha$
 $\theta \to \beta$

Hamiltonian
$$H_{\rm LO} = \frac{p_{\beta}^2}{2C_0} + \frac{(p_{\alpha} + q\cos\beta)^2}{2C_0\sin^2\beta}$$

Eigenvalues and eigenfunctions (Identify q with ground-state spin!)

$$\begin{split} \hat{H}_{\rm LO} \, d_{mq}^l(\beta) e^{-i\alpha m} &= E_{\rm LO}(q,l) d_{mq}^l(\beta) e^{-i\alpha m} \\ E_{\rm LO}(q,l) &= \frac{l(l+1) - q^2}{2C_0} \\ l &= |q|, |q| + 1, |q| + 2, \dots \\ D_{mq}^l(\alpha,\beta,\gamma) &\equiv e^{-im\alpha} d_{mq}^l(\beta) e^{-iq\gamma} \quad \text{(Wigner D functions)} \end{split}$$

¹⁷³Yb: Relative error in LO and NLO

relative error

Summary

- Description of nuclear deformation within an effective theory
- Model-independent approach, treats odd-mass and even-even nuclei on equal footing
- Power counting: vibrational excitations >> rotational excitations

Interactions from chiral effective field theory and renormalization group transformations

Thomas Papenbrock

and OAK RIDGE NATIONAL LABORATORY

Aim of these lectures:

Give overview of nuclear forces from effective field theory, and renormalization group transformations

13th CNS Summer School

August 21–27, 2014 at Tokyo University, Wako Campus

Reading suggestions

More is different, P. W. Anderson, Science **177**, 393 (1972)

Elementary features of nuclear structure, B.R. Mottelson, in: H. Nifenecker, J.P. Blaizot, G. Bertsch, W. Weise, F. David (Eds.), *Trends in Nuclear Physics, 100 Years Later*, North-Holland, Amsterdam, 1998

Chiral effective field theory and nuclear forces

• Machleidt & Entem, *Chiral effective field theory and nuclear forces,* Phys. Rept. 503, (2011); Machleidt, arXiv:0704.0807

• Epelbaum Hammer & Meißner, *Modern theory of nuclear forces,* Rev. Mod. Phys. **81**, 1773 (2009); arXiv:0811.1338

Low-momentum interactions and similarity transforms

• Bogner, Furnstahl & Schwenk, *From low-momentum interactions to nuclear structure,* Prog. Part. Nucl. Phys. **65**, 94 (2010); arXiv:0912.3688

Quantum chromo dynamics – theory of the strong interaction

Most impressive progress

But: first-principle computation of nuclei from QCD are still far away ...

Worse: Looking at the QCD Lagrangian, it is not obvious what the low-energy QCD physics is. Neither the spontaneous breaking of chiral symmetry nor the emergence of selfbound nuclei is obvious or predicted from QCD.

(The QED Lagrangian also does not tell us about emerging phenomena such as superconductivity or crystals.) We need another approach!

Energy scales and relevant degrees of freedom

Construction of nuclear potentials via chiral EFT

Weinberg, van Kolck, Epelbaum, Machleidt, ...

- 1. Identify the **relevant degrees of freedom** for the resolution scale of atomic nuclei: **nucleons and pions**.
- 2. Identify the **relevant symmetries** of low-energy QCD and investigate if and how they are broken: **spontaneously broken chiral symmetry**
- 3. Construct the most general Lagrangian consistent with those symmetries and the symmetry breaking.
- 4. Design an **organizational scheme** that can distinguish between more and less important contributions: a low-momentum expansion: **power counting**
- 5. Guided by the expansion, calculate Feynman diagrams to the desired accuracy for the problem under consideration.

Reviews:

Bedaque and van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339, nucl-th/0205058.

Machleidt, & Entem, Phys. Rept. 503, 1 (2011); Machleidt, arxiv:0704.0807.

Epelbaum, Hammer, Meißner, Rev. Mod. Phys. 81, 1773 (2009); arXiv:0811.1338.

1. Identify relevant degrees of freedom

2. Identification of relevant symmetries

- SU(3) color symmetry from QCD (Nucleons and pions are color singlets)
- Chiral symmetry: Left and right-handed massless u and d quarks do not mix: SU(2)_L x SU(2)_R symmetry. Expect left-right parity doublets in nature.

Explicit breaking of chiral symmetry: u and d quarks have a small mass. Small corrections to above picture arise.

But: There are no (left-right) parity doublets observed in nature!

Reason: Spontaneous breaking of chiral symmetry (More is different!)

- $SU(2)_L \times SU(2)_R$ symmetry spontaneously broken to $SU(2)_V$
- Pions are the Nambu-Goldstone bosons of spontaneously broken chiral symmetry
- Low-energy pion Lagrangian completely determined

$$\mathcal{L}_{\rm eff} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{N\pi} + \mathcal{L}_{NN}$$
3. Construct most general Lagrangian consistent with symmetries; organizational scheme \rightarrow power counting

$$\mathcal{L}_{ ext{eff}} = \mathcal{L}_{\pi\pi} + \mathcal{L}_{N\pi} + \mathcal{L}_{NN}$$

Derivative (low-momentum) expansion indicated by superscripts

Pion-pion Lagrangian: U is SU(2) matrix parameterized by three pion fields

$$\mathcal{L}_{\pi\pi}^{(2)} = \frac{f_{\pi}^2}{4} \operatorname{tr} \left[\partial^{\mu} U \partial_{\mu} U^{\dagger} + m_{\pi}^2 (U + U^{\dagger}) \right]$$

Leading order pion-nucleon Lagrangian

$$\mathcal{L}_{\pi N}^{(1)} = \bar{\Psi} \left(i \gamma^{\mu} D_{\mu} - M_N + \frac{g_A}{2} \gamma^{\mu} \gamma_5 u_{\mu} \right) \Psi$$

Leading order nucleon-nucleon Lagrangian (encodes unknown short-ranged physics)

$$\mathcal{L}_{NN}^{(0)} = -\frac{1}{2}C_S\bar{N}N\bar{N}N - \frac{1}{2}C_T\bar{N}\vec{\sigma}N\bar{N}\vec{\sigma}N$$

8

Effective field theory: chiral potential at order N³LO

Nucleons: full lines Pions: dashed lines

Features:

- Systematic expansion of nucleon potential; small parameter (Q/Λ)
- 2. Low-energy constants from fit to data
- 3. Hierarchy of forces NN >> NNN >> NNNN

[from Machleidt arXiv:0704.0807]

Chiral nucleon-nucleon potential at leading order

One-pion exchange potential (p, p' are initial and final relative momenta)

$$V_{1\pi}(\vec{p}',\vec{p}) = -\frac{g_A^2}{4f_\pi^2} \boldsymbol{\tau}_1 \cdot \boldsymbol{\tau}_2 \frac{\vec{\sigma}_1 \cdot \vec{q} \ \vec{\sigma}_2 \cdot \vec{q}}{q^2 + m_\pi^2}$$
$$\vec{q} \equiv \vec{p}' - \vec{p}$$

Leading order contact term (encode unknown short-range physics)

$$V^{(0)}(\vec{p'}, \vec{p}) = C_S + C_T \,\vec{\sigma}_1 \cdot \vec{\sigma}_2$$

Higher-order contact terms also serve as counter terms that renormalize loop integrals.

