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Three-Body Scattering Theory and Its

Applications
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Theory (Faddeev Theory)

II. An Introduction to the Three-Nucleon

Studies

III. Application to Light Nuclear Systems —

Three-Body Resonances



QUANTUM MECHANICAL SOLUTION

FOR A GIVEN HAMILTONIAN

APPROACH I� �

Schrödinger eqn(Differential equation)

+ Boundary condition
� �

APPROACH II� �

Integral equation

Boundary condition included

in the equation
� �

Two different approach to obtain

the SAME solution



APPROACH I

Boundary condition (two-body case)� �

• bound states

Ψ(�r) = 0 as r → ∞.

• scattering states

Ψ(�r) =

(incident plane wave)

+ (outgoing spherical wave)

as r → ∞ .� �

Boundary condition (three-body case)� �

• bound states

Ψ(�x, �y) = 0 as x, y → ∞.

• scattering states

No description in TEXTBOOKS !!
� �



TWO-BODY SCATTERING THEORY

IN THE MOMENTUM SPACE



Hamiltonian� �

For V with finite range:

H = H0 + V (1)
� �

Lippmann-Schwinger equation� �

|Ψ(E) >= |�p > + G0(E)V |Ψ(E) > . (2)
� �

The first term is one of the boundary

condition: incident plane wave.

The second term should go to outgoing

spherical wave at infinity.

The Green’s function� �

G0(E) = (E − H0)
−1 (3)

� �

Note: Operating (E − H0) on eq.(2), you get

Schrödinger equation back.

(E − H0)G0(E) = 1, (E − H0)|p >= 0.



Evaluation of operators in momentum space

< �p|H|�p′ >= δ3(�p − �p′) p2/2µ + < �p|V |�p′ > (4)

< �p|G0(E)|�p′ >=
δ3(�p − �p′)
E − p2/2µ

(5)

• G0(E) is singular for E > 0

at on-shell p: i.e., p2/2µ = E.

Boundary condition� �

E : E + iε , ε → 0 (6)

makes the second term of L-S equation

to be outgoing spherical wave.
� �

• regular for E < 0.



Bound state:

No singularity in G0 ⇒ No outgoing wave

No incident wave

L-S equation for the bound state� �

|Ψ(E) >= G0(E)V |Ψ(E) > . (7)
� �



HOW DO YOU SOLVE TWO-BODY

EQUATIONS?

Basic equation for bound states:

|Ψ(E) >= G0(E)V |Ψ(E) > , E < 0. (1)

Basic equation for scattering states:

|Ψ(E) >= |�p > +G0(E)V |Ψ(E) >, E > 0. (2)

Note that boundary conditions are included

in the equation through the analyticity.

SIMPLIFY THE EQUATION

Angular momentum decomposition

+ Fourier transform for V

⇒ V�(p, p′)



METHOD FOR BOUND STATES� �

To make the bound state equation to a stan-

dard equation, we introduce η(E) where

η(E)|Ψ(E) >= G0(E)V |Ψ(E) > (3)

Or

η(E)Ψ�(p, E) =
∫ ∞
0

p′2dp′V�(p, p′)Ψ�(p
′, E)

E − p′2/2µ
(4)

� �

η(E) is the eigenvalue of G0(E)V ,
which is a real number at E < 0. Replacing the
integral by numerical sum, you have a matrix

eigenvalue problem which can be solved numerically.

For given E, you solve the eigenvalue equation.
Changing E, you eventually find

an energy E with η(E) = 1.

NOTE
A potential V/η(E) would have a bound state at E.



METHOD FOR SCATTERING STATES

Note that full wave functions are not much

interesting in the scattering problems.

L-S equation for T-operator� �

T(E) = V + V G0(E)T(E) (5)

with

T(E)|�p >≡ V |Ψ(E; �p) > (6)
� �

T-matrix

T(E; �p, �p′) =< �p|T(E)|�p′ > (7)

After angular momentum decomposition

T(E; p, p′) = V (p, p′)+
∫ ∞
0

k2dk
V (p, k)T(E; k, p′)

E − k2/2µ
(8)

Replacing the integral by numerical sum, you have
linear algebraic equations which can be solved

numerically.

A special care should be taken to the singularity.



∫ ∞

0

dk

p + iε − k
⇒ P

∫ ∞

0

dk

p − k
− iπδ(p − k) (9)

Some important remarks on T(E; , p, p′)
T-matrix is called on-the-energy-shell(on-shell)
if E = p2/(2µ) = p′2/(2µ).
We generalize it to off-shell where E, p, p′ are indepen-

dent. Off-shell t-matrix is the input to 3-bod eqs.
T-matrix is real at E < 0, and complex at E > 0.
T is singular at the two-body binding energy.
In the vicinity of the binding energy, T is well described
by

T(E; p, p′) =
< p|V |Ψ >< Ψ|V |p′ >

E − ε0
(10)

with ε0 the binding energy and Ψ(p) the bound state
wave function.





