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Energy scales and relevant degrees of freedom

Physics of Hadrons

Physics of Nuclei
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The fundamental laws of physics are invariant
under rotations. How can non-spherical things (e.g.
eggs, grains of rice, chopsticks) exist?

1. Non-spherical things have a ground state
with nonzero spin and spin projection.

2. The non-spherical things are not in their
ground states.

3. Macroscopic things, even in their ground
states, do not need to be invariant under
rotations.
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Spontaneous symmetry breaking

Def.. Spontaneous symmetry breaking happens when an arbitrarily small
external perturbation yields a ground state that breaks the symmetry.

Comment: Strictly speaking, this can only happen in a macroscopic system.

Q1: Consider a macroscopic object in quantum mechanics. What is the
excitation energy for horizontal motion of a macroscopic object in this room?

A1: E =h%(2mL2) = 1070 Joule

Consequence: Superpositions of practically degenerate plane wave states of
the center-of-mass will yield a localized ground state that spontaneously breaks
translation invariance.
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this room?
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spontaneous symmetry breaking.



Nambu-Goldstone modes are low-lying excitations in the
presence of spontaneous symmetry breaking
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Spontaneous symmetry breaking of rotational
symmetry: ferromagnet
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- Axially symmetric ground state breaks SO(3) rotational symmetry.
 Nambu-Goldstone modes generate local (i.e. position and time
dependent) rotations of the spins.

* exp(-i Y,(x,y,z,t) J, -i g (x,y,2,t) J,) with Nambu-Goldstone fields (y,,
y,) and angular momentum operators (J,,J,)

* Spin waves (or magnons) are low-energy excitations with long wave

length
?
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Spontaneous breaking of translational symmetry:

crystal

- Crystal lattice breaks translational symmetry.

 Nambu-Goldstone modes generate local (i.e. position and time dependent)
translations of the lattice points (ions).

* exp('i lle(X,y,Z,t) I:,x' i llJy(X,y,Z,t) I:’y - l‘l"z(x!yszst) Pz) with Nambu-
Goldstone fields (y,, @y, ¥,) and momentum operators (P,, P, P,)

* Phonons are low-energy excitations (wave length A much larger than lattice
spacing)
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Atomic nuclei are (small) finite systems.
There can not be spontaneous symmetry breaking

* In infinite deformed systems, different orientations
correspond to inequivalent Hilbert spaces.

* The overlap between states in inequivalent Hilbert spaces is
Zero.

 Rotations of the whole system are not considered.

”,

« Such rotations are “zero modes”™: “Nambu-Goldstone”
modes that depend only on time but not on position.

* In finite systems, states corresponding to different
orientations have finite overlap.

* Nevertheless, in systems with “emergent symmetry
breaking” exhibit low-lying excitations.

» Quantized rotations (“zero modes”) are the low lying
excitations.
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Which of the following is correct?

Nuclei with rotational spectrum (such as 7?Yb) are deformed, i.e.
rotational symmetry is spontaneously broken. They literally have
an oblate or a prolate shape.

There is no spontaneous symmetry breaking in finite systems, and
there are no deformed nuclei. States of atomic nuclei have good
spin, and thus cannot be deformed.
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What do we mean by (intrinsically) “"deformed” nuclei?

1. Nuclei with much enhanced strength in electric quadrupole transitions
and (if they are even-Z, even-N) low-lying 2* states.
2. Nuclei that exhibit rotational bands and a separation of scale (¢ << Q)

that reflects the precursors of spontaneous symmetry breaking in a
finite system.

3. Mean-field computations of such nuclei would yield a deformed
density of the single-particle ground state.

4. Intrinsic deformation: In the co-rotating (body-fixed) coordinate
system, the nucleus is deformed

5. All of the above.
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Effective field theory

Q: How can we economically solve a physical problem (by employing
appropriate degrees of freedom)?

A: Exploit a separation of scales.
Examples:

1. Multipole expansion for the electromagnetic field.
Q: Why does it work?
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Effective field theory

Q: How can we economically solve a physical problem (by employing
appropriate degrees of freedom)?

A: Exploit a separation of scales.

Examples:
1. Multipole expansion for the electromagnetic field.

Q: Why does it work?
A: Distance from charge distribution >> extension of charge distribution

2. Quantum chemistry employs the Coulomb potential and not QED

Q: Why does it work?
A: e* e pair production threshold (~ 1MeV) >> chemical bonds ( ~ eV)

3. Nuclei are described in terms of protons and neutrons and not via quarks and
gluons

Q: Why does it work?
A: Excitation of nucleon (~300 MeV) >> excitation energies of nuclei (~ 1MeV)

29



Intrinsic deformation of atomic nuclei
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Atomic nuclei with intrinsic deformation
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Construction of an EFT

. ldentify the relevant degrees of freedom for the resolution scale of interest

. ldentify the relevant symmetries of low-energy nuclear physics and
investigate if and how they are broken

. Construct the most general Lagrangian consistent with those symmetries
and the symmetry breaking.

. Design an organizational scheme (power counting) that can distinguish
between more and less important contributions

Useful references:
S. Weinberg, The Quantum Theory of Fields, Vol.ll, chap. 19
H. Leutwyler, Phys. Rev. D 49 (1994) 3033, arXiv:hep-ph/9311264

C. P. Burgess, Physics Reports 330 (2000) 193
33



Data is needed for the construction of an effective theory
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Quadrupole degrees of freedom describe spins and parity of low-energy spectra
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. Identify relevant symmetries and symmetry breaking

Q: What are the symmetries, and are they spontaneously broken?

Band 1 Band 2
A2+) 1907.5
8+ 1853.5
6+ : 1537.5
104 —F——1370.1- - - | |¥
4+ - 1286.5
2+ 1117.9
0+ 1042'9A
8+ —F——912.1- - {HF[M
6+ —F——540 - - T[T
4+ 260.3-- - - .- Y¥
24 ——F——787 - p c - - Yy
0+ —X——0.0 - ¢ ‘;’ PPEPRREES A v
172 ; .
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Symmetry: Rotational invariance
Very low-energy (Nambu-Goldstone) modes precursors of spontaneous symmetry breaking



3. Construct the most general Hamiltonian consistent
with the symmetry and the symmetry breaking

P. van Isacker 2008

Rotational symmetry > Axial symmetry
SO(3) > SO(2)
3 generators 1 generator

There will be 3-1=2 Nambu-Goldstone bosons

Nambu-Goldstone modes parameterize the coset SO(3)/SO(2) ~ S?, i.e. the
two-sphere: [Weinberg 1967; Coleman, Callan, Wess & Zumino 1969; H.
Leutwyler, Phys. Rev. D 49 (1994) 3033, arXiv:hep-ph/9311264

cos ¢ sin @
n(f,¢) =1 singsind r
cos b



Parameters of the sphere: coordinates 3 and ¢

b
.

velocity (“lives” in tangent plane):
Ot = ¢sinfey + Oey
= v¢5¢ + vg €y
velocity components
,. Vb ¢sin b

Vo v

Question: How do the velocity

COS ¢ SN 0 components transform under a
n(f,0) = | singpsinfl | =e¢ rotation?
y . r
cos 0/ Question: How does the vector

n(3,9) transform under a rotation?