Why contact terms?

- 1. Only contact terms can model really short range physics.
- Any short-range terms (e.g. delta functions, Gaussians ...) with range smaller 1/Λ would do the job, but contacts are very convenient with analytical results.

Why contact terms?

- 1. Only contact terms can model really short range physics.
- Any short-range terms (e.g. delta functions, Gaussians ...) with range smaller 1/∧ would do the job, but contacts are very convenient with analytical results. ✓

How does the momentum cutoff Λ enter the EFT?

1. The construction of the chiral potential involves solving the Lippmann-Schwinger equation. A is the cutoff in this equation.

$$\hat{T}(\vec{p}\,',\vec{p}) = \hat{V}(\vec{p}\,',\vec{p}) + \int d^3 p'' \,\hat{V}(\vec{p}\,',\vec{p}\,'') \,\frac{M}{p^2 - p''^2 + i\epsilon} \,\hat{T}(\vec{p}\,'',\vec{p})$$
$$\hat{V}(\vec{p}\,',\vec{p}) \quad \longmapsto \quad \hat{V}(\vec{p}\,',\vec{p}) \,e^{-(p'/\Lambda)^{2n}} \,e^{-(p/\Lambda)^{2n}}$$

- 2. The loop integrals that appear beyond leading order need to be regularized. One way of regularization is by imposing a cutoff of the order of Λ .
- 3. As a result, the low-energy constants depend implicitly on the regularization scheme and the cutoff.
- 4. There are (infinitely) many different chiral potentials! Differences of potentials that employ different values for the cutoff must be of higher order.
- 5. Regularization schemes, and form of potentials that encode short-ranged physics (contact potential or potentials with a very short range) are at the potential builder's discretion. **This makes the approach model independent**.

Figure 4: (a) Chiral EFT for nuclear forces. (b) Improvement in neutron-proton phase shifts show by shaded bands from cutoff variation at NLO (dashed), N²LO (light), and N³LO (dark) compared extractions from experiment (points) [31]. The dashed line is from the N³LO potential of Ref. [20].

Three-nucleon forces – Why?

- Nucleons are not point particles (i.e. not elementary).
- We neglected some internal degrees of freedom (e.g. Δ-resonance, "polarization effects", ...), and unconstrained high-momentum modes.

Example from celestial mechanics:

Renormalization group transformation: Removal of "stiff" degrees of freedom at expense of additional forces. Other tidal effects cannot be included in the two-body interaction! Three-body force unavoidable for point masses.

Three-body forces cont'd

Figure 23: Eliminating degrees of freedom leads to three-body forces. (taken from Bogner, Furnstahl, Schwenk, arXiv:0912.3688)

Leading three-nucleon force

- 1. Long-ranged two-pion term (Fujita & Miyazawa ...)
- 2. Intermediate-ranged one-poin term
- 3. Short-ranged three-nucleon contact

The question is not: Do three-body forces enter the description? The (only) question is: How large are three-body forces?

Non-uniqueness of three-nucleon forces

As cutoff Λ is varied, motion along "Tjon line".

Addition of Λ -dependent three-nucleon force yields (almost) agreement with experiment. **Q: What's missing?**

A: The complete description of ⁴He would require four-nucleon forces!

Understanding the Tjon line 35 a_s and a_t 30 B_{α} [MeV] . 25 a_s and B_d 20 ∟ 7.5 8 8.5 9

Blue square: EFT at NLO Blue diamond: EFT at N²LO Other dots: phenomenological NN potentials

Large scattering length and absence of leading-order 4-body force explain Tjon line Platter, Hammer, Meissner: Phys. Lett. B 607, 254 (2005)

B₊ [MeV]

Question: Your favorite physics friend comes to you and suggests to determine the effects of the three-body force on the structure of your favorite nucleus. You reply

- 1. Let's do this. This will put us on the fast track to Stockholm.
- 2. This is difficult to disentangle. But it can be done in a three-body system such as ³H.
- 3. Which interaction are you looking at?
- 4. Answers 2 & 3 are correct.

Question: Your favorite physics friend comes to you and suggests to determine the effects of the three-body force on the structure of your favorite nucleus. You reply

- 1. Let's do this. This will put us on the fast track to Stockholm.
- 2. This is difficult to disentangle. But it can be done in a three-body system such as ³H.
- 3. Which interaction are you looking at? 🗸
- 4. Answers 2 & 3 are correct.

The size and form of three-body forces depends on the cutoff, and the chosen renormalization scheme. Different schemes ("implementations of the EFT at order n") yield predictions that expected to agree within the error estimate $(Q/\Lambda)^{n+1}$. **Only the sum of interactions can be probed**.

Is ²⁸O a bound nucleus?

Experimental situation

- "Last" stable oxygen isotope ²⁴O
- ²⁵O unstable (Hoffman et al 2008)
- ²⁶O unstable (Lunderberg et al 2012)
- ³¹F exists (adding on proton shifts drip line by 6 neutrons)

Theoretical description challenging (proximity of continuum, 3NFs)

- Continuum shell model [Volya & Zelevinsky, PRL 94, 052501 (2005)]
- Chiral NN interactions [Hagen et al., PRC 80, 021306 (2009)].
- Effects of 3NFs [Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)]
- More complete calculation desirable (3NFs, continuum, large model space, minimum adjustments to interaction)

Is ²⁸O a bound nucleus?