Hamiltonian� �
For Vα with finite range:

H = H0 +
3∑

α=1

Vα (1)

� �
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�x3 (�p3)
��������������

�y3 (�q3)

��
��
1 m1

�

�

�x1 (�p1)

�y1 (�q1)

particle 1: the spectator under V1

particle 2: the spectator under V2

particle 3: the spectator under V3

xα, yα: Jacobi coordinate
pα: the momentum corresponding to xα

qα: the momentum corresponding to yα



THREE-BODY SCATTERING EQUATIONS

A.G.S. eqs., one of the variations of Faddeev eqs.

AGS eqs.� �

Uαβ(E) = (E − H0)(1 − δαβ) (2)

+
∑

γ �=α

Tγ(E)G0(E)Uγβ(E),

with

Tγ(E) = Vγ + VγG0(E)Tγ(E). (3)� �
Tγ(E) and G0(E) contain all dynamical information in-
cluding boundary conditions.
In order to understand the structure of the three-body
equations, we iterate eqs. (3)

Uαβ(E) = (E − H0)(1 − δαβ) (4)

+
∑

γ �=α,γ �=β

Tγ(E)

+
∑

γ �=α,δ �=γ

Tγ(E)G0(E)Tδ(E)G0(E)Uδβ(E)

Namely, successive T-matrix should be different.



SCATTERING BOUNDARY CONDITIONS

Two-Body
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out2
Out1(elastic), out2(breakup),

and even out3(rearrangement) should

simultaneously be described.



The Green’s function� �

G0(E) = (E − H0)
−1 (5)� �

in the momentum representation� �

G0(E) =
1

E − p2
1/2µ2−3 − q21/2µ1−(2,3)

(6)

with

1

µ2−3
=

1

m2
+

1

m3
(7)

1

µ1−(2,3)
=

1

m1
+

1

m2 + m3
. (8)

� �

Note that G0(E) is singular not at a fixed

momentum, but in a certain range.

This is the breakup boundary condition.



Two-Body T-matrix Tγ(E)� �
Two-Body energy is evaluated by

(Total energy) - (K.E. of the spectator)

E − q2γ/2µγ−(α,β)

Tγ(E) is singular when the two-body energy

is the binding energy of the two-body system

⇓
Boundary condition corresponding to

2-cluster scattering channel:

particle-γ + binding pair(α, β).� �



EXAMPLE: THE
NEUTRON-NEUTRON-PROTON SYSTEM

Let the proton be particle no.3.
T1 and T2 are singular because of the

deuteron.
Most singular part is, therefore, T1G0T2.

This operator is evaluated by
< �q1�p1|, |�q2�p2 >.

In the vicinity of the binding energy,

T1 = |g1 > τ1(E) < g1| (9)

where τ1(E) has a pole at the binding energy. Defining
Z12(E) by

Z12(E) ≡< g1|G0(E)|g2 > (10)

we derive one-dimensional integral equations with �qα,
the spectator momentum. The resulting equations are
two-body like integral equations with complex Z(E) which
behave like a complex potential, and with τ(E) which
behave like the Green’s function in the two-body equa-
tion.

Xαβ(E) = Zαβ(E) +
∑

Zαγ(E)τγ(E)Xγβ(E) (11)

which should be compared with

T(E) = V + V G0(E)T (E) (12)

Let us observe an example of the singularities in Z12(E)τ2(E)

numerically.













Introduction to three-nucleon studies







Nuclear Interactions (Primitive models)

• Square well potential

• Gaussian potential

• Woods-Saxon potential

• Separable potential

These potentials are easy to treat.

Parameters are fitted phenomenologically.



Nucleon-Nucleon Interaction

The interaction is obtained with a certain theory and
fitted to the existing two-nucleon data precisely.

(background theory and accurate phenomenology)

�

�

Internucleon
distance (r)

Region I
1π exchange
local

Region II
2π

Region III
quark?

non-local?

� �

N N

� �

N N

+ + . . .
π



OBE(One Boson Exchange) potential

The interaction obtained with a basic idea
that Region II and III

are described by exchanging heavier bosons.

Reid93

AV18

Njimegen I, II

CD Bonn

etc.

In these interactions, parameters are fitted
to describe phase shifts

and observed two-nucleon experiments

below pion production threshold extremely well

(χ2 ≈ 1).

for instance, refer to
http://nn-online.sci.kun.nl/

Some New Attempts

• Effective perturbation theory in Region II and III

• Quark RGM in Region III



Region I

Central + Strong Tensor.