Transformation properties under rotations

Rotations do this
— — —
0N = 0w X N
Change of vector n (in tangent plane!)

0n = 0@ sin ey + obey

Result:

0\ [ —cospcotf —singcotf 1 gwx
o0 | sin ¢ COS @ 0 “y

ow.,



Transformation of velocity components under rotations

5 ¢sin® \ [ cosy —sinvy ¢ sin 0
{) siny Cos7y 0

with
COS @ _ Sin @ _

: Wy —
sin ¢

AN = — . )
sinf Y

f

Key result: velocity components v,, and vq4 transform as x- and y-
components of a vector under SO(2) rotations, albeit with a complicated
angle y

—>“Nonlinear realization” of rotational symmetry

Simplest invariant:
.2 2 N2 12 s 2
vy + vy =07+ @7 sin” 0

Question: | thought rotations do not commute, but the law above appears
as axial symmetry [i. e. SO(2)] and not as from SO(3)



Physics of Nambu-Goldstone modes

Lagrangian L = % (92 + qBQ sin? 9)
. 1 3
Hamiltonian H = — -
2C <p9 i sin? 9)
2 1 -
Quantization Py = 0(99 sin 00y
Py = —i0y
R I(I+1
Spectrum HY7n (0, 0) = (200 )Y1M(9,¢)

Rotational bands are quantized Nambu-Goldstone modes
(Superposition of differently oriented deformed nuclei).
Low-energy constant C, is moment of inertia and fit to data.



4. Power counting and next-to-leading order

Let us first understand dimensional analysis

1. Low-energy scale is ¢

2. Leading-order Lagrangian L = TO(Btfi) - (9;n1) must scale as: L~¢
3. Energy-time uncertainty implies (h=1): d, ~ ¢

4. Thus C, ~ 1/¢
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4. Power counting and next-to-leading order

Let us first understand dimensional analysis

1. Low-energy scale is ¢

2. Leading-order Lagrangian L = TO(atﬁ) . (0;n) must scale as: L~¢
3. Energy-time uncertainty implies (h=1): d, ~ ¢

4. Thus C, ~ 1/¢

Next-to-leading order term (scalar in NG modes that we can write down)

L =(C,/4) ( (On) - (0rn) P ~ & (£/Q)? << ¢
Q2: What is the dimension of C, in powers of energy?

A2: It must have dimensions of energy3 (We have two energy scales ¢ << Q)
Q2: How should the term C, scale precisely? A2: &3, £2Q1, &1Q2,Q3 ... 7

A2: C,/C, ~ energy? and is due to omitted physics at a high-energy scale Q
Thus: C,/C, ~ Q2 assuming naturalness




4. Power counting and next-to-leading order

Lagrangian at next-to-leading

L = (C0/2)(8t;7i)_-) (8;71)_)
+(C,/4) ( (0;n) - (0;n) )

Spectrum: J(J+1)/(2C,) — (J(J+1))? (C,/4C*)

—>Bohr & Mottelson (of course!)
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4. Power counting and next-to-leading order

Lagrangian at next-to-leading

L = (C0/2)(8,r_i)_-) (8#_1))_)
+(C,/4) ( (0;n) - (0;n) )

Spectrum: J(J+1)/(2C,) — (J(J+1))? (C,/4C*)

—>Bohr & Mottelson (of course!)

Q: When does the effective theory break down? How large can J be?

A1: energy correction << leading-order energy: C,/C,3J(J+1) << 1
A2: Thus: J << Q/¢
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What about higher derivatives?

Vector in tangent plane
U = Vgp€y + Vgl
Its time derivative...

U = (i)g — Vg cOs 9) €y + (ijq; + v Ccos 9) €4
— (U¢¢ sin 6 + vgé’) n

... does not “live” in the tangent plane! ®

Question: What does one do in this situation?



What about higher derivatives?

Vector in tangent plane

v o= ”U¢5¢ + vp€y

Its time derivative...

U = (1’)9 — vcbgz.ﬁcos 0) €p + (i)¢ -+ vgq.bcos 9) €4
— (v¢q581n 6 + vgé’) n

... does not “live” in the tangent plane! ®

Question: What does one do in this situation?

Answer: Introduce a “covariant” derivative (projection of derivative onto
tangent plane)!

Dtve — ’[)9 — v(/)gﬁ cos 6

Divy = g+ ved cosh



Odd-mass nuclei

Question: What'’s the key difference between 72Yb and 173Yb?

Answer:
1. We have to explicitly account for the odd neutron and add it as a degree
of freedom (e.g. particle-rotor model)

2. Atlow energies, no one knows about the odd neutron, and we shall not
add it.
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Odd-mass nuclei

Question: What'’s the key difference between 72Yb and 173Yb?

Answer:
1. We have to explicitly account for the odd neutron and add it as a degree
of freedom (e.g. particle-rotor model)

2. Atlow energies, no one knows about the odd neutron, and we shall not
add it. v/

Question: Apart from the odd neutron, what'’s the key difference between
172Yb and 173Yb?

Answer: '73Yb has a finite spin in its ground state. This breaks time
reversal invariance and first-order derivatives enter the Lagrangian.
Technically, we can add a monopole magnetic field inside the sphere.



Nuclei with finite ground-state spins: Wess Zumino terms

Notation on this

Lagrangian ;o = L(Leg)+sz slide: ¢ — «
— % (/32 + &2 sin? [3) — qacos 3 b= p

= 2
Hamiltonian  f7, , = QPg n (Pc;;r q.COQSg)
0 0 sin

Eigenvalues and eigenfunctions (ldentify q with ground-state spin!)
A l . l .
Hyo dy,q(B)e™ ™ = Ero(q.l)d,,,(B)e™" ™

[(14+1) —q°
2C

Erolg,l) =

| L= lal,lql + 1,]ql +2,...
D}, (a.B,v) = e ™madl (B3)e™"  (Wigner D functions)



relative error

173Yb: Relative error in LO and NLO
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Summary

- Description of nuclear deformation within an effective theory

* Model-independent approach, treats odd-mass and even-even
nuclei on equal footing

* Power counting: vibrational excitations >> rotational excitations



Interactions from chiral effective field theory and
renormalization group transformations

Thomas Papenbrock

and OAK RIDGE NATIONAL LLABORATORY

Aim of these lectures:

Give overview of nuclear forces from effective field theory, and
renormalization group transformations

13th CNS Summer School
August 21-27, 2014 at Tokyo University, Wako Campus



Reading suggestions

More is different, P. W. Anderson, Science 177, 393 (1972)

Elementary features of nuclear structure, B.R. Mottelson, in: H. Nifenecker, J.P. Blaizot, G.
Bertsch, W. Weise, F. David (Eds.), Trends in Nuclear Physics, 100 Years Later, North-Holland,
Amsterdam, 1998

Chiral effective field theory and nuclear forces

* Machleidt & Entem, Chiral effective field theory and nuclear forces, Phys. Rept. 503, (2011);
Machleidt, arXiv:0704.0807

* Epelbaum Hammer & MeiRner, Modern theory of nuclear forces, Rev. Mod. Phys. 81, 1773
(2009); arXiv:0811.1338

Low-momentum interactions and similarity transforms
* Bogner, Furnstahl & Schwenk, From low-momentum interactions to nuclear structure, Prog.
Part. Nucl. Phys. 65, 94 (2010); arXiv:0912.3688



Quantum chromo dynamics — theory of the strong interaction

2000 — ' .
- ] Budapest-Marseille-Wuppertal collaboration |
Diirr et al|, Science 322, 1224 (2008) ——Q)
i & _=*
1500 - . , =
1 Hadron masses from lattice QCD_ | & s+
| —_— - T
S y — 2 f A
2 1000 A
g B |:_':|K* + N
] —— P
500 ] K —— experiment
. —= width
i o input
j—— T ¢ QCD
0

Most impressive progress

But: first-principle computation of nuclei from QCD are still far away ...