Experimental situation

- "Last" stable oxygen isotope ²⁴O
- ²⁵O unstable (Hoffman et al 2008)
- ²⁶O unstable (Lunderberg et al 2012)
- ³¹F exists (adding on proton shifts drip line by 6 neutrons)

Shell model (sd shell) with monopole corrections based on three-nucleon force predicts 2nd O as last stable isotope of oxygen. [Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010), arXiv: 0908.2607]

Intermission

- Systematic construction of nuclear forces within (chiral) effective field theory
- There is a recipe to follow
- Highlights: power counting, hierarchy of NN >> NNN >> NNN forces
- Approach is model independent
- Resulting potential depends on regularization scheme and cutoff
- There are (infinitely) many good ways to implement this

Estimate for model spaces and Hamiltonian matrix dimensions

Assume we want to compute the binding energy of a nucleus with mass number A in a wave function based approach. Assume that the interaction has a momentum cutoff Λ .

Q: What are the minimum requirements for the model space / What basis would you choose?

- A:
- The basis must be sufficiently extended in position space to capture a nucleus with radius R≈1.2 A^½ fm
- 2. The basis must be sufficiently extended in momentum space to capture the cutoff Λ .
- 3. THUS: we need approximately $K = (R\Lambda/(2\pi))^3$ single-particle states (phase space volume!) In practice $K \approx (R\Lambda/2)^3 \sim \Lambda^3 A$.

Estimate: computation of oxygen: A=4/fm and R≈2.5fm

Thus, our model space has about $K=5^3 = 125$ single-particle states. Matrix dimension: $D=K!/(K-A)!/A! \approx (K/A)^A \approx 8^{16} \approx 2^{48} \approx 10^{14}$.

Some conclusions

- 1. For "bare" chiral interactions (e.g. Entem and Machleidt), matrix diagonalization is possible only for light nuclei. One either needs a much more efficient method or a lower cutoff.
- 2. The factorial scaling with A is not matched by Moore's law (doubling of FLOPS about every 18 month \rightarrow factor 1000 in 15 years).
- 3. For wave-function based methods, the most effective way to heavier nuclei is to decrease the phase-space volume $K \sim (\Lambda R)^3 \sim \Lambda^3 A$ by decreasing the cutoff.
- → Low-momentum interactions & similarity renormalization group transformations that lower the cutoff Λ .

Homework: Consider an oscillator basis. How has one choose the oscillator frequency ω and the number of oscillator shells N for a given momentum cutoff Λ and mass number A?

Momentum-dependence of phenomenological potentials

Similarity renormalization group (SRG) transformation

Glazek, & Wilson, PRD 48 (1993) 5863; 49 (1994) 4214; Wegner, Ann. Phys. 3 (1994) 77; Perry, Bogner, & Furnstahl (2007)

Main idea: decouple low from high momenta via a (unitary) similarity transformation

Unitary transformation

$$\hat{H}(s) = U(s)\hat{H}U^{\dagger}(s) = U(s)\left(\hat{T} + \hat{V}\right)U^{\dagger}(s)$$

Evolution equation

$$\frac{d\hat{H}(s)}{ds} = \left[\eta(s), \hat{H}(s)\right] \quad \text{with} \quad \eta(s) \equiv \frac{dU(s)}{ds} U^{\dagger}(s) = -\eta^{\dagger}(s)$$

Choice of unitary transformation through (one does not need to construct U explicitly).

$$\eta(s) = \left[\widehat{T}, \widehat{H}(s)\right]$$

yields scale-dependent potential that becomes more and more diagonal

$$\widehat{H}(s) = \widehat{T} + \widehat{V}(s)$$

Note: Baker-Campbell-Hausdorff expansion implies that SRG of 2-body force generates many-body forces

$$e^{-\eta}\hat{H}e^{\eta} = \hat{H} + \left[\hat{H},\eta\right] + \frac{1}{2!}\left[\left[\hat{H},\eta\right],\eta\right] + \dots$$

SRG evolution of a chiral potential

(use cutoff $\lambda \equiv s^{-1/4}$ as evolution variable)

Fig.: Bogner & Furnstahl. See http://www.physics.ohio-state.edu/~ntg/srg

Understanding SRGs

Question: Which statement is correct?

- 1. The SRG is a unitary transformation, and no information is lost.
- 2. The SRG is only accurate up to the cutoff.

Understanding SRGs

Question: Which statement is correct?

- 1. The SRG is a unitary transformation, and no information is lost.
- 2. The SRG is only accurate up to the cutoff.

When performing the SRG, up to A-body forces are created in an A-body system ("no free lunch theorem"). In practice, one hopes (with view to the chiral power counting) that the computation of 2-body and 3-body forces might be sufficient.

Q: How can we check in practice, that keeping 2-body and 3-body forces is sufficient?

- 1. Perform a computation with and without SRG an compare.
- 2. Check how results in the A-body system depend on the cutoff/evolution parameter

Understanding SRGs

Question: Which statement is correct?

- 1. The SRG is a unitary transformation, and no information is lost.
- 2. The SRG is only accurate up to the cutoff.

When performing the SRG, up to A-body forces are created in an A-body system ("no free lunch theorem"). In practice, one hopes (with view to the chiral power counting) that the computation of 2-body and 3-body forces might be sufficient.

Q: How can we check in practice, that keeping 2-body and 3-body forces is sufficient?

- 1. Perform a computation with and without SRG an compare.
- 2. Check how results in the A-body system depend on the cutoff/evolution parameter 🖌

Of course: Any observable other than the Hamiltonian also needs to be transformed.

Solution of ³H and ⁴He with induced and initial 3NF

A: In ⁴He, (short ranged) 4NF yield about 200 keV (see energies at small momentum) Note: This is consistent with deviation from experiment! ³³

Summary

- Introduction to main ideas behind nuclear forces from chiral EFT
- Model-independent approach
- Potentials are not observables, and one can shuffle things around (e.g. via different regularization and renormalization schemes, or via unitary transformations)
- A high cutoff carries a high computational price tag
- Similarity renormalization group transformations very useful tools for study and practical computations

Solving the nuclear many-body problem: coupledcluster theory

Thomas Papenbrock

and OAK RIDGE NATIONAL LABORATORY

Aim of this lecture:

Present some results from *ab initio* computations with emphasis of the coupled-cluster method

13th CNS Summer School

August 21–27, 2014 at Tokyo University, Wako Campus

No free lunch

This lecture week presents several aspects of this duality.

Light nuclei from a chiral interaction (N³LO by Entem & Machleidt) with no-core shell model

Figure 5. States dominated by *p*-shell configurations for ¹⁰B, ¹¹B, ¹²C, and ¹³C calculated at $N_{\text{max}} = 6$ using $\hbar \Omega = 15$ MeV (14 MeV for ¹⁰B). Most of the eigenstates are isospin T=0 or 1/2, the isospin label is explicitly shown only for states with T=1 or 3/2. The excitation energy scales are in MeV.

