CISSO2

THREE-BODY
 SCATTERING THEORY AND ITS APPLICATIONS

Yasuro Koike Hosei U. and CNS

Three-Body Scattering Theory and Its Applications
I. An Introduction to Three-Body Scattering Theory (Faddeev Theory)
II. An Introduction to the Three-Nucleon Studies
III. Application to Light Nuclear Systems -Three-Body Resonances

QUANTUM MECHANICAL SOLUTION FOR A GIVEN HAMILTONIAN

> Integral equation Boundary condition included in the equation

Two different approach to obtain the SAME solution

APPROACH I

Boundary condition (two-body case)

- bound states
$\Psi(\vec{r})=0 \quad$ as $r \rightarrow \infty$.
- scattering states
$\Psi(\vec{r})=$
(incident plane wave)
+ (outgoing spherical wave) as $r \rightarrow \infty$.

Boundary condition (three-body case)

- bound states
$\Psi(\vec{x}, \vec{y})=0 \quad$ as $x, y \rightarrow \infty$.
- scattering states

No description in TEXTBOOKS !!

TWO-BODY SCATTERING THEORY in THE MOMENTUM SPACE

For V with finite range:

$$
\begin{equation*}
H=H_{0}+V \tag{1}
\end{equation*}
$$

—— Lippmann-Schwinger equation

$$
\begin{equation*}
\left|\Psi(E)>=\left|\vec{p}>+G_{0}(E) V\right| \Psi(E)>.\right. \tag{2}
\end{equation*}
$$

The first term is one of the boundary condition: incident plane wave.
The second term should go to outgoing spherical wave at infinity.

The Green's function

$$
\begin{equation*}
G_{0}(E)=\left(E-H_{0}\right)^{-1} \tag{3}
\end{equation*}
$$

Note: Operating ($E-H_{0}$) on eq.(2), you get Schrödinger equation back.

$$
\left(E-H_{0}\right) G_{0}(E)=1,\left(E-H_{0}\right) \mid p>=0 .
$$

Evaluation of operators in momentum space

$$
\begin{align*}
&<\vec{p}|H| \overrightarrow{p^{\prime}}>=\delta^{3}\left(\vec{p}-\overrightarrow{p^{\prime}}\right) p^{2} / 2 \mu+<\vec{p}|V| \overrightarrow{p^{\prime}}> \tag{4}\\
&<\vec{p}\left|G_{0}(E)\right| \overrightarrow{p^{\prime}}>=\frac{\delta^{3}\left(\vec{p}-\overrightarrow{p^{\prime}}\right)}{E-p^{2} / 2 \mu} \tag{5}
\end{align*}
$$

- $G_{0}(E)$ is singular for $E>0$ at on-shell p : i.e., $p^{2} / 2 \mu=E$.

Boundary condition

$$
\begin{equation*}
E: E+i \epsilon, \epsilon \rightarrow 0 \tag{6}
\end{equation*}
$$

makes the second term of L-S equation to be outgoing spherical wave.

- regular for $E<0$.

Bound state:
No singularity in $G_{0} \Rightarrow$ No outgoing wave No incident wave

$$
\begin{aligned}
& \text { L-S equation for the bound state } \\
& \qquad\left|\Psi(E)>=G_{0}(E) V\right| \Psi(E)>
\end{aligned}
$$

HOW DO YOU SOLVE TWO-BODY EQUATIONS?

Basic equation for bound states:

$$
\begin{equation*}
\left|\Psi(E)>=G_{0}(E) V\right| \Psi(E)>, E<0 . \tag{1}
\end{equation*}
$$

Basic equation for scattering states:

$$
\left|\Psi(E)>=\left|\vec{p}>+G_{0}(E) V\right| \Psi(E)>, E>0 .\right. \text { (2) }
$$

Note that boundary conditions are included in the equation through the analyticity.

SIMPLIFY THE EQUATION

 Angular momentum decomposition + Fourier transform for $V$$$
\Rightarrow V_{\ell}\left(p, p^{\prime}\right)
$$

- METHOD FOR BOUND STATES

 To make the bound state equation to a standard equation, we introduce $\eta(E)$ where$$
\begin{equation*}
\eta(E)\left|\Psi(E)>=G_{0}(E) V\right| \Psi(E)> \tag{3}
\end{equation*}
$$

Or

$$
\begin{equation*}
\eta(E) \Psi_{\ell}(p, E)=\int_{0}^{\infty} p^{\prime 2} d p^{\prime} \frac{V_{\ell}\left(p, p^{\prime}\right) \Psi_{\ell}\left(p^{\prime}, E\right)}{E-p^{\prime 2} / 2 \mu} \tag{4}
\end{equation*}
$$

$\eta(E)$ is the eigenvalue of $G_{0}(E) V$,
which is a real number at $E<0$. Replacing the integral by numerical sum, you have a matrix eigenvalue problem which can be solved numerically.