Worse: Looking at the QCD Lagrangian, it is not obvious what the low-energy QCD physics is.
Neither the spontaneous breaking of chiral symmetry nor the emergence of selfbound nuclei is
obvious or predicted from QCD.

(The QED Lagrangian also does not tell us about emerging phenomena such as superconductivity
or crystals.) We need another approach!



Energy

Energy scales and relevant degrees of freedom

Degrees of Freedom Energy (MeV)

: 0%°0
S ©
quarks, gluons
S
T
- @ 940 Chiral effective field
o neutron mass
@ theory
c7) constituent quarks
S
B @
: 140
pion mass
baryons, mesons
< 8
S proton separation
= energy in lead
Y
(@]
g protons, neutrons
2]
>
<
Q 1.32
vibrational
state in tin

nucleonic densities
and currents

0.043
rotational
state in uranium

4
Fig.: Bertsch, Dean, Nazarewicz, SciDAC review (2007)
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Construction of nuclear potentials via chiral EFT

Weinberg, van Kolck, Epelbaum, Machleidt, ...

1. Identify the relevant degrees of freedom for the resolution
scale of atomic nuclei: nucleons and pions.

2. ldentify the relevant symmetries of low-energy QCD and
investigate if and how they are broken: spontaneously broken
chiral symmetry

3. Construct the most general Lagrangian consistent with those
symmetries and the symmetry breaking.

4. Design an organizational scheme that can distinguish between
more and less important contributions: a low-momentum
expansion: power counting

5. Guided by the expansion, calculate Feynman diagrams to the
desired accuracy for the problem under consideration.

Reviews:

Bedaque and van Kolck, Ann. Rev. Nucl. Part. Sci. 52 (2002) 339, nucl-th/0205058.
Machleidt, & Entem, Phys. Rept. 503, 1 (2011); Machleidt, arxiv:0704.0807.
Epelbaum, Hammer, MeiBner, Rev. Mod. Phys. 81, 1773 (2009); arXiv:0811.1338.



1. Identify relevant degrees of freedom

—_— . I
Energy (MeV) Separation of scale!

940 Nucleon

780 Omega meson
700 Rho meson

Cutoff in chiral

effective field theory
with Deltas

Cutoff in chiral
effective field theory

______ 140 _P|_on_. - o o ow owomoe=ow======= CUtoOff in pion-less
Fermi energy effective field theory




2. ldentification of relevant symmetries

1. SU(3) color symmetry from QCD
(Nucleons and pions are color singlets)

2. Chiral symmetry: Left and right-handed massless u and d quarks do not mix:
SU(2), x SU(2), symmetry. Expect left-right parity doublets in nature.

Explicit breaking of chiral symmetry: u and d quarks have a small mass.
Small corrections to above picture arise.

But: There are no (left-right) parity doublets observed in nature!

Reason: Spontaneous breaking of chiral symmetry (More is different!)

SU(2), x SU(2), symmetry spontaneously broken to SU(2),

Pions are the Nambu-Goldstone bosons of spontaneously
broken chiral symmetry

Low-energy pion Lagrangian completely determined

Eeﬁ — £7T7T T £N7r T ‘CNN



3. Construct most general Lagrangian consistent with
symmetries; organizational scheme = power counting

'Ceff — £7r7r LN?T 'CNN

Derivative (low-momentum) expansion indicated by superscripts

Pion-pion Lagrangian: U is SU(2) matrix parameterized by three pion fields

2
£ - fz tr [aﬂUc‘)ﬂU’f +m2(U + U }

Leading order pion-nucleon Lagrangian



Effective field theory: chiral potential at order N3LO

2N Force 3N Force 4N Force

()0 . .
Nucleons: full lines
LO Pions: dashed lines
>< & K;:”‘ Features:

Q2 B 1. Systematic expansion of
NLO  to |t L nucleon potential; small

Tl 8 parameter (Q/A\)

2. Low-energy constants from fit

to data
3. Hierarchy of forces
NN >> NNN >> NNNN

NNLO ] A\
T [from Machleidt arXiv:0704.0807]




Chiral nucleon-nucleon potential at leading order

One-pion exchange potential (p, p’ are initial and final relative momenta)

2 — - — —

014 02"(
Vir (D', D) = 4f2 2T e
— — ) —

¢ = p'—p

Leading order contact term (encode unknown short-range physics)

VO, p) = Cs + Cr & - 6

Higher-order contact terms also serve as counter terms that renormalize loop
integrals.



Why contact terms?

1. Only contact terms can model really short
range physics.

2. Any short-range terms (e.g. delta functions,
Gaussians ...) with range smaller 1/A would

do the job, but contacts are very convenient
with analytical results.



Why contact terms?

1. Only contact terms can model really short
range physics.

2. Any short-range terms (e.g. delta functions,
Gaussians ...) with range smaller 1/A would
do the job, but contacts are very convenient
with analytical results. ¢/
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How does the momentum cutoff A enter the EFT?

The construction of the chiral potential involves solving the Lippmann-Schwinger
equation. A is the cutoff in this equation.

M

‘ j; —‘//q
pz_p//2+i€ (p ﬁ)

f(ﬁ/,@ _ V(ﬁ/qﬁ) +/df3p// v(ﬁ/,ﬁ//>
V(p'p) — V(@' p)e VN e

The loop integrals that appear beyond leading order need to be regularized. One
way of regularization is by imposing a cutoff of the order of A.

As a result, the low-energy constants depend implicitly on the regularization
scheme and the cutoff.

There are (infinitely) many different chiral potentials! Differences of potentials that
employ different values for the cutoff must be of higher order.

Regularization schemes, and form of potentials that encode short-ranged physics
(contact potential or potentials with a very short range) are at the potential
builder’s discretion. This makes the approach model independent.
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From Bogner et al, arXiv:0912.3688

Figure 4: (a) Chiral EFT for nuclear forces. (b) Improvement in neutron-proton phase shifts shos
by shaded bands from cutoff variation at NLO (dashed), N2LO (light), and N*LO (dark) compared
extractions from experiment (points) [31]. The dashed line is from the N®LO potential of Ref. [20].



Three-nucleon forces — Why?

* Nucleons are not point particles (i.e. not elementary). i i

 We neglected some internal degrees of freedom (e.g. A-resonance, “polarization
effects”, ...), and unconstrained high-momentum modes.

Other tidal effects cannot be included in the
two-body interaction! Three-body force
unavoidable for point masses.

Earth-Moon system: point masses and
modified two-body interaction

Tidal Bulges from Moon and Sun

Tidal Bulge from Moon

Earth

Orbital Paths
of Earth and
Moon

Renormalization group transformation:
Removal of “stiff” degrees of freedom at
expense of additional forces.