P. Navratil et al., Phys. Rev. Lett. 99, 042501 (2007), nucl-th/0701038. Review: Navratil, Quaglioni, Stetcu, Barrett, J. Phys. G 36, 083101 (2009); arXiv:0904.0463.

Ab initio description of nuclear reactions

[S. Quaglioni and P. Navrátil, PRL101, 092501 (2008); PRC79, 044606 (2009)]

¹²C Hoyle state from lattice EFT

Spectra and shell evolution in Calcium isotopes

Solving the nuclear many-body problem

- Coupled-cluster method
- No-core shell model
- Greens function Monte Carlo
- Lattice Monte Carlo

Reading suggestions:

Coupled cluster method:

T. Crawford and H. Schaefer, Rev. Comp. Chem. 14, 33 (2000); I. Shavitt and R. Bartlett, *Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster Theory* (Cambridge, 2009); Hagen, Papenbrock, Hjorth-Jensen & Dean, arXiv: 1312.7872.

No-core shell model:

Navratil, Quaglioni, Stetcu, Barrett, J. Phys. G 36, 083101 (2009); arXiv:0904.0463. GFMC:

Pieper & Wiringa: Ann. Rev. Nucl. Part.Sci. 51, 53 (2001); nucl-th/0103005 Lattice Monte Carlo:

Dean Lee, Prog. Part. Nucl. Phys. 63 117-154 (2009); arXiv:0804.3501

Coupled-cluster theory (CCSD)

Ansatz:

$$|\Psi\rangle = e^{T}|\Phi\rangle$$

$$T = T_{1} + T_{2} + \dots$$

$$T_{1} = \sum_{ia} t_{i}^{a} a_{a}^{\dagger} a_{i}$$

$$T_{2} = \sum_{ijab} t_{ij}^{ab} a_{a}^{\dagger} a_{b}^{\dagger} a_{j} a_{i}$$

- Scales gently (polynomial) with increasing problem size o²u⁴.
- © Truncation is the only approximation.
- ③ Size extensive (error scales with A)

Correlations are *exponentiated* 1p-1h and 2p-2h excitations. Part of np-nh excitations included!

How do we deal with this ansatz / how do we choose the parameters of the cluster operator?
Coupled-cluster method

Schrödinger equation

$$\hat{H}|\Psi\rangle = E|\Psi\rangle$$

Exponential ansatz for correlation operator

$$\hat{H}e^{\hat{T}}|\Phi_{0}\rangle = Ee^{\hat{T}}|\Phi_{0}\rangle$$

yields Schrödinger equation for similarity transformed Hamiltonian

$$e^{-\hat{T}}\hat{H}e^{\hat{T}}|\Phi_0\rangle = E|\Phi_0\rangle$$

Similarity-transformed Hamiltonian is not Hermitian.

$$\overline{H} \equiv e^{-\hat{T}}\hat{H}e^{\hat{T}}$$

Coupled-cluster equations (in CCSD approximation)

Multiply with 0p0h, 1p1h, and 2p2h bras and obtain coupled-cluster equations.

$$\langle \Phi_0 | \overline{H} | \Phi_0 \rangle = E \langle \Phi_i^a | \overline{H} | \Phi_0 \rangle = 0 \langle \Phi_{ij}^{ab} | \overline{H} | \Phi_0 \rangle = 0$$

The 1p1h and 2p2h excitations are defined as

$$\begin{aligned} |\Phi_i^a\rangle &= \hat{a}_a^{\dagger} \hat{a}_i |\Phi_0\rangle \\ |\Phi_{ij}^{ab}\rangle &= \hat{a}_a^{\dagger} \hat{a}_b^{\dagger} \hat{a}_j \hat{a}_i |\Phi_0\rangle \end{aligned}$$

CCSD approximation: The similarity-transformed Hamiltonian has no 1p1h and no 2p2h excitations from the reference state.

First, one needs to solve the CCSD equations. This yields the cluster amplitudes t_i^a and t_{ij}^{ab} that define the similarity-transformed Hamiltonian. Second, the ground-state energy can be computed.

It's all about the similarity-transformed Hamiltonian

Structure of similarity-transformed Hamiltonian after the CCSD equations are solved

$$\bar{H}_{\rm CCSD} = \begin{pmatrix} 0 \text{p0h} & 1\text{p1h} & 2\text{p2h} \\ \bar{H}_{0S} & \bar{H}_{0D} \\ 0 & \bar{H}_{SS} & \bar{H}_{0D} \\ 0 & \bar{H}_{SS} & \bar{H}_{SD} \\ 0 & \bar{H}_{DS} & \bar{H}_{DD} \end{pmatrix}$$
 0p0h
1p1h
2p2h

For excited states and expectation values: Solve the right and left eigenvalue problems

$$\overline{H}|R_n\rangle = E_n|R_n\rangle$$
$$\langle L_n|\overline{H} = E_n\langle L_n|$$

Benefits:

- small model space (2p-2h) excitations are not to numerous)
- similarity transformed Hamiltonian has up to three-body operators in this space 12

Baker Campbell Hausdorff relation to compute similarity-transformed Hamiltonian

$$e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + \left[\hat{H},\hat{T}\right] + \frac{1}{2!}\left[\left[\hat{H},\hat{T}\right],\hat{T}\right] + \frac{1}{3!}\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \frac{1}{4!}\left[\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \dots$$

Q: When does this expansion terminate for a two-body Hamiltonian H?

- 1. This is an infinite series that does not terminate.
- 2. It terminates at 4-fold nested commutators (as shown above) because we deal with a two-body Hamiltonian

Baker Campbell Hausdorff relation to compute similarity-transformed Hamiltonian

$$e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + \left[\hat{H},\hat{T}\right] + \frac{1}{2!}\left[\left[\hat{H},\hat{T}\right],\hat{T}\right] + \frac{1}{3!}\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \frac{1}{4!}\left[\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \dots$$

Q: When does this expansion terminate for a two-body Hamiltonian H?

Answers:

- 1. This is an infinite series that does not terminate.
- It terminates at 4-fold nested commutators (as shown above) because we deal with a two-body Hamiltonian ✓

Q: What is the rank (two-body, three-body, four-body ...) of the similarity-transformed Hamiltonian for $T=T_1+T_2$ and a two-body Hamiltonian H?

