Magnet and beam studies for the JLab Hall-B Frozen Spin Polarized Target

Frozen Spin Target - FROST

ASU, CU, FSU, Glasgow, GWU, JLab, NSU, USC, UVA.

O. Dzyubak, C. Djalali, S. Strauch, and D. Tedeschi

Department of Physics and Astronomy University of South Carolina Columbia SC 29208, USA

<u>CEBAF (Continuous Electron Beam Accelerator Facility)</u> <u>At JLab (Jefferson Laboratory) at Newport-News (VA)</u>

Superconducting Electron Accelerator (338 cavities), 100% duty cycle, I_{max} =200 µA, E_{max} =6 GeV, $\delta E/E$ =10⁻⁴. 1500 physicists, ~30 countries, operational since end of 97

The detectors

The 3 experimental halls can run simultaneously. In Hall B, the CLAS detector (CEBAF Large Acceptance Spectrometer) : <u>Electrons</u> and (tagged) <u>Photon</u> <u>beams</u>

Hall B

- Toroidal magnetic field (6 superconducting coils) Center of CLAS is "field free" to accommodate a polarized target.

CLAS Detector

-Drift chambers, Scintillators, Cerenkovs, Electromagnetic Calorimeter. DAQ ~ 6kHz

Existing polarized targets

Physics Program requiring FROST

Approved experiments

- E02-112: Search for Missing Resonance Search in Hyperon Photoproduction (F. Klein)
- •E03-105: Pion Photoproduction from a Polarized Target (S. Strauch)
- •E04-102: Helicity Structure of Pion Photoproduction (D. Sober)
- .E-05-012: Measurement of polarization observables in eta-photoproduction with CLAS (E. Pasyuk)

Proposals

•Double polarization experiment (V. Crede)

Common requirements

- •Tagged photon beam (collimated to < 12 mm diameter)
- •Frozen Spin Target

Linearly-polarized Photon Beam

Coherent Bremsstrahlung Facility

- 20- and 50-μm diamond radiators
- Goniometer oriented diamond for coherent radiation
- Average beam polarizations ~85%

FROST Specifications

- Off beam: Polarization of target nuclei -- DNP technique
- During run: Frozen Spin Mode
- Material: Butanol with TEMPO
- Polarizing Mode:
 - Magnet 5.0 Tesla (high homogeneity over target volume)
 - Temperature 0.3 -- 0.5 K
 - Expected cooling power -- 20 mW @ 0.3 K
 - Frozen Spin Mode:

•

- Magnet -0.5 Tesla (lower homogeneity over target volume)
- Temperature 50 mK
- Expected cooling power -- 10 µW @ 50 mK
- Expected 1.0 3.0 GeV photon beam ($\sim 10^7$ photons/sec)

Polarization configuration - Target is fully retracted, magnet is lifted to beam height

- Target is inserted into magnet, magnet energized, microwaves on

JLab, Hall-B

Dave Kashi Pete Hemler

Target moved further back

Polarization magnet lowered

Ongoing efforts: Calculations and Measurements

• Polarizing Mode:

- Dilution cryostat (0.3- 0.5 K mode), JLab
- Supporting infrastructure (alignment), JLab, Hall-B
- Magnet homogeneity measurements, USC
- NMR-signal calibrations (TE-measurements at 1.0 K), KIPT + USC
- Q-meter simulations, KIPT + USC

• Frozen Spin Mode:

- Dilution cryostat (50 mK mode), JLab
- Supporting infrastructure (alignment), JLab, Hall-B
- Holding Magnet 0.5 Tesla (see Bonn, 2003), JLab + USC
- Photon beam heat load, USC
- Polarization monitoring (low field conditions), KIPT + USC

5.0 Tesla Polarizing Magnet

Homogeneity over target volume Cylinder:

D = 15.0 mm L = 50.0 mmshould be better than 100 ppm !

April, 2004

Field map along central axis

(Hall probe)

Comparison of our measurements with Cryomagnetics, Inc. ones

Polarizing Magnet Field homogeneity over target cell area

Field along central axis

20 x 52 mm² area (NMR-probe)

Homogeneity over target area better than 40 ppm
3mm tolerance in positioning target and polarizing magnet

Holding Magnet (M. Seely, Jlab)

Longitudinal polarization: solenoidal coil (0.5T; $\Delta B/B \sim 0.2\%$) **Transverse polarization:** "racetrack" coil (0.3+ T; ΔB/B~0.5%) **NEW DEVELOPMENT!**

0.1

0.2

0.3

Relaxation Time (days)

0.5

0.4 Magnetic Field (Tesia) 0.6

Cryostat (C.Keith, JLab)

Target Cell: Ø15mm x 50mm butanol $C_4H_9OH+TEMPO$ dilution factor 10/74 eff. density: 0.611 g/cm³

Expected Operation 20 mW @ 300 mK 10 µW @ 50 mK,

Target Cryostat as of November 2005

Status of Target Cryostat as of Nov. 3, 2005

Shown at Hall Collaboration meeting (V. Burkert)

>2nd cooling test of refrigerator completed with dummy target sample inside the mixing chamber of the dilution refrigerator and attempting to cool it to approximately 1K by circulating He-4 through dilution unit.

Massive vacuum leak prevented cool down to 1K but limited cool down to 10K

Identified serious misalignment of holding magnet heat shield that requires serious repair.

> 4He precooling system for the circulating 3He/4He mixture operates reasonably well;
 -the heat shields operate better than expected;
 -the insertion of the target stick into a "cold" (20K) mixing chamber works;

Need to dismantle cryostat to identify vacuum leak.

> Misalignment issue and internal leak in dilution unit will require re-design and refabrication.

Testing will resume early '06

Beam heat load

Conditions:

Energy loss vs photon energy for butanol

Calculated additional heat load caused by photon beam is less than 1.0 µW

USC and KIPT collaboration

The target polarization value is measured by the NMR technique. Accuracy of measurements is affected by many factors such as:

- Temperature (stability and accuracy)
- Magnetic field
- Q-meter stability
- Dispersion of NMR-signal, etc.

USC in collaboration with KIPT (Kharkov, UKRAINE) is working on design and optimizations for NMR-signal measurements using Liverpool type of Q-meter.

USC and KIPT collaboration

This collaboration includes the work on

- TE-signal measurements at 1.0 K
- Hardware and software optimizations for NMR-measurements
 - Polarizing Mode
 - Holding Mode

The following types of Q-meters have been studied:

- Amplitude detector with resonant cable
- Phase detector with resonant cable
- Phase detector with non-resonant cable

Preliminary <u>simulations</u> of the errors caused by the dispersion of NMR signal have been completed. Contrib to error ~ 1 %

Summary and Conclusions

- Hall-B polarizing magnet is very reliable.
- Homogeneity over the target area is better than 40 ppm.
- This polarizing magnet can be used for a large variety of target materials. For now choice is Butanol + TEMPO
- Calculated additional heat load caused by photon beam is less than $1.0 \ \mu W$ which is only 10% of expected cooling power.
- Goals :
 - Test full target in Summer 2006
 - Run with FROST in Fall 2006

VERY TIGHT SCHEDULE!