Three-body forces cont’d

— cocallccced | [ erccaa

ooooooo

C1,C3,C4 CD CE

Figure 23: Eliminating degrees of freedom leads to three-body forces.

(taken from Bogner, Furnstahl, Schwenk, arXiv:0912.3688)

Leading three-nucleon force

1. Long-ranged two-pion term (Fujita & Miyazawa ...)
2. Intermediate-ranged one-poin term

3. Short-ranged three-nucleon contact

The question is not: Do three-body forces enter the description?
The (only) question is: How large are three-body forces?



Non-uniqueness of three-nucleon forces

31 N L L L L L L L L P B I
A=l1.6fm < X

A=3.0 fm’

|

== "bare" CD-Bonn ]

E(*He) [MeV]
(30
o0
IIIIIIII|IIII|IIII|IIII|IIII

A=1.0 fm”

I

o VvV, AVIS

D "bare" AVIS X v\:—low k CD-Boun

c o ey e e ey ey e by ey ey Ly |

757677787980 81828384 858068788

ECPH) [MeV]
A. Nogga, S. K. Bogner, and A. Schwenk, Phys.Rev. C70 (2004) 061002

As cutoff A is varied, motion along “Tjon line”.

Addition of A-dependent three-nucleon force yields (almost)
agreement with experiment. Q: What’s missing?

A: The complete description of “He would require four-nucleon forces!



Understanding the Tjon line
35
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Blue square: EFT at NLO
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Other dots: phenomenological NN potentials

Large scattering length and absence of leading-order 4-body force explain Tjon line
Platter, Hammer, Meissner: Phys. Lett. B 607, 254 (2005)



Question: Your favorite physics friend comes to you and
suggests to determine the effects of the three-body force on
the structure of your favorite nucleus. You reply

1. Let’s do this. This will put us on the fast track
to Stockholm.

2. This is difficult to disentangle. But it can be
done in a three-body system such as 3H.

3. Which interaction are you looking at?
4. Answers 2 & 3 are correct.



Question: Your favorite physics friend comes to you and
suggests to determine the effects of the three-body force on
the structure of your favorite nucleus. You reply

1. Let’s do this. This will put us on the fast track
to Stockholm.

2. This is difficult to disentangle. But it can be
done in a three-body system such as 3H.

3. Which interaction are you looking at? ¢/
4. Answers 2 & 3 are correct.

The size and form of three-body forces depends on the cutoff, and the
chosen renormalization scheme. Different schemes (“implementations of
the EFT at order n”) yield predictions that expected to agree within the
error estimate (Q/A)"*1. Only the sum of interactions can be probed.



What’s the role of three-nucleon forces?

4.5
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Contributions to binding of *He. [Hagen, TP,
Dean, Schwenk, Nogga, Wloch, Piecuch, PRC 76,
034302 (2007); Roth et al, arXiv:1112.0287]
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Is 220 a bound nucleus?

2\ 0 ZNe (2Ne [2Ne | 2Ne | 2’Ne | Ne | *Ne | *°Ne [ *'Ne | *2Ne *Ne
Experimental situation 2F | 2F | 23F | 24F | 25F | %F | 2F 2oF 3
e “Last” stable oxygen isotope %40 200 | 210 | 20 | 20 | %0
e 250 unstable (Hoffman et al 2008) N | 2N | 2N | 2N | 2N
e 250 unstable (Lunderberg et al 2012) 18C | 15C | 2C 2C

31F exists (adding on proton shifts drip line by 6 neutrons)

Theoretical description challenging (proximity of continuum, 3NFs)

Continuum shell model [Volya & Zelevinsky, PRL 94, 052501 (2005)]

Chiral NN interactions [Hagen et al., PRC 80, 021306 (2009)].

Effects of 3NFs [Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL 105, 032501 (2010)]

More complete calculation desirable (3NFs, continuum, large model space, minimum

adjustments to interaction)




Is 220 a bound nucleus?
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Shell model (sd shell) with monopole corrections based on three-nucleon force predicts 2" O

as last stable isotope of oxygen. [Otsuka, Suzuki, Holt, Schwenk, Akaishi, PRL (2010), arXiv:

0908.2607]



Intermission

Systematic construction of nuclear forces within (chiral) effective field
theory

There is a recipe to follow

Highlights: power counting, hierarchy of NN >> NNN >> NNNN forces
Approach is model independent

Resulting potential depends on regularization scheme and cutoff
There are (infinitely) many good ways to implement this



Estimate for model spaces and Hamiltonian matrix dimensions

Assume we want to compute the binding energy of a nucleus with mass
number A in a wave function based approach. Assume that the interaction
has a momentum cutoff A.

Q: What are the minimum requirements for the model space / What basis

would you choose?

A:

1. The basis must be sufficiently extended in position space to capture a
nucleus with radius R=1.2 A” fm

2. The basis must be sufficiently extended in momentum space to capture
the cutoff A.

3. THUS: we need approximately K=(RA/(2m))3 single-particle states (phase
space volume!) In practice K=(RA/2)3 ~ A3A.

Estimate: computation of oxygen: A=4/fm and R=2.5fm
Thus, our model space has about K=53 = 125 single-particle states.
Matrix dimension: D=K!/(K-A)!/A! = (K/A)A =816 = 248 = 1014,



Some conclusions

1. For “bare” chiral interactions (e.g. Entem and Machleidt), matrix
diagonalization is possible only for light nuclei. One either needs a much
more efficient method or a lower cutoff.

2. The factorial scaling with A is not matched by Moore’s law (doubling of
FLOPS about every 18 month = factor 1000 in 15 years).

3. For wave-function based methods, the most effective way to heavier
nuclei is to decrease the phase-space volume K ~ (AR)3 ~ A3A by
decreasing the cutoff.

- Low-momentum interactions & similarity renormalization group
transformations that lower the cutoff A.

Homework: Consider an oscillator basis. How has one choose the oscillator frequency
w and the number of oscillator shells N for a given momentum cutoff A and mass
number A?
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Similarity renormalization group (SRG) transformation

Glazek, & Wilson, PRD 48 (1993) 5863; 49 (1994) 4214; Wegner, Ann. Phys. 3 (1994) 77; Perry, Bogner, & Furnstahl (2007)

Main idea: decouple low from high momenta via a (unitary) similarity transformation
Unitary transformation
H(s) = U(s)HUT(s) = U(s) (T + V) Ut (s)
Evolution equation
dH (s)
ds

dU (s)

20 () = —nl(s)

— [n(s), Er(s)} with  n(s) =

Choice of unitary transformation through (one does not need to construct U explicitly).

n(s) = |T,H(s)|

yields scale-dependent potential that becomes more and more diagonal
H(s) =T+ V(s)

Note: Baker-Campbell-Hausdorff expansion implies that SRG of 2-body force generates many-body
forces

A = A+ [H,n] + - [[Hon] ]+



SRG evolution of a chiral potential

(use cutoff A = s—1/4 as evolution variable)

1Sy from N3LO (500 MeV) of Entem/Machleidt
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Fig.: Bogner & Furnstahl. See http://www.physics.ohio-state.edu/~ntg/srg 29



Understanding SRGs

Question: Which statement is correct?