- 1. Two body
- 2. Three body
- 3. Four body
- 4. Six body

Baker Campbell Hausdorff relation to compute similarity-transformed Hamiltonian

$$e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + \left[\hat{H},\hat{T}\right] + \frac{1}{2!}\left[\left[\hat{H},\hat{T}\right],\hat{T}\right] + \frac{1}{3!}\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \frac{1}{4!}\left[\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \dots$$

Q: When does this expansion terminate for a two-body Hamiltonian H?

Answers:

- 1. This is an infinite series that does not terminate.
- 2. It terminates at 4-fold nested commutators (as shown above) because we deal with a two-body Hamiltonian

Q: What is the rank (two-body, three-body, four-body ...) of the similarity-transformed Hamiltonian for $T=T_1+T_2$ and a two-body Hamiltonian H?

- 1. Two body
- 2. Three body
- 3. Four body
- 4. Six body 🗸

Baker Campbell Hausdorff relation

$$e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + \left[\hat{H},\hat{T}\right] + \frac{1}{2!}\left[\left[\hat{H},\hat{T}\right],\hat{T}\right] + \frac{1}{3!}\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \frac{1}{4!}\left[\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \dots$$

Key observation:

- 1. When expressed in a diagrammatic way, no unlinked diagrams will be produced by the exponential similarity transform \rightarrow size extensive approach
- All terms of the cluster operator *T* commute with each other as annihilation and creation operators refer to different sets of single-particle orbitals (occupied and unoccupied single-particle states)

Consequences (of second point)

- **1. The BCH expansion is finite** (at 2k nested commutators for k-body forces) This makes the method very efficient. No ODE needs to be integrated.
- 3. Solution by iteration (keeping fingers crossed that Banach's fixed point theorem applies): rewrite as t=f(t) and iterate. (usually 15-50 iteration needed)

Who likes to commute? Can we get there fast, please?

$$e^{-\hat{T}}\hat{H}e^{\hat{T}} = \hat{H} + \left[\hat{H},\hat{T}\right] + \frac{1}{2!}\left[\left[\hat{H},\hat{T}\right],\hat{T}\right] + \frac{1}{3!}\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \frac{1}{4!}\left[\left[\left[\left[\hat{H},\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right],\hat{T}\right] + \dots$$

First attempted: Apply Wick's theorem and work it out.

$$\langle \Phi_0 | \overline{H} | \Phi_0 \rangle = E \langle \Phi_i^a | \overline{H} | \Phi_0 \rangle = 0 \langle \Phi_{ij}^{ab} | \overline{H} | \Phi_0 \rangle = 0$$

More efficient approach: use diagrams!

Diagrammatics

Normal-ordered one-body Hamiltonian

$$\hat{F}_{N} = \sum_{ab} f_{ab} \{a_{a}^{\dagger}a_{b}\} + \sum_{ij} f_{ij} \{a_{i}^{\dagger}a_{j}\} + \sum_{ia} f_{ia} \{a_{i}^{\dagger}a_{a}\} + \sum_{ia} f_{ai} \{a_{a}^{\dagger}a_{i}\}$$

$$= \bigwedge^{---X} + \bigwedge^{---$$

Diagrammatics cont'd

Antisymmetric two-body operator <ai|V|jb> = < left out, right out|| left in, right in>

CCSD energy equation $\langle \Phi_0 | \overline{H} | \Phi_0 \rangle = E$

All diagrams that are fully contracted (no open lines)

$$E_{\text{CCSD}} - E_0 = \left(\sum_{ia} -X + \left(\sum_{ijab} + 1 \right) + \left(\sum_{ijab} + 1 \right) \right) \right)$$
$$= \sum_{ia} f_{ia} t_i^a + \frac{1}{4} \sum_{ijab} \langle ij||ab \rangle t_{ij}^{ab} + \frac{1}{2} \sum_{ijab} \langle ij||ab \rangle t_i^a t_j^b$$

Question: What is the computational cost (in number of occupied and unoccupied states of the model space) for the computation of the energy?

- 1. o*u
- 2. (o*u)²
- 3. o² * u⁴

CCSD energy equation $\langle \Phi_0 | \overline{H} | \Phi_0 \rangle = E$

All diagrams that are fully contracted (no open lines)

$$E_{\text{CCSD}} - E_0 = \left(\sum_{ia} -X + \left(\sum_{ijab} + 1 \right) + \left(\sum_{ijab} + 1 \right) \right) \right)$$
$$= \sum_{ia} f_{ia} t_i^a + \frac{1}{4} \sum_{ijab} \langle ij||ab \rangle t_{ij}^{ab} + \frac{1}{2} \sum_{ijab} \langle ij||ab \rangle t_i^a t_j^b$$

Question: What is the computational cost (in number of occupied and unoccupied states of the model space) for the computation of the energy?

- 1. o*u
- 2. (o*u)² ✓ (last two diagrams)
- 3. o² * u⁴

T₁ equation (within CCSD)

 $\langle \Phi_i^a | \overline{H} | \Phi_0 \rangle = 0$

All linked diagrams with one incoming hole line and one outgoing particle line.

T₂ equation (within CCSD)

 $\langle \Phi_{ij}^{ab} | \overline{H} | \Phi_0 \rangle = 0$

All linked diagrams with two incoming hole lines and two outgoing particle lines.

At this point, one has to consider re-use of intermediate diagrams and order of contractions for numerical efficiency.

→ "factorization" of diagrams (Kucharski & Bartlett 1991)

Homework: Write down all diagrams for the equation above!

Summary: Ab-initio method

- Size extensive
- Computational cost $n_o^2 n_u^4 \sim \Lambda^{12}A^6$ (in CCSD)
- Within CCSD, one only computes the matrix elements of a similarity-transformed twobody Hamiltonian (shell model needs matrix elements between many-body states)

No core shell model

Main idea: build and diagonalize the Hamiltonian matrix of the many-body system in an oscillator basis

Oscillator basis: The only localized basis, in which a wave function

 $\phi_{com}(r1+r2) \phi_{rel}(r1-r2)$

can be written as a *finite* sum of products

 $\phi_n(r1)\phi_m(r2)$ of oscillator wave functions ϕ .

