Performances of frozen-spin polarized HD targets for Nucleon spin experiments.

@ PST05, Nov.14-17, 2005

T. Kageya^{1,2}

on behalf of LEGS Spin Collaboration

 Brookhaven National Lab., Upton, NY, USA
 Virginia Polytechnic Institute and State University, Blacksburg, VA, USA

> * Supported by a research grant from the U.S. Department of Energy and the U.S. National Science Foundation

:

Motivation

Nucleon Spin Sum Rules

Gerasimov–Drell–Hearn

$$-\frac{\alpha}{2m^2}\kappa^2 = \frac{1}{4\pi^2}\int_{m_\pi}^{\infty}\frac{\sigma_{1/2}-\sigma_{3/2}}{E_{\gamma}}dE_{\gamma}$$

- Nucleon spin strucure at Q²=0
- LEGS covers ~65%
- Measurement down to pion threshold is important
- Forward Spin–Polarizability

$$\gamma_0 = \frac{1}{4\pi^2} \int_{m_{\pi}}^{\infty} \frac{\sigma_{1/2} - \sigma_{3/2}}{E_{\gamma}^3} dE_{\gamma}$$

- Test of chiral perturbation theories
- LEGS covers ~90%
- Measurement down to pion threshold is important

Multipole Amplitudes

Double polarization observables

- Asymmetries E and G
- Neutron channels $\pi^{\circ}n$ and $\pi^{-}p$

Attractive Features Polarized HD Target

1. Pure Solid Targets

* Only unpolarizable nucleons associated with target cell which can be measured separately and subtracted in coventional way

2. Long Spin-Relaxation time

- 1 year in beam 3. $\overrightarrow{H} \rightarrow \overrightarrow{D}$: Higher D polarization 4. H^ D^ Can Select H^ D H D^

Polarize H in HD using polarized ortho -H 2

No spin exchange to HD (Frozen Spin)

Typical NMR Scans for the SPHICE Target at TE

Summary of HD target polarizations during recent runs at LEGS

YearDuration $\overline{P}(D)$ $\overline{P}(H)$ Fall 200417 days+ 7 %+ 53 %, - 26 %Spring 200532 days+ 31 %+ 30 %, -7 %

Spin transition: $H^{\uparrow} \rightarrow H_{\downarrow}$ Allowed fast passage RF transition

Spin transition: $\overrightarrow{H} \rightarrow \overrightarrow{D}$ Saturated Forbidden RF Transition

 $Nd > Nb, Ne > Nc \rightarrow Nd = Nb, Ne = Nc$

- target cell and Al wires contain the only unpolarizable nucleons;

- background is sampled in runs with an empty cell

- very preliminary ·

Experiment schedule - through 2006 :

- \checkmark Fall'04: $\vec{H} \cdot \vec{D}(\vec{\gamma}, \pi^{o})$ to extract $\vec{H}(\vec{\gamma}, \pi^{o})$ and $\vec{H}(\vec{\gamma}, \pi^{+})$
- \checkmark FY'05: $\vec{H} \cdot \vec{D}(\vec{\gamma}, \pi^{o})$ to extract $\vec{D}(\vec{\gamma}, \pi^{o})$
- Sept'05-Jan'06: install Time-Projection-Chamber
- Feb'06 -Apr'06: $H_2(\gamma, \pi^+)$, $D_2(\gamma, \pi^\pm)$ calibrations
- May'06 June'06: $\vec{H} \cdot \vec{D}(\vec{\gamma}, \pi^{\pm})$ run 1
- Aug'06 -Sept'06: $\vec{H} \cdot \vec{D}(\vec{\gamma}, \pi^{\pm})$ run 2

extract: $\vec{D}(\vec{\gamma},\pi^-)$, $\vec{D}(\vec{\gamma},\pi^+)$, $\vec{H}(\vec{\gamma},\pi^+)$

• *0ct'06*:

expected end of LEGS experiments

Figures of merit for Butanol and HD

	Low-resolution	high-resolution	High	Nuclear-	Atomic-
	and Low- Intensity	Low-Intensity γ-beam	Intensity γ-beam	background-limited High Intensity	background-limited High Intensity
	γ-beam			γ-beam	γ-beam
target	(a)	(b)	(C)	(d)	(e)
Figure of merit	ρ _{eff} (Ρ _{eff}) ²	1.4 ρ _{eff} (Ρ' _{eff}) ²	(P _{eff}) ²	(P _{eff}) ² /A	(P _{eff}) ² /Z ²

<i>p</i> in	0.017	0.110	0.23	0.0031	0.0069
C ₄ H ₉ OH					
<i>n</i> in	0.010	0.010	0.18	0.0021	0.0070
C ₄ D ₉ OD					

<i>p</i> in HD	0.019	0.067	0.45	0.1500	0.4500
<i>n</i> in HD	0.010	0.014	0.46	0.1500	0.4500

(a) count rate is beam-limited; reactions on p, n distinguished; bound vs free not distinguished; $P_{eff} = P \cdot f$

(b) count rate is beam-limited; reactions on p, n distinguished; bound vs free distinguished with cut; P_{eff} = P•[P_{free} / (P_{free} + 0.2•P_{bound})]