1. The SRG is a unitary transformation, and no information is lost.
2. The SRG is only accurate up to the cutoff.



Understanding SRGs

Question: Which statement is correct?

1. The SRG is a unitary transformation, and no information is lost. ¢/
2. The SRG is only accurate up to the cutoff.

When performing the SRG, up to A-body forces are created in an A-body system
(“no free lunch theorem”) . In practice, one hopes (with view to the chiral
power counting) that the computation of 2-body and 3-body forces might be
sufficient.

Q: How can we check in practice, that keeping 2-body and 3-body forces is sufficient?

1. Perform a computation with and without SRG an compare.
2. Check how results in the A-body system depend on the cutoff/evolution parameter



Understanding SRGs

Question: Which statement is correct?

1. The SRG is a unitary transformation, and no information is lost. ¢/
2. The SRG is only accurate up to the cutoff.

When performing the SRG, up to A-body forces are created in an A-body system
(“no free lunch theorem”) . In practice, one hopes (with view to the chiral
power counting) that the computation of 2-body and 3-body forces might be
sufficient.

Q: How can we check in practice, that keeping 2-body and 3-body forces is sufficient?

1. Perform a computation with and without SRG an compare.
2. Check how results in the A-body system depend on the cutoff/evolution parameter ¢/

Of course: Any observable other than the Hamiltonian also needs to be transformed.



Ground-State Energy [MeV|

Solution of 3H and 4He with induced and initial 3NF
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Q: What is the effect of (omitted) 4NF and forces of even higher rank?
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A: In “He, (short ranged) 4NF yield about 200 keV (see energies at small momentum)
Note: This is consistent with deviation from experiment!



Summary

* Introduction to main ideas behind nuclear forces from chiral EFT
* Model-independent approach

* Potentials are not observables, and one can shuffle things around
(e.g. via different regularization and renormalization schemes, or via
unitary transformations)

* A high cutoff carries a high computational price tag

e Similarity renormalization group transformations very useful tools
for study and practical computations



Solving the nuclear many-body problem: coupled-
cluster theory

Thomas Papenbrock

and OAK RIDGE NATIONAL LLABORATORY

Aim of this lecture:

Present some results from ab initio computations with emphasis of
the coupled-cluster method

13th CNS Summer School
August 21-27, 2014 at Tokyo University, Wako Campus



Microscopic approaches

Entire chart of nuclei:

Nuclear density-functional theory




Not well known
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Well known
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Easy to solve
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Difficult to solve

This lecture week presents several aspects of this duality.



Light nuclei from a chiral interaction (N3LO by Entem &

Machleidt) with no-core shell model
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Figure 5. States dominated by p-shell configurations for °B, 1B, 2C, and *C calculated at
Niax = 6 using A2 = 15 MeV (14 MeV for 10B). Most of the eigenstates are isospin 1'=0 or

1/2, the isospin label is explicitly shown only for states with T'=1 or 3/2. The excitation energy

scales are in MeV.

P. Navratil et al., Phys. Rev. Lett. 99, 042501 (2007), nucl-th/0701038.

Review: Navratil, Quaglioni, Stetcu, Barrett, J. Phys. G 36, 083101 (2009); arXiv:0904.0463.
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Ab initio description of nuclear reactions
[S. Quaglioni and P. Navratil, PRL101, 092501 (2008); PRC79, 044606 (2009)]
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12C Hoyle state from lattice EFT

Kohlenstoffproduktion (0,04 %)
’ \ Q 0+ Hoyle-Zustand
& . 4 Ei — 7% Epelbaum et al, Phys. Rev. Lett. 106,
‘ e >y sy 192501 (2011); arXiv:1101.2547
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Spectra and shell evolution in Calcium isotopes

. Our prediction for

excited 5/2-and ¥
states in °3Ca seen
at RIKEN

Inversion of 9/2*
and 5/2* states in
neutron rich
calcium isotopes
Harmonic
oscillator gives the
naive shell model
order

INE+FNN

INE+FNN

Measurement at RIKEN
[Steppenbeck et al., J. Phys. G
2013; Nature 502, 207 (2013);]
confirms our prediction.

Continuum coupling crucial for level ordering




Solving the nuclear many-body problem

* Coupled-cluster method

* No-core shell model

e Greens function Monte Carlo
e Lattice Monte Carlo

Reading suggestions:

Coupled cluster method:

T. Crawford and H. Schaefer, Rev. Comp. Chem. 14, 33 (2000); I. Shavitt and R.
Bartlett, Many-Body Methods in Chemistry and Physics: MBPT and Coupled-Cluster
Theory (Cambridge, 2009); Hagen, Papenbrock, Hjorth-Jensen & Dean, arXiv:
1312.7872.

No-core shell model:

Navratil, Quaglioni, Stetcu, Barrett, J. Phys. G 36, 083101 (2009); arXiv:0904.0463.
GFMC:

Pieper & Wiringa: Ann. Rev. Nucl. Part.Sci. 51, 53 (2001); nucl-th/0103005

Lattice Monte Carlo:

Dean Lee, Prog. Part. Nucl. Phys. 63 117-154 (2009); arXiv:0804.3501



Coupled-cluster theory (CCSD)

T
Ansatz: W) = e’|®) © Scales gently (polynomial) with
T = TNTh+1T+ increasing problem size o2u? .
_ a, T
11 Z tiaqa; © Truncation is the only approximation.
1a
b : : :
T = Z t?j agazajai © Size extensive (error scales with A)
tjab

Correlations are exponentiated 1p-1h and 2p-2h excitations. Part of np-nh excitations

included!
- -

a,b,...

How do we deal with this ansatz / how do we choose the parameters of the
cluster operator?




Coupled-cluster method

Schrodinger equation

Exponential ansatz for correlation operator

]A{BT‘(I)()> — E(iT (I)()>

yields Schrodinger equation for similarity transformed Hamiltonian

e THe|B,) = E|d,)

Similarity-transformed Hamiltonian is not Hermitian.

H = e THel




Coupled-cluster equations (in CCSD approximation)

Multiply with OpOh, 1p1h, and 2p2h bras and obtain coupled-cluster equations.

(| H|Py) = E
(PF[H|Po) = 0
<‘I)§Ijb Hl®g) = 0

The 1plh and 2p2h excitations are defined as
a A
P7) 0| o)

Y = alajajai|®o)

-

a

CCSD approximation: The similarity-transformed Hamiltonian has no 1plh and no
2p2h excitations from the reference state.

First, one needs to solve the CCSD equations. This yields the cluster amplitudes t.2 and
t;°° that define the similarity-transformed Hamiltonian.

Second, the ground-state energy can be computed.



It’s all about the similarity-transformed Hamiltonian

Structure of similarity-transformed Hamiltonian after the CCSD equations are solved
OpOh 1plh 2p2h

(ECCSD Hyg H()D\ OpOh

Heesp = 0 Hss Hgp 1plh

\ 0 Hps HDD) 2p2h

For excited states and expectation values: Solve the right and left eigenvalue problems
H’Rn> — E'n |Rn>
<L n ’H — En <L n ’

Benefits:
* small model space (2p-2h) excitations are not to numerous)

* similarity transformed Hamiltonian has up to three-body operators in this space



Computation of the similarity-transformed Hamiltonian

Baker Campbell Hausdorff relation to compute similarity-transformed Hamiltonian

N

TRS = B[]+ o ([AT] 7)o [[[A) 1] 7] +

). 1) 1] 1)+

Q: When does this expansion terminate for a two-body Hamiltonian H?