Consequence: An intrinsic wave function can be computed that makes no reference to the center of mass

- Rotational and translational invariance exactly preserved
- Matrix dimensions scales factorial in the number of single-particle states

Navratil, Quaglioni, Stetcu & Barrett, *Recent developments in no-core shell-model calculations*, J. Phys. G 36, 083101 (2009); arXiv:0904.0463

Green's Function Monte Carlo

Idea:

1. Determine accurate approximate wave function via variation of the energy (The high-dimensional integrals are done via Monte Carlo integration).

$$E_T = \frac{\langle \Psi_{\text{trial}} | \hat{H} | \Psi_{\text{trial}} \rangle}{\langle \Psi_{\text{trial}} | \Psi_{\text{trial}} \rangle}$$

2. Refine wave function and energy via projection with Green's function

$$|\Psi\rangle = \tau \stackrel{\lim}{\to} \infty e^{-\tau (\hat{H} - E_T)} |\Psi_{trial}\rangle$$

Nice review: "Lectures on Quantum Monte Carlo" by David M. Ceperley: http://people.physics.uiuc.edu/Ceperley/papers/175.pdf

Great lecture:

Werner Krauth, Introduction To Monte Carlo Algorithms, cond-mat/9612186

Green's function Monte Carlo details

- Idea: Function of the Hamiltonian projects out the ground state from a trial wave function.
- Method: A wave function at imaginary "time" (n+1)t is obtained from a trial wave function at time nt via Green's function $G(R, R') \equiv \langle R | e^{-\tau (\mathcal{H} E_T)} | R' \rangle$

$$\psi_{n+1}(R) = e^{-\tau(\mathcal{H} - E_T)}\psi_n(R) = \int dR' G(R, R')\psi_n(R')$$

- Note: Ψ_n results from a 3n-dimensional integral over Ψ_0 . $\psi_n(R_n) = \int dR_{n-1} \dots dR_1 dR_0 G(R_n, R_{n-1}) \dots G(R_2, R_1) G(R_1, R_0) \psi_0(R_0)$
- Understanding of the method: Expansion in terms of exact eigenstates ϕ_a

$$\psi_n(R) = \sum_{\alpha} \phi_\alpha(R) < \phi_\alpha |\Psi > e^{-n\tau(E_\alpha - E_T)}$$
$$\lim_{n \to \infty} \psi_n(R) = \phi_0(R) < \phi_0 |\Psi > e^{-n\tau(E_0 - E_T)}$$

• <u>Key insight</u>: Green's function in the limit of zero time step is exactly known for Hamiltonians H=T+V(R) with <u>local</u> potential V(R)

$$< R | e^{-\tau (\mathcal{H} - E_T)} | R' > = (4\pi\lambda\tau)^{-3N/2} e^{-\frac{(R-R')^2}{4\lambda\tau}} e^{-\tau (V(R) - E_T)} + O(\tau^2)$$

• "Only" need to perform a high-dimensional integration \rightarrow Monte Carlo

Green's function Monte Carlo results

Accomplishments of ab-initio nuclear structure calculations

- Demonstration that nuclei can be built from scratch
- Demonstration that three-nucleon forces must be included in the description
- Determination of low-energy constants of potentials from chiral EFT
- Probing of effective interactions in medium-mass nuclei
- Bridging the gap to (ab-initio) reactions in light systems
- Providing a solid basis that other methods can build on and link to (→ UNEDF <u>www.unedf.org</u>, NUCLEI <u>www.computingnuclei.org</u> projects)

Several methods with complementary properties available

Computing the nuclear mass table: density functional theory

Thomas Papenbrock

and OAK RIDGE NATIONAL LABORATORY

Aim of this lecture:

Introduction to nuclear mean-field methods

13th CNS Summer School

August 21–27, 2014 at Tokyo University, Wako Campus

Bottom-up approach to nuclear structure

Methods (th)at work

Nobel Prize in chemistry 1998

Two quotes from Kohn's Nobel lecture:

I begin with a provocative statement. In general the many-electron wavefunction $\Psi(r_1,...,r_N)$ for a system of N electrons is not a legitimate scientific concept, when $N \ge N_0$, where $N_0 \approx 10^3$.

I will use two criteria for defining "legitimacy": a) That Ψ can be calculated with sufficient accuracy and b) can be recorded with sufficient accuracy.

In concluding this section I remark that DFT, while *derived* from the N-particle Schroedinger equation, is finally expressed entirely in terms of the density n(r), in the Hohenberg-Kohn formulation,^[1] and in terms of n(r) and *single*-particle wavefunctions $\psi_j(r)$, in the Kohn-Sham formulation^[2]. This is why it has been most useful for systems of very many electrons where wavefunction methods encounter and are stopped by the "exponential wall". Walter Kohn

"for his development of the density-functional theory"

Density-functional theory (DFT)

Theoretical basis: Hohenberg-Kohn theorem (1964)

Map from ground-state wave function to density

 $\psi(r)
ightarrow
ho(r)$

Map from density to set of all corresponding wave functions

$$ho(r) o \{\psi(r)\}|_{
ho}$$

Energy functional: energy is minimum in this set

$$F[\rho(r)] = \min_{\{\psi\}|\rho} \langle \psi | \hat{H} | \psi \rangle$$

Ground-state energy from minimization of the functional

$$E_{gs} = \min_{\rho} \{ F[\rho] + \int dr v(r) \rho(r) \}$$

Density-functional theory

Alternative view: Energy functional is a Legendre transform (Lieb, 1983)

Find ground-state energy for all external potentials (this is a functional)

$$v(r) \to E[v(r)]$$

Perform functional Legendre transform

1. Compute density as functional derivative

$$\rho(r) = \frac{\delta E[v(r)]}{\delta v(r)}$$

- 2. Inversion: Find potential in terms of density
- 3. Construct Legendre transform

$$F[\rho(r)] = E[v(r)] - \int \mathrm{d}r v(r)\rho(r)$$

This path of construction can actually be followed for dilute Fermi gases [Puglia et al (2003)], the pairing Hamiltonian [TP, Bhattacharyya (2007)], or the Lipkin model [Bertolli, TP (2008)].

Example: Energy of a non-interacting fermions (Thomas-Fermi approximation)

Note: Hohenberg-Kohn DFT not a practical (i.e. accurate) tool

- Local approximations of the density functional are too inaccurate
- Problem is particular with the kinetic energy density

Systematic construction of density functional for dilute Fermi gas

Dilute Fermi gas:

- All parameters of the potential (scattering length, effective range, …) much smaller than the Fermi wave length (or average two-particle distance) → small expansion parameter exist, namely **k**_F**a**.
- Use EFT to systematically construct energy density functional in terms of these small parameters.

$$\mathcal{E} = \rho \frac{\hbar^2 k_F^2}{2m} \left\{ \frac{3}{5} + \left[\frac{2}{3\pi} k_F a + \frac{4}{35\pi^2} (11 - 2\log 2) (k_F a)^2 \right] \right\}$$

$$\rho = \frac{k_F^3}{3\pi^2}$$

Contributions from interaction

This systematic approach gives valuable insights into the construction of density functionals. However, it is at present limited to "solvable" Hamiltonians.