For given E, you solve the eigenvalue equation.
Changing E, you eventually find an energy E with $\eta(E)=1$.

NOTE

A potential $V / \eta(E)$ would have a bound state at E.

METHOD FOR SCATTERING STATES

Note that full wave functions are not much interesting in the scattering problems.
\square L-S equation for T-operator

$$
\begin{equation*}
T(E)=V+V G_{0}(E) T(E) \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
T(E)|\vec{p}>\equiv V| \Psi(E ; \vec{p})> \tag{6}
\end{equation*}
$$

T-matrix

$$
\begin{equation*}
T\left(E ; \vec{p}, \overrightarrow{p^{\prime}}\right)=<\vec{p}|T(E)| \overrightarrow{p^{\prime}}> \tag{7}
\end{equation*}
$$

After angular momentum decomposition

$$
\begin{equation*}
T\left(E ; p, p^{\prime}\right)=V\left(p, p^{\prime}\right)+\int_{0}^{\infty} k^{2} d k \frac{V(p, k) T\left(E ; k, p^{\prime}\right)}{E-k^{2} / 2 \mu} \tag{8}
\end{equation*}
$$

Replacing the integral by numerical sum, you have
linear algebraic equations which can be solved numerically.
A special care should be taken to the singularity.

$$
\begin{equation*}
\int_{0}^{\infty} \frac{d k}{p+i \epsilon-k} \Rightarrow P \int_{0}^{\infty} \frac{d k}{p-k}-i \pi \delta(p-k) \tag{9}
\end{equation*}
$$

Some important remarks on $T\left(E ;, p, p^{\prime}\right)$

T-matrix is called on-the-energy-shell(on-shell) if $E=p^{2} /(2 \mu)=p^{\prime 2} /(2 \mu)$.
We generalize it to off-shell where E, p, p^{\prime} are independent. Off-shell t-matrix is the input to 3-bod eqs.
T-matrix is real at $E<0$, and complex at $E>0$.
T is singular at the two-body binding energy.
In the vicinity of the binding energy, T is well described by

$$
\begin{equation*}
T\left(E ; p, p^{\prime}\right)=\frac{<p|V| \Psi><\Psi|V| p^{\prime}>}{E-\epsilon_{0}} \tag{10}
\end{equation*}
$$

with ϵ_{0} the binding energy and $\Psi(p)$ the bound state wave function.

For V_{α} with finite range:

$$
\begin{equation*}
H=H_{0}+\sum_{\alpha=1}^{3} V_{\alpha} \tag{1}
\end{equation*}
$$

particle 1: the spectator under V_{1}
particle 2: the spectator under V_{2}
particle 3: the spectator under V_{3}
x_{α}, y_{α} : Jacobi coordinate
p_{α} : the momentum corresponding to x_{α}
q_{α} : the momentum corresponding to y_{α}

THREE-BODY SCATTERING EQUATIONS

A.G.S. eqs., one of the variations of Faddeev eqs.

AGS eqs.

$$
\begin{align*}
U_{\alpha \beta}(E)= & \left(E-H_{0}\right)\left(1-\delta_{\alpha \beta}\right) \tag{2}\\
& +\sum_{\gamma \neq \alpha} T_{\gamma}(E) G_{0}(E) U_{\gamma \beta}(E)
\end{align*}
$$

with

$$
\begin{equation*}
T_{\gamma}(E)=V_{\gamma}+V_{\gamma} G_{0}(E) T_{\gamma}(E) \tag{3}
\end{equation*}
$$

$T_{\gamma}(E)$ and $G_{0}(E)$ contain all dynamical information including boundary conditions.
In order to understand the structure of the three-body equations, we iterate eqs. (3)

$$
\begin{align*}
U_{\alpha \beta}(E) & =\left(E-H_{0}\right)\left(1-\delta_{\alpha \beta}\right) \tag{4}\\
& +\sum_{\gamma \neq \alpha, \gamma \neq \beta} T_{\gamma}(E) \\
& +\sum_{\gamma \neq \alpha, \delta \neq \gamma} T_{\gamma}(E) G_{0}(E) T_{\delta}(E) G_{0}(E) U_{\delta \beta}(E)
\end{align*}
$$

Namely, successive T-matrix should be different.

SCATTERING BOUNDARY CONDITIONS

Two-Body

in

Three-Body

in

out1

out2
Out1(elastic), out2(breakup), and even out3(rearrangement) should simultaneously be described.