Answers:

1. This is an infinite series that does not terminate.

2. It terminates at 4-fold nested commutators (as shown above) because we deal
with a two-body Hamiltonian



Computation of the similarity-transformed Hamiltonian

Baker Campbell Hausdorff relation to compute similarity-transformed Hamiltonian

N

T|+

A
i

TR = B (BT 4 [T ) o (A7)

. . .
/ / /

). 1) 1] 1)+

Q: When does this expansion terminate for a two-body Hamiltonian H?

Answers:

1. This is an infinite series that does not terminate.

2. It terminates at 4-fold nested commutators (as shown above) because we deal
with a two-body Hamiltonian v/

Q: What is the rank (two-body, three-body, four-body ...) of the similarity-transformed
Hamiltonian for T=T;+T, and a two-body Hamiltonian H?

Answers:

1. Two body

2. Three body
3. Four body
4. Six body



Computation of the similarity-transformed Hamiltonian

Baker Campbell Hausdorff relation to compute similarity-transformed Hamiltonian

N

TR = B [AT] 4 o [BT] ] 4 o ([[A07] 1] 7] +

). 1) 1] 1)+

Q: When does this expansion terminate for a two-body Hamiltonian H?

Answers:

1. This is an infinite series that does not terminate.

2. It terminates at 4-fold nested commutators (as shown above) because we deal
with a two-body Hamiltonian

Q: What is the rank (two-body, three-body, four-body ...) of the similarity-transformed
Hamiltonian for T=T;+T, and a two-body Hamiltonian H?

Answers:

1. Two body
2. Three body
3. Four body
4. Six body v



Computation of the similarity-transformed Hamiltonian

Baker Campbell Hausdorff relation

e"He" = H+ |HT|+ % |H.T].T] + 1 |7, 7]. 7], 1] +
1 A A N N A
—|||7.7].7]. 7] . 7] +....
4!
Key observation:
1. When expressed in a diagrammatic way, no unlinked diagrams will be
produced by the exponential similarity transform = size extensive approach
2. All terms of the cluster operator T commute with each other as annihilation
and creation operators refer to different sets of single-particle orbitals
(occupied and unoccupied single-particle states)

Conseguences (of second point)

1. The BCH expansion is finite (at 2k nested commutators for k-body forces)
This makes the method very efficient. No ODE needs to be integrated.

3. Solution by iteration (keeping fingers crossed that Banach’s fixed point
theorem applies): rewrite as t=f(t) and iterate. (usually 15-50 iteration needed)



Who likes to commute? Can we get there fast, please?

TR = B (A1) 4 o [[87) 1]+ o [[[B1].7] 1] +
). 1).1] 2]+
First attempted: Apply Wick’s theorem and work it out.
(Bo|H|Dy) = FE
(@ |H|Po) = 0
<(I)'qub (150> = 0

T =

More efficient approach: use diagrams!

17



Diagrammatics

hole particle ., _ .
Cluster operators (“T amplitudes”)

line line
T, = Z#”{(LT(J — /
i a ia
A A 'i'
a R
(; a T, = Zi“”{a (Lb(l =
Uab

Normal-ordered one-body Hamiltonian

FN: Zj(lb{aaab} + Zf']{alaj} + Zf7(l{(l7(](1} + Zj07{a(1(17

ab Q



Diagrammatics cont’d

Antisymmetric two-body operator <ai|V|jb> = < left out, right out| | left in, right in>




CCSD energy equation
(Bo[H|Dy) = E

All diagrams that are fully contracted (no open lines)

Eccsp — By = WV,A 4+ VM n v v

: @ 1 P ao 1 .. abh
- Z fiati + 1 Z<"J|‘(J/b>ti;‘ + B Z<’"J||ab>7f7; 7‘3

ia 1jab “ijab

Question: What is the computational cost (in number of occupied and
unoccupied states of the model space) for the computation of the energy?

Answers:
1. o*u
2. (o*u)?

3. o2*uyt



CCSD energy equation
(Bo[H|Dy) = E

All diagrams that are fully contracted (no open lines)

N
Ecosp — By = Vx/ + / \ ] T W\/ v

: e 1 N a0 1 .. a.b
- Z fiati + 1 Z<"’J|‘“b>ti; + 2 Z(Z]H(J,b)ti z‘"]

ia 1jab “ijab

Question: What is the computational cost (in number of occupied and
unoccupied states of the model space) for the computation of the energy?

Answers:

1. o*u

2. (o*u)? ¢ (last two diagrams)
3. o2*ut



T, equation (within CCSD)

<<1>§"\ﬁ\<1>o> = 0

All linked diagrams with one incoming hole line and one outgoing particle line.

0 = fai_‘_z.facf ijlfz +Z ]{(]H([ fk +Zik( oy + = Z ]{(IH((] f;g(,i

k( d

—Z kl||ci)ty] — Z]‘k(?‘ 1 — Z kl||ci)tit) + Z(l{:a||cd>t2tf —

2 klc kle ked
1

1 | |
> (kl||edyttdty + > (kl||ed)tgtie — 5 > (k]| cd) ity — 5 > (k| ed)tst?,

kled klcd " kled " kled



T, equation (within CCSD)

(277 [H|®o) = 0

All linked diagrams with two incoming hole lines and two outgoing particle lines.

At this point, one has to consider re-use of intermediate diagrams and order of
contractions for numerical efficiency.

- “factorization” of diagrams (Kucharski & Bartlett 1991)

Homework: Write down all diagrams for the equation above!



Summary: Ab-initio method

* Size extensive

 Computational cost n 2 n,* ~ A12A%(in CCSD)

* Within CCSD, one only computes the matrix elements of a similarity-transformed two-
body Hamiltonian (shell model needs matrix elements between many-body states)



No core shell model

Main idea: build and diagonalize the Hamiltonian matrix of the many-body
system in an oscillator basis

Oscillator basis: The only localized basis, in which a wave function

¢com(r1+r2) d)rel(rl'rz)
can be written as a finite sum of products

$,(r1)d,,(r2)

of oscillator wave functions ¢.

Consequence: An intrinsic wave function can be computed that makes no
reference to the center of mass

* Rotational and translational invariance exactly preserved
e Matrix dimensions scales factorial in the number of single-particle states

Navratil, Quaglioni, Stetcu & Barrett, Recent developments in no-core shell-model
calculations, J. Phys. G 36, 083101 (2009); arXiv:0904.0463



Green’s Function Monte Carlo

ldea:
1. Determine accurate approximate wave function via variation of the energy (The
high-dimensional integrals are done via Monte Carlo integration).
Ep = (Wrial | H|Wtrial)
<\Utrial | \Utrial>
2. Refine wave function and energy via projection with Green’s function

\U> — T l) OO0 e_T(ﬁ_ET)‘WtriaO

Nice review: “Lectures on Quantum Monte Carlo” by David M. Ceperley:
http://people.physics.uiuc.edu/Ceperley/papers/175.pdf

Great lecture:
Werner Krauth, Introduction To Monte Carlo Algorithms, cond-mat/9612186



Green’s function Monte Carlo details

Idea: Function of the Hamiltonian projects out the ground state from a trial wave
function.