See, e.g., R. J. Furnstahl and H.-W. Hammer, Annals Phys. 302 (2002) 206. S. J. Puglia et al, Nucl.Phys. A723 (2003) 145. Kohn-Sham DFT [W. Kohn & L. Sham, Phys. Rev. 140 (1965) A1133]

• Kohn-Sham: The form of the density functional is

$$E[\rho] = \int d^3r \left(\tau(r) + V_{\text{ext}}(r)\rho(r)\right) + E_{\text{int}}[\rho]$$

$$\rho(r) = \sum_{k=1}^{A} |\psi_k(r)|^2 \quad \text{density}$$

$$\tau(r) = \frac{\hbar^2}{2m} \sum_{k=1}^{A} |\nabla\psi_k(r)|^2 \quad \text{kin. energy density of free fermions (nonlocal!)}$$

Kohn-Sham equations: dE[ρ] = 0

$$\left(-\frac{\hbar^2}{2m}\Delta + \frac{\delta E_{\text{int}}[\rho]}{\delta \rho(r)} + V_{\text{ext}}(r)\right)\psi_k(r) = \mu\psi_k(r)$$

- Remarks: Single-particle Schrödinger equation has to be solved.
- For nuclei, one uses the *local density approximation* (LDA), and gradient corrections.

$$E_{\text{int}} = E_{\text{int}}[\rho, \nabla \rho] = \int d^3 r \mathcal{E}(\rho, \nabla \rho)$$

Idea behind Kohn-Sham DFT

Ground state density of interacting fermions in external harmonic trap.

Turn off the interaction, but change external potential such that the density remains that of the interacting system. The additional potential is the Kohn-Sham potential.

Picture from R. Furnstahl: http://trshare.triumf.ca/~schwenk/ECT/furnstahl1.pdf

Nuclear DFT

Problem: Local density approximation not accurate (e.g. pairing would require highly nonlocal functional)

Approach: Include anomalous pairing densities and work with quasi-particle states

1. Add sources to the Hamiltonian

$$\hat{H} \rightarrow \hat{H} + \int d^3 r \hat{\psi}^{\dagger}(r) \hat{\psi}(r) v(r) + \int d^3 r \left(\hat{\psi}(r) \hat{\psi}(r) + \hat{\psi}^{\dagger}(r) \hat{\psi}^{\dagger}(r) \right) w(x)$$

$$E_{g.s.} = E[v(r), w(r)]$$

2. Perform Legendre transform with respect to all sources

$$F[\rho(r),\kappa(r)] = E[v(r),w(r)] - \int d^3r v(r)\rho(r) - \int d^3r w(r)\kappa(r)$$

Practical approach: Skyrme Hartree Fock theory

Refs.: T.H.R. Skyrme, Phil. Mag. 1 (1956) 1043; D. Vautherin and D. M. Brink, PRC 5 (1972) 626; J. W. Negele and D. Vautherin, PRC 5 (1972) 1472; Bogner and Furnstahl (2006)

Main idea: Use mean-field Hamiltonian that depends on densities and currents, and solve self-consistently.

$$\begin{split} E &= \int d^3 r \, n \left\{ \mathcal{E}_{\rm kin} + \mathcal{E}_{\rm Skyrme} + \mathcal{E}_{\rm Skyrme,odd} \right\} + E_{\rm Coulomb} + E_{\rm pair} + E_{\rm cm} \quad , \\ n \mathcal{E}_{\rm kin} &= \frac{\hbar^2}{2m} \int d^3 \tau \quad , \\ n \mathcal{E}_{\rm Skyrme} &= \frac{B_0 + B_3 n^{\alpha}}{2} n^2 - \frac{B'_0 + B'_3 n^{\alpha}}{2} \tilde{n}^2 \\ &+ B_1 (n\tau - \mathbf{j}^2) - B'_1 (\tilde{n}\tilde{\tau} - \tilde{\mathbf{j}}^2) - \frac{B_2}{2} n\Delta n + \frac{B'_2}{2} \tilde{n}\Delta \tilde{n} \\ &- B_4 n \nabla \cdot \mathbf{J} - (B_4 + B'_4) \tilde{n} \nabla \cdot \tilde{\mathbf{J}} + \frac{C_1}{2} \mathbf{J}^2 - \frac{C'_1}{2} \tilde{\mathbf{J}}^2 \quad , \\ n \mathcal{E}_{\rm Skyrme,odd} &= -\frac{C_0 + C_3 n^{\alpha}}{2} \sigma^2 + \frac{C'_0 + C'_3 n^{\alpha}}{2} \tilde{\sigma}^2 + \frac{C_2}{2} \sigma \cdot \Delta \sigma - \frac{C'_2}{2} \tilde{\sigma} \cdot \Delta \tilde{\sigma} \\ &- C_1 \sigma \cdot \tau + C'_1 \tilde{\sigma} \cdot \tilde{\tau} - B_4 \sigma \cdot (\nabla \times \mathbf{j}) - (B_4 + B'_4) \tilde{\sigma} \cdot (\nabla \times \tilde{\mathbf{j}}) \quad , \\ E_{\rm Coulomb} &= e^2 \frac{1}{2} \int d^3 r \, d^3 r' \frac{n_{\rm p}(\mathbf{r}) n_{\rm p}(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} - \frac{3}{4} e^2 \left(\frac{3}{\pi}\right)^{1/3} \int d^3 r \, [n_{\rm p}]^{4/3} \quad . \end{split}$$

Functional or Hamiltonian?

In modern parlance, one speaks of nuclear energy density functionals and not of density-dependent Hamiltonians.

- 1. This is just modern vocabulary
- This is of a correct expression because there are no density-dependent Hamiltonians (Hamiltonians depend on field operators in general, but not on densities)

Functional or Hamiltonian?

In modern parlance, one speaks of nuclear energy density functionals and not of density-dependent Hamiltonians.

- 1. This is just modern vocabulary
- This is of a correct expression because there are no density-dependent Hamiltonians (Hamiltonians depend on field operators in general, but not on densities)

Which symmetries does the mean-field break?

1. ...
 2. ...
 3. ...
 4. ...

