Light Element and *r*-Process Element Synthesis through the V-Process in Supernova Explosions

Takashi YOSHIDA¹ Mariko Terasawa², Toshitaka Kajino³ & Kohsuke Sumiyoshi⁴

 Astronomical Data Analysis Center, National Astronomical Observatory of Japan 2: Center of Nuclear Study, University of Tokyo
 Division of Theoretical Astrophysics, National Astronomical Observatory of Japan & Advanced Science Research Center, Japan Atomic Energy Research Institute 4: Numazu College of Technology

Astrophysical Journal, in press, astro-ph/0305555

Origin of Matter and Evolution of the Galaxies November 19, 2003, RIKEN

The v-Process in Supernova Explosions

Productions affected by the v**-process**

Light elements

r-process heavy elements

Different sites in supernova ejecta

Hot bubble region "Neutrino driven winds"

He

Different supernova neutrino models

Important to investigate using a COMMON SUPERNOVA NEUTRINO MODEL.

Overproduction Problem of ¹¹B in GCE

Galactic chemical evolution of the light elements

⁶Li, ⁹Be, ¹⁰B → Galactic cosmic rays (GCR) ⁷Li → GCR, Supernovae, AGB stars, Novae ¹¹B → GCR, Supernovae

Supernova contribution of ¹¹B amount during GCE Determined from meteoritic ¹¹B/¹⁰B ratio (=4.05)

> ¹¹B amount evaluated from Woosley & Weaver (1995) a factor of 2~5 OVERPRODUCED

> We should find a SUPERNOVA NEITRINO MODEL approproate for GCE of ¹¹B

Purpose of the Present Study

We investigate the dependence of the supernova neutrino models on the light element and *r*-process element synthesis using COMMON supernova neutrino models.

We discuss supernova neutrino models appropriate for ¹¹B amount during GCE and *r*-process abundance pattern.

Neutrino Luminosity

20

Neutrino luminosity $L_{\nu i} = \frac{1}{6} \frac{E_{\nu}}{\tau_{\nu}} \exp\left(-\frac{t - r/c}{\tau_{\nu}}\right) \Theta(t - r/c)$ $L_{\nu i} (\nu_i = \nu_e, \nu_{\mu}, \nu_{\tau}, \overline{\nu}_e, \overline{\nu}_{\mu}, \overline{\nu}_{\tau})$ Parameters $E_{\nu}: \text{ Total neutrino energy}$ $\tau_{\nu}: \text{ Decay time of } L_{\nu i}$

Neutrino energy spectra Fermi distribution ($\eta_v = 0$) $T_{\nu\mu,\tau} = T_{\overline{\nu}\mu,\tau} = 8 \text{ MeV}/k$ $T_{\nu e} = 3.2 \text{ MeV}/k, T_{\overline{\nu}e} = 5 \text{ MeV}/k$ $\begin{array}{c} \textbf{(S)} \textbf$

For *r*-process nucleosynthesis $\dot{M}_{0,i}, \dot{M}_{half,i}, \dot{M}_{end,i}, t_{end}$ $M_{eject,i}$

Supernova Explosion Models

Light element nucleosynthesis

Explosion model (e.g., Shigeyama et al., 1992) Presupernova 16.2 M_{\odot} (corresponds to 20 M_{\odot} ZAMS) (Shigeyama & Nomoto 1990) Explosion energy : 1×10^{51} erg Mass Cut : 1.61 M_{\odot} Nuclear reaction network : 291 species of nuclei

r-process nucleosynthesis

Neutrino-driven wind model: 1.4 M_o neutron star (Terasawa et al. 2002)

Mass Fraction Distribution of Light Elements

⁷Li & ¹¹B production in He/C layer

Ejected Masses of ⁷Li and ¹¹B

Proportional to the total neutrino energy E_{ν} Insensitive to the decay time of $L_{\nu i} \tau_{\nu}$ Our result is consistent with that of WW95. $E_{\nu} \sim$ Binding energy of 1.4 M_{\odot} neutron star (e.g., Lattimer & Yahil, 1989)

*r***-Process Abundance Pattern**

LL: low E_{ν} , long τ_{ν} (100 foe, 3 s) LS: low E_{ν} , short τ_{ν} (100 foe, 1 s) HL: high E_{ν} , long τ_{ν} (300 foe, 3 s)

r-process abundance pattern depends on Peak neutrino luminosity $L_{vi}(t=0) \propto E_v / \tau_v$

LL (Most favorable case)

Third-to-second peak abundance ratio appropriate for the solar abundance pattern (Kappeler et al. 1989)

LS & HL

Third-to-second peak abundance ratio is smaller than that of LL case. Same relative abundance pattern \checkmark Same value of $L_{vi}(t=0)$

Overproduction of ¹¹B in GCE

¹¹B mass evaluated from GCE

Fields et al. 2000 Ramaty et al. 2000 Ramaty, Lingenfelter, & Kozlovsky 2000 Alibes, Labay, & Canal 2002

$0.18 < M / M_{WW95} < 0.40$

$$T_{\nu\mu,\tau} = T_{\bar{\nu}\mu,\tau} = 6 \text{ MeV}/k$$
$$T_{\nu e} = 3.2 \text{ MeV}/k, T_{\bar{\nu}e} = 5 \text{ MeV}/k$$

The ejected mass of ¹¹B with the appropriate total neutrino energy successfully reproduces that evaluated from GCE. $5.2 \times 10^{-7} M_{\odot} < M(^{11}B) < 7.4 \times 10^{-7} M_{\odot}$

*r***-Process Abundance Pattern**

MLL: The same $L_{\nu i}(t=0)$ as that of LL $E_{\nu} = 300$ foe, $\tau_{\nu} = 9$ s $T_{\nu\mu,\tau} = T_{\nu\mu,\tau} = 6$ MeV/k

LL: low E_{ν} , long τ_{ν} (100 foe, 3 s)

Peak neutrino luminosity $L_{\nu i}(t=0) \propto E_{\nu} / \tau_{\nu}$

MLL

Appropriate third-to-second peak abundance ratio Almost same abundance pattern as that of LL

Insensitive to $T_{\nu\mu,\tau}$, $T_{\overline{\nu}\mu,\tau}$

Summary

We investigated the dependence of the supernova neutrino models on the light element and *r*-process element synthesis using COMMON supernova neutrino models.

Ejected masses of ⁷Li & ¹¹B
Proportional to the total neutrino energy E_ν Insensitive to the decay time of L_{νi} τ_ν *r*-process abundance pattern
mainly depends on L_{νi}(t=0) ∝ E_ν / τ_ν Small value of L_{νi}(t=0) is prefered

We discussed the supernova neutrino models appropriate for ¹¹B amount during GCE and *r*-process abundance pattern.

We propose the supernova neutrino models with $T_{\nu\mu,\tau}=T_{\overline{\nu}\mu,\tau}=6 \text{ MeV}/k \text{ rather than } T_{\nu\mu,\tau}=T_{\overline{\nu}\mu,\tau}=8 \text{ MeV}/k$ $E_{\nu} \sim 300 \text{ foe, } \tau_{\nu}=9 \text{ s}$

E-mail: takashi.yoshida@nao.ac.jp