Method: A wave function at imaginary “time” (n+1)t is obtained from a trial wave
function at time nt via Green’s function G(R,R') = (Rle-"(H-En)|R/)

'I.-'""n—i-l(R) — ("—T("H—ET )'1.-'""71 (I{) — / ([R/(T'([{ R/ )’L',, (R,)

Note: Y  results from a 3n-dimensional integral over @ .
Yn(Rn) = [dRy_1...dR1dRoG(Rn, Ry 1) ... G(R2, R1)G(R1, Ro)vo(Ro)
Understanding of the method: Expansion in terms of exact eigenstates ¢,

U ( [{) = Z (f)”.([{) < O |V > (',—'IZT[EQ_ET)

lim ¢, (R) = oo(R) < oW > e "7 Eo=Er)

TL— X
Key insight: Green’s function in the limit of zero time step is exactly known for
Hamiltonians H=T+V(R) with local potential V(R)

) (R—R")2 P .
—(H—=F / v—3N /2 - ! — T RY—FE. - 2
< Rle™H=BEr| R s= (4r\r) 3N/ 2= (V(R)=Er) | (72

“Only” need to perform a high-dimensional integration = Monte Carlo
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Pieper and Wiringa, Ann.Rev.Nucl.Part.Sci. 51 (2001) 53
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Accomplishments of ab-initio nuclear structure calculations

e Demonstration that nuclei can be built from scratch

* Demonstration that three-nucleon forces must be included in the
description

e Determination of low-energy constants of potentials from chiral EFT
* Probing of effective interactions in medium-mass nuclei

* Bridging the gap to (ab-initio) reactions in light systems

* Providing a solid basis that other methods can build on and link to (=
UNEDF www.unedf.org, NUCLEl www.computingnuclei.org projects)

Several methods with complementary properties available



Computing the nuclear mass table: density
functional theory

Thomas Papenbrock

and OAKRIDGENATIONAL LABORATORY

Aim of this lecture:

Introduction to nuclear mean-field methods

13th CNS Summer School
August 21-27, 2014 at Tokyo University, Wako Campus
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Methods (th)at work

Ab-initio calculations for

lighter nuclei.
z=50_|[
=28 |
Z=20 - ~N=50
7=8 _
' T N=28

“N=20

Z=82

s N=12B

Shell model for selected regions
" N=82 and weakly-bound nuclei

Nuclear density-functional theory
for the entire nuclear chart!



Two quotes from Kohn’s Nobel lecture:

I begin with a provocative statement. In general the many-electron wavefunction
W (7),...,1) for a system of N electrons is not a legitimate scientific concept, when N 2
N,), where N, ~ 103,

I will use two criteria for defining “legitimacy”: a) That ¥ can be calculated
with sufficient accuracy and b) can be recorded with sufficient accuracy.

In concluding this section I remark that DFT, while derived from the N-par-
ticle Schroedinger equation, is finally expressed entirely in terms of the den-
sity n(r), in the Hohenberg-Kohn formulation,!'! and in terms of n(7) and
single-particle wavefunctions lllj(T), in the Kohn-Sham formulation®. This is
why it has been most useful for systems of very many electrons where wave-
function methods encounter and are stopped by the “exponential wall”.

Walter Kohn

"for his development of
the density-functional

theory"



Density-functional theory (DFT)
Theoretical basis: Hohenberg-Kohn theorem (1964)

Map from ground-state wave function to density
P(r) — p(r)

Map from density to set of all corresponding wave functions

p(r) — {¥(r)}p

Energy functional: energy is minimum in this set

Flp(r)] = mingyy (b H|)

Ground-state energy from minimization of the functional

Egs = miny{F[p] + [drv(r)p(r)}



Density-functional theory
Alternative view: Energy functional is a Legendre transform (Lieb, 1983)

Find ground-state energy for all external potentials (this is a functional)

v(r) = Elv(r)]

Perform functional Legendre transform

1. Compute density as functional derivative

p(r) = 505

2. Inversion: Find potential in terms of density

3. Construct Legendre transform

Flp(M] = Blo()] - [ dro()p(r)

This path of construction can actually be followed for dilute Fermi gases
[Puglia et al (2003)], the pairing Hamiltonian [TP, Bhattacharyya (2007)], or the

Lipkin model [Bertolli, TP (2008)].



Example: Energy of a non-interacting fermions
(Thomas-Fermi approximation)

2
Blp) = [ d®r (%<3w2>2/3§—mp5/3<r> + vext<r>p<r>)

|\ J
Y
Kinetic energy density
(Thomas-Fermi approximation)

external potential
energy functional

Note: Hohenberg-Kohn DFT not a practical (i.e. accurate) tool
* Local approximations of the density functional are too inaccurate

* Problem is particular with the kinetic energy density



Systematic construction of density functional for
dilute Fermi gas

Dilute Fermi gas:

All parameters of the potential (scattering length, effective range, ...) much
smaller than the Fermi wave length (or average two-particle distance) - small
expansion parameter exist, namely kga.

Use EFT to systematically construct energy density functional in terms of these
small parameters.

h2k2, (3 2 4
£ = —F{— {—k 11 — 2109 2)(k 2}
P 5-|- 3 Fa‘|'35ﬂ_2( 92)(kpa)
k’% N )
p = —L —~
372

Contributions from interaction

This systematic approach gives valuable insights into the construction of density
functionals. However, it is at present limited to “solvable” Hamiltonians.

See, e.g., R.J. Furnstahl and H.-W. Hammer, Annals Phys. 302 (2002) 206.
S. J. Puglia et al, Nucl.Phys. A723 (2003) 145.



E[p]

p(r)

7(r)

Kohn-Sham DFT [W. Kohn & L. Sham, Phys. Rev. 140 (1965) A1133]
Kohn-Sham: The form of the density functional is

= [ & (7(") + Vext(r)p(1)) + Eintlo]
A
— Z|¢k(7~)|2 density

k=1

TL2 A
o Z |V¢k(r)|2 Kin. energy density of free fermions (nonlocal!)
k=1

Kohn-Sham equations: dE[p] = 0
—22 A 4 258 Ve (r) ) () = ()
> T TSp(r) T Vext k HYE

Remarks: Single-particle Schrodinger equation has to be solved.

For nuclei, one uses the local density approximation (LDA), and
gradient corrections.

Eint = Eintlp, Vo] = / d>r&(p, Vp)



ldea behind Kohn-Sham DFT

Turn off the interaction, but change

Ground state density of external potential such that the
interacting fermions in external density remains that of the
harmonic trap. interacting system. The additional

potential is the Kohn-Sham potential.