Which symmetries does the mean-field break?

- 1. Translation invariance
- 2. Rotation invariance (deformation)
- 3. Particle number conservation (pairing)
- Isospin invariance (deformation in isospin space; worth considering close to N=Z line)

The "best" mean-field theory allows for all symmetries to be broken.
Reminder: Symmetry-breaking in mean-field theories

- HF states usually break symmetries, e.g., translational invariance and rotational invariance.
- HFB quasi-particle states do not exhibit a definite number of particles (breaking of U(1) gauge symmetry).

Question: Is the symmetry breaking in HF(B) a feature or a nuisance?

Answer:

- 1. It's a feature because it displays the most relevant properties of the ground state (e.g. deformation, pairing)
- 2. It's a nuisance because nuclei have definite spin and particle numbers, and the symmetry-breaking solutions miss these points.

Reminder: Symmetry-breaking in mean-field theories

- HF states usually break symmetries, e.g., translational invariance and rotational invariance.
- HFB quasi-particle states do not exhibit a definite number of particles (breaking of U(1) gauge symmetry).

Question: Is the symmetry breaking in HF(B) a feature or a nuisance?

Answer:

- 1. It's a feature because it displays the most relevant properties of the ground state (e.g. deformation, pairing) ✓
- 2. It's a nuisance because nuclei have definite spin and particle numbers, and the symmetry-breaking solutions miss these points.

However: Symmetry restoration becomes an important (and not yet fully solved) problem

Summary: Symmetry-breaking in mean-field theories

- HF states usually break symmetries, e.g., translational invariance and rotational invariance.
- HFB quasi-particle states do not exhibit a definite number of particles (breaking of U(1) gauge symmetry).
- The breaking of symmetry is desired, as it allows the single-particle state to capture relevant correlations.
- Restoration of symmetries becomes an important issue.

Publicly available program

HFODD

J. Dobaczewski et al, Computer Physics Communications 167 (2005) 214

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html

Skyrme functionals, example: UNEDF0

Kortelainen, Lesinski, Moré, Nazarewicz, Sarich, Schunck, Stoitsov, Wild, Phys. Rev. C 82, 024313 (2010)

Energy functional based on Skyrme SLy4 parametrization

$$E = \int \mathcal{H}(\boldsymbol{r}) d^3 \boldsymbol{r}$$

- usual kinetic part (with 1/A mass shift); interaction: $\chi = \chi_0 + \chi_1$
- interaction energy functional (with isospin labels): 13 parameters

$$\chi_t(\mathbf{r}) = C_t^{\rho\rho} \rho_t^2 + C_t^{\rho\tau} \rho_t \tau_t + C_t^{J^2} \mathbf{J}_t^2 + C_t^{\rho\Delta\rho} \rho_t \Delta\rho_t + C_t^{\rho\nabla J} \rho_t \nabla \cdot \mathbf{J}_t C_t^{\rho\rho} = C_{t0}^{\rho\rho} + C_{tD}^{\rho\rho} \rho_0^{\gamma}$$

• Pairing part depends on local pairing density: 2 parameters

$$\breve{\chi}(\boldsymbol{r}) = \sum_{q=n,p} \frac{V_0^q}{2} \left[1 - \frac{1}{2} \frac{\rho(\boldsymbol{r})}{\rho_0} \right] \breve{\rho}^2(\boldsymbol{r})$$

UNEDF0 functional

 Pairing parameters from odd-even staggering (OES); Lipkin-Nagomi for 100 particle number projections 80

 Optimization employs POUNDerS [Practical
Optimization Using No Derivatives (of Squares)]

(pseudo) observables: nuclear matter properties, binding energies, radii, OES of 44 well-deformed eveneven nuclei and 28 spherical nuclei

FIG. 1. (Color online) Experimental set of fit observables used in this work. The set contains data for 11 nuclei with A < 66 and 61 nuclei with A > 106.

Kortelainen, Lesinski, Moré, Nazarewicz, Sarich, Schunck, Stoitsov, Wild, Phys. Rev. C 82, 024313 (2010)

Sensitivity analysis exhibits correlations of the model

← Sensitivity of parameters to changes in mass, proton radius, odd-even staggering [Kortelainen et al (2010)]

FIG. 10. (Color online) Sensitivity of the parameters of UNEDF0 to different data types entering χ^2 . The EDF parameters are labeled as in Table VII.

Correlation of observables within the model \rightarrow [Nazarewicz & Reinhard (2010)]

Dipole polarizability and neutron skin

Strong correlations between neutron skins in different nuclei

J. Piekarewicz et al., Phys. Rev. C 85, 041302(R) (2012)

Models: SLy4, Svmin, UNEDF0, UNEDF1, FRDM and HFB-21

- Systematic errors (due to incorrect assumptions/poor modeling)
- Statistical errors (optimization and numerical errors)

Erler et al., Nature 486, 509 (2012)

Separation energies illustrate challenges

How many nuclei can be produced?

Nuclear Computational Low-Energy Initiative

- 15 institutions
- ~60 researchers
 - physics
 - •computer science
 - applied mathematics
- foreign collaborators
- annual budget M\$2+
- 5 years

http://computingnuclei.org/

Theoretical improvements of the energy functional: density-matrix expansion using soft interactions

Basic idea: Vautherin & Negele (1972) $\rho\left(\vec{\mathbf{R}} + \frac{\vec{s}}{2}, \vec{\mathbf{R}} - \frac{\vec{s}}{2}\right) = \rho_{SL}(sk_F)\rho(\vec{\mathbf{R}}) + \frac{35}{2sk_F^3}j_3(sk_F)\left[\frac{1}{4}\nabla^2\rho(\vec{\mathbf{R}}) - \tau(\vec{\mathbf{R}}) + \frac{3}{5}k_F^2\rho(\vec{\mathbf{R}})\right]$ See also: Holt, Kaiser & Weise; Gebremariam, Duguet & Bogner; ...

Stoitsov et al., Phys. Rev. C 82, 054307 (2010)

Summary

Self-consistent mean-field models

- Theoretical foundation within Kohn-Sham DFT.
- Applicable across nuclear chart.
- Phenomenological approach; fit to data.
- Yield impressive results (given their simplicity) in regions that entered the fit.
- Form of functional needs improvement to cover drip line physics
- Future theoretical and experimental advances for neutron-rich nuclei necessary.

Outlook

Enthusiastic and lively field Moving towards a unified description of all atomic nuclei Plenty of opportunities and challenges