YUKAWA theory: Interaction established only

here

Strong tensor: The deuteron d-state, and low energy
3pJ Phases.

Region II

Not only central, but Spin-Spin, Spin-Orbit,

and more complicated operators.

Attractive at least even parity.

Attractive: deuteron in 3s1-3d1, virtual state in 1s0
1π exchange is not attractive enough in these states.

Region III

Essentially repulsive
1s0 and 3s1 phases are negative at higher energy.



























The main purpose of N-d scattering study

To examine if internucleon potentials,

like OBE

are enough describing nuclear phenomena

What is missing

The three-body force

An important concept

The off-shell effect

⇓
The main purpose of N-d scattering study

Investigate three-body force in detail,

taking care of the off-shell effect.























APPLICATIONS OF FEW-BODY METHOD

Especially to hypernuclei and unstable nuclei

It is useful to introduce a three-body model with
constituent particles of N,Λ,4He, 9Li etc.

The direct information from two-body scattering in
hypernuclei and unstable nuclei is in many cases

hopeless.

Interests are: bound states and resonances.

Typical unstable nuclei: neutron halo.

⇓
Neutron is weakly bound or

about to bound(but unbound).

Borromean system:

an interesting result from the three-body theory.

Three-body system can be bound even when

no subsystems have any bound states.



HOMEWORK EXERCISE

Let us take a three identical boson system. Assuming
a simple Yamaguchi separable potential acting just on
s-wave

V (p, p′) = g(p)λg(p′) (1)

with

g(p) = 1/(p2 + β2) (2)

you derive a simple three-body equation(many refer-
ences).

Keeping β unchanged, you solve two- and three-body

equations for bound states. You do not find any bound

state for small λ. Potential is too weak. Increasing λ

you find:

�

�

0 ��

Borromean

Efimov

�

Binding Energy

λ

Three-Body(ground st.)

Two-Body



What is more surprising is Efimov states

You can also examine the following theorem as an
extended homework:

If the two-body subsystem has a bound state at E = 0,

three-identical bosons interacting in s-wave have

infinite numbers of 0+ bound states. (Efimov)

Example of Borromean system:
6He as n-n-4He system

Example of Efimov states:

He3, at least two 0+ states

some unstable nuclei?





As an application of the present

lecture:

We learn

Two-body potential resonances

⇓
Three-body resonances







Contour deformation

T(E; p, p′) = V (p, p′) +

∫ ∞

0
k2dk

V (p, k)T (E; k, p′)
E − k2/2µ

(1)

O A

B

��������������������������������

E+iε
�

�
�

You can replace the contour OA by OB, if

• there are no singularity inside OAB, and

• the contribution from BA is zero.

Contour deformation makes the singularity in the Green’s

function regular.

At the same time, it makes you to go down on the

complex energy plane.



TRACE OF THE TWO-BODY T-MATRIX POLE

�
E0

�

�=0

�=1 �=2 �=4



thresholds and cuts in n-d scattering

�

breakup cutn-d cut

E(MeV)0-2.225



6He

�
2

0

-2

4 Re E(MeV)

Im E(MeV)
�

�

0+ 2+

�

p3/2 cut

breakup cut

p1/2 cut

Data taken from experiment.



T=0 states of 6Li

�
-2 2

0

-2

4 Re E(MeV)

Im E(MeV)
�

p3/2 cut

breakup cut

�

1+ 3+

�

�

2+

1+�

deuteron cut

p1/2 cut

Taken from the calculation by
A. Eskandarian and I.R. Afnan

P.R. C46 (1992) 2344.

2+ and 1+ are in different sheet. Reflecting nuclear
structure.



There are two critical thresholds:

• Deuteron: Opening d-α channel makes the width
of 2+ and 1+ very large.

• p3/2 in 5He: Positions of these resonances are very
close to this threshold. However,

– In the simple shell model, 1+ may be described
by (p1/2)

2 , while 2+ by (p3/2,p1/2).

– The neutron is ”bound” to 5He(p3/2) in 2+, and
therefore the pole is below the threshold.

– 1+ does not have such a structure and therefore
the position is above the threshold. However,
the FSI in p3/2 is very important in the decay

mode of 1+.(Observed in both theory and ex-
periment) So, the position is strongly affected
by the threshold.



Level structure of 9Be and 9
ΛBe

At low energies, they decay into α-α-n(Λ).
Very good example of the three-body resonance.

Many levels are found in experiments. Still spin-parity
assignment is difficult for some levels.

important two-body structures:

• α-α rotational band: � = 0, 2, 4.

• s-wave α-B system

– Bound state at -3.1 MeV in α-Λ

– No structure in α-n because of Pauli principle

• p-wave α-B system

– Strong central and strong �-s force in α-n

– Poor information but at least not strong central
nor �-s force in α-Λ