Picture from R. Furnstahl: http://trshare.triumf.ca/~schwenk/ECT/furnstahl1.pdf



Nuclear DFT

Problem: Local density approximation not accurate (e.g. pairing would require highly
nonlocal functional)

Approach: Include anomalous pairing densities and work with quasi-particle states

1. Add sources to the Hamiltonian

A = B+ [ @ Odee + [ dr (G000 + 31 @)d1 () wiw)
Egs. = Elv(r), w(r)]

2. Perform Legendre transform with respect to all sources

Flo(r), k(1] = Blo(r),w(n)] = [ d®ro@)p(r) — [ d*rw(r)s(r)



Practical approach: Skyrme Hartree Fock theory

Refs.: T.H.R. Skyrme, Phil. Mag. 1 (1956) 1043; D. Vautherin and D. M. Brink, PRC 5 (1972) 626;
J. W. Negele and D. Vautherin, PRC 5 (1972) 1472; Bogner and Furnstahl (2006)

/ d37' n {8k1n + gSkyrme + gSkyrme,odd} + ECoulomb

h? B

2m ’

BO -+ Bg'na n2 B(’) + Bén
2 2

B, B

+B,(nt —j?) — B, (a7 — j?) — 7nAn + TnAn

'y 1

—B4nv.J_(B4+B:1)ﬁv.j+ —J? - 1J2,

« / ! !
—CO+03n o’ + Co + Cyn” &2+90 Ao — 620' Ao
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Functional or Hamiltonian?

In modern parlance, one speaks of nuclear energy density
functionals and not of density-dependent Hamiltonians.

1. This is just modern vocabulary

2. This is of a correct expression because there are no
density-dependent Hamiltonians (Hamiltonians depend on
field operators in general, but not on densities)



Functional or Hamiltonian?

In modern parlance, one speaks of nuclear energy density
functionals and not of density-dependent Hamiltonians.

1. This is just modern vocabulary

2. This is of a correct expression because there are no
density-dependent Hamiltonians (Hamiltonians depend on
field operators in general, but not on densities) v/



Which symmetries does the mean-field break?

B~ wnh =



Which symmetries does the mean-field break?

1. Translation invariance
2. Rotation invariance (deformation)
3. Particle number conservation (pairing)

4. |sospin invariance (deformation in isospin
space; worth considering close to N=Z
line)

The “best” mean-field theory allows for all symmetries to be broken.



Reminder: Symmetry-breaking in mean-field theories

« HF states usually break symmetries, e.g., translational invariance
and rotational invariance.

« HFB quasi-particle states do not exhibit a definite number of
particles (breaking of U(1) gauge symmetry).

Question: Is the symmetry breaking in HF(B) a feature or a nuisance?

Answer:

1. It's a feature because it displays the most relevant properties
of the ground state (e.g. deformation, pairing)

2. It's a nuisance because nuclei have definite spin and particle
numbers, and the symmetry-breaking solutions miss these
points.



Reminder: Symmetry-breaking in mean-field theories

« HF states usually break symmetries, e.g., translational invariance
and rotational invariance.

« HFB quasi-particle states do not exhibit a definite number of
particles (breaking of U(1) gauge symmetry).

Question: Is the symmetry breaking in HF(B) a feature or a nuisance?

Answer:

1. It's a feature because it displays the most relevant properties
of the ground state (e.g. deformation, pairing) v/

2. It's a nuisance because nuclei have definite spin and particle
numbers, and the symmetry-breaking solutions miss these
points.

However: Symmetry restoration becomes an important (and not yet fully solved) problem



Summary: Symmetry-breaking in mean-field theories

HF states usually break symmetries, e.g., translational invariance
and rotational invariance.

HFB quasi-particle states do not exhibit a definite number of
particles (breaking of U(1) gauge symmetry).

The breaking of symmetry is desired, as it allows the single-particle
state to capture relevant correlations.

Restoration of symmetries becomes an important issue.

Publicly available program

HFODD
J. Dobaczewski et al, Computer Physics Communications 167 (2005) 214

http://www.fuw.edu.pl/~dobaczew/hfodd/hfodd.html




Skyrme functionals, example: UNEDFO

Kortelainen, Lesinski, Moré, Nazarewicz, Sarich, Schunck, Stoitsov, Wild, Phys. Rev. C 82, 024313
(2010)

- Energy functional based on Skyrme SLy4 parametrization

E = /H(r)d%

« usual kinetic part (with 1/A mass shift); interaction: X = Xo + X1
* interaction energy functional (with isospin labels): 13 parameters

i(r) = CPPp}i+ C pyry + C J?
+OP2 o Apy + OV V- T
Ct" = Cio + Cip Po
« Pairing part depends on local pairing density: 2 parameters

W=y ° [1—3’)[(;)] 7 (r)




UNEDFO functional

- Pairing parameters from 200 00 BAGH SAARAN Maaddnadiaste) Masassas Aseadtns it MASathaacins e
odd-even staggering |+ BEknown e P
(OES); Lipkin-Nagomi for 100 | | * SPH:BE e | | l‘h
particle number " EEE ii . R
projections 80 * " DEF.BE AZ e
* Optimization employs e
POUNDerS [Practical : | ....... | B
Optimization Using No e T
Derivatives (of Squares)] % ;
- (pseudo) observables: 20 [ | i sees

nuclear matter T e |

properties, binding 0 e L

' i 2 4 1 12 14 l
energies, radii, OES of 0 0 40 60 80 100 0 0 160

N
44 well-deformed even-
even nuclei and 28 FIG. 1. (Color online) Experimental set of fit observables used in
spherical nuclei this work. The set contains data for 11 nuclei with A < 66 and 61

nuclei with A > 106.

Kortelainen, Lesinski, Moré, Nazarewicz, Sarich, Schunck, Stoitsov, Wild, Phys. Rev. C 82,
024313 (2010)



Sensitivity analysis exhibits correlations of the model

22 V\ass [ 1Proton radius [ OES

100+
90
80
70+
60 -
50
40
30+
20~
104

& Sensitivity of parameters to changes
iIn mass, proton radius, odd-even
staggering [Kortelainen et al (2010)]

Percentage of change

1 2 4 5 7 8 9 10 11 12
Parameter

FIG. 10. (Color online) Sensitivity of the parameters of UNEDFO0
to different data types entering x 2. The EDF parameters are labeled
as in Table VII.
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Dipole polarizability and neutron skin
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Strong correlations between neutron skins
in different nuclei
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How many atomic nuclei exist?

Literature: 5,000-12,000
120 —

B stable nuclei W
i known nuclei 288
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Models: SLy4, Svmin,UNEDFO, UNEDF1, FRDM and HFB-21

» Systematic errors (due to incorrect assumptions/poor modeling)

« Statistical errors (optimization and numerical errors)

Erler et al., Nature 486, 509 (2012)




S,,, (MeV)

Separation energies illustrate challenges
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How many nuclei can be

produced?
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NUELEI

Nuclear Computational Low-Energy Initiative

e 15 institutions

» ~60 researchers
*physics
ecomputer science
«applied mathematics

» foreign collaborators
« annual budget M$2+
* 5 years

http://computingnuclei.org/



Theoretical improvements of the energy functional:
density-matrix expansion using soft interactions

Basic idea:

Vautherin & Negele (1972)
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Summary

Self-consistent mean-field models

Theoretical foundation within Kohn-Sham DFT.
Applicable across nuclear chart.
Phenomenological approach; fit to data.

Yield impressive results (given their simplicity) in regions that
entered the fit.

Form of functional needs improvement to cover drip line physics

Future theoretical and experimental advances for neutron-rich nuclei
necessary.



Outlook

Enthusiastic and lively field
Moving towards a unified description of all atomic nuclei

Plenty of opportunities and challenges

LO DLW
02478.3 N

91'2

i

i3
42\
hE®
EE
[ . S