(c) beam flux can be increased as needed; count rate is limited by accidentals; $P_{eff} = P \cdot f$

(d) beam flux can be increased as needed; count rate is limited by dead time from nuclear events; $P_{eff} = P \cdot f$

(e) beam flux can be increased as needed; count rate is limited by dead time from atomic electrons; $P_{eff} = P \cdot f$

Complete set of measurements with longitudinal target polarization:

- example: $\gamma + HD \rightarrow \pi^{\circ}$ (from LEGS/BNL)

Separate reactions to n from p with TPC

 $\begin{array}{cccc} \gamma + n \rightarrow p &+ \pi^{-} & & \\ \rightarrow n &+ \pi^{0} & & \\ \gamma + p \rightarrow n &+ \pi^{+} & & \\ \rightarrow p &+ \pi^{0} & \end{array}$ Separate !

Central tracking with magnetic analysis in a Time-Projection Chamber

• isolate *neutron* reactions:

 $\gamma + n \rightarrow \pi^- p$

measure the π^{\pm} charge

LEGS spin experiments

1. Compton backward-scattered polarzied γ beam

$0.17 < E\gamma < 0.42$ GeV

 $< P\gamma > \sim 90 \%$

2. 4π detector

 $(\sigma_{_{1/2}} - \sigma_{_{3/2}})/ E\gamma$;

Total cross sections

3. Polarized HD solid target

The LEGS-Spin Collaboration

Brookhaven National Laboratory

A. Caracappa, S. Hoblit, O. Kistner, F. Lincoln, L. Miceli, M. Lowry, A.M. Sandorfi *, C. Thorn, X. Wei

- Forschungszentrum Jülich GmbH M. Pap, H. Glückler, H. Seyfarth, H. Ströher
- James Madison University C. S. Whisnant
- Norfolk State University M. Khandakar
- Ohio University
 C. Bade, K. Hicks *, M. Lucas, J. Mahon, S. Kizigul
- Syracuse University

A. Honig

- University di Roma Tor Vergata
 A. D'Angelo *, A. d'Angelo, D. Moricciani, C. Schaerf, R. Di Salvo, A. Fantini
- University of South Carolina
 K. Ardashev, C. Gibson, B. M. Preedom *, A. Lehmann
- University of Virginia S. Kucuker, R. Lindgren, B. Norum, K. Wang
- Virginia Polytechnic Institute & State University M. Blecher, T. Kageya

37 people from

10 institutions in

3 countries

LSC list May'05

Laser-Electron-Gamma-Source (LEGS)

 $NSLS E_e = 2.8 \ GeV$

 γ beam energy determined by e' tagging $E_{\gamma} = E_{e} - E_{e'}$, $\Delta E_{\gamma} = 3$ MeV

SASY Current Setup

Separating \vec{H} and \vec{D} data with spin flip

- example, π° production

<u>Run B</u>: $\mathbf{H} \cdot \mathbf{D}$ with anti-parallel spins **<u>Run A</u>:** $\vec{H} \cdot \vec{D}$ with parallel spins $\sigma_{\bar{\gamma}_{L}}^{A} = \sigma \left[\vec{p}(\bar{\gamma}, \pi^{o}) \right] + \sigma \left[\vec{D}(\bar{\gamma}, \pi^{o}) \right] \qquad \sigma_{\bar{\gamma}_{L}}^{B} = \sigma \left[\vec{p}(\bar{\gamma}, \pi^{o}) \right] + \sigma \left[\vec{D}(\bar{\gamma}, \pi^{o}) \right]$ $\sigma_{\bar{\gamma}_{R}}^{A} = \sigma \left[\vec{p}(\bar{\gamma}, \pi^{o}) \right] + \sigma \left[\vec{D}(\bar{\gamma}, \pi^{o}) \right] \qquad \sigma_{\bar{\gamma}_{R}}^{B} = \sigma \left[\vec{p}(\bar{\gamma}, \pi^{o}) \right] + \sigma \left[\vec{D}(\bar{\gamma}, \pi^{o}) \right]$ $\Delta \sigma(p) = \left(\sigma_{3/2} - \sigma_{1/2}\right)_p = \left[\sigma_{\vec{\gamma}_R}^B - \sigma_{\vec{\gamma}_R}^A\right] + \left[\sigma_{\vec{\gamma}_L}^A - \sigma_{\vec{\gamma}_L}^B\right] \text{ from } \gamma p \to \pi^o p$ $\Delta \sigma(D) = \left(\sigma_{3/2} - \sigma_{1/2}\right)_D = \left[\sigma_{\tilde{\gamma}_L}^A - \sigma_{\tilde{\gamma}_R}^B\right] + \left[\sigma_{\tilde{\gamma}_L}^B - \sigma_{\tilde{\gamma}_R}^A\right] from \, \gamma D \to \pi^o X$ \Rightarrow

- similarly, runs with different P_D separate Vector and Tensor D-observables
- in general, one fits out different observables from runs with different polarizations

Efficiency of transfer = 67%

HD target cycle:

target injection into dilution fridge; ~*min* 45 days at 15 Tesla / 12 mK

loading In-Beam-Cryostat

• 0.25°K and 1.00 Tesla

extraction with Transfer-Cryostat

• 2.5°K and 0.120 T

HD target cycle-Oct'04