The Green's function

$$
\begin{equation*}
G_{0}(E)=\left(E-H_{0}\right)^{-1} \tag{5}
\end{equation*}
$$

in the momentum representation

$$
\begin{equation*}
G_{0}(E)=\frac{1}{E-p_{1}^{2} / 2 \mu_{2-3}-q_{1}^{2} / 2 \mu_{1-(2,3)}} \tag{6}
\end{equation*}
$$

with

$$
\begin{gather*}
\frac{1}{\mu_{2-3}}=\frac{1}{m_{2}}+\frac{1}{m_{3}} \tag{7}\\
\frac{1}{\mu_{1-(2,3)}}=\frac{1}{m_{1}}+\frac{1}{m_{2}+m_{3}} . \tag{8}
\end{gather*}
$$

Note that $G_{0}(E)$ is singular not at a fixed momentum, but in a certain range.
This is the breakup boundary condition.

Two-Body T-matrix $T_{\gamma}(E)$
Two-Body energy is evaluated by
(Total energy) - (K.E. of the spectator)

$$
E-q_{\gamma}^{2} / 2 \mu_{\gamma-(\alpha, \beta)}
$$

$T_{\gamma}(E)$ is singular when the two-body energy is the binding energy of the two-body system
\Downarrow
Boundary condition corresponding to 2-cluster scattering channel: particle- $\gamma+$ binding pair (α, β).

EXAMPLE: THE

NEUTRON-NEUTRON-PROTON SYSTEM
Let the proton be particle no.3.
T_{1} and T_{2} are singular because of the deuteron.
Most singular part is, therefore, $T_{1} G_{0} T_{2}$. This operator is evaluated by

$$
<\vec{q}_{1} \vec{p}_{1}|,| \vec{q}_{2} \vec{p}_{2}>.
$$

In the vicinity of the binding energy,

$$
\begin{equation*}
T_{1}=\left|g_{1}>\tau_{1}(E)<g_{1}\right| \tag{9}
\end{equation*}
$$

where $\tau_{1}(E)$ has a pole at the binding energy. Defining $Z_{12}(E)$ by

$$
\begin{equation*}
Z_{12}(E) \equiv<g_{1}\left|G_{0}(E)\right| g_{2}> \tag{10}
\end{equation*}
$$

we derive one-dimensional integral equations with \vec{q}_{α}, the spectator momentum. The resulting equations are two-body like integral equations with complex $Z(E)$ which behave like a complex potential, and with $\tau(E)$ which behave like the Green's function in the two-body equation.

$$
\begin{equation*}
X_{\alpha \beta}(E)=Z_{\alpha \beta}(E)+\sum Z_{\alpha \gamma}(E) \tau_{\gamma}(E) X_{\gamma \beta}(E) \tag{11}
\end{equation*}
$$

which should be compared with

$$
\begin{equation*}
T(E)=V+V G_{0}(E) T(E) \tag{12}
\end{equation*}
$$

Let us observe an example of the singularities in $Z_{12}(E) \tau_{2}(E)$ numerically.

SUMMARY

In the three-body system, complexity of the threshold depend on the three-body energy.

- below all two-body threshold: no singularity at all only three-body bound states
- At negative energies: two-body singularities elastic scattering and rearrangement scattering
- At positive energies: all singularities elastic, rearrangement and breakup

Singularities reflect the wave function at infinity.

Comment on Coulomb

Coulomb interaction goes to infinity in coordinate space or singular in the momentum space.

That is why Coulomb interaction is difficult to treat.
However, there is no problem for bound states: because no singularity from the wave function.

It is relatively easy below the breakup threshold.
Extremely difficult above the breakup threshold $(E>0)$.

Introduction to three-nucleon studies

Figure 1. Differential cross section, vector and tensor analyzing powers calculated using the AV18 potential (solid line) and AV18+UR potential (dashed line). Experimental points are from ref.(7]

Fig.2. The differential cross section σ, the proton analyzing power h_{y} and the deuteron analyzing powers $1 T_{11} . T_{20} . T_{21}$ and T_{22} for a corresponding proton lab. energy of 10 MeV . The curves are the results of Faddeav calcula lions.

Few-Body Conference at Eugene 1980.

Nuclear Interactions (Primitive models)

- Square well potential
- Gaussian potential
- Woods-Saxon potential
- Separable potential

These potentials are easy to treat. Parameters are fitted phenomenologically.

Nucleon-Nucleon Interaction

The interaction is obtained with a certain theory and fitted to the existing two-nucleon data precisely. (background theory and accurate phenomenology)
Internucleon
distance (r)
Region I
1π exchange
local

OBE(One Boson Exchange) potential

The interaction obtained with a basic idea that Region II and III are described by exchanging heavier bosons.

Reid93

AV18
Njimegen I, II
CD Bonn etc.

In these interactions, parameters are fitted to describe phase shifts and observed two-nucleon experiments
below pion production threshold extremely well ($\chi^{2} \approx 1$).
for instance, refer to http://nn-online.sci.kun.nl/

Some New Attempts

- Effective perturbation theory in Region II and III
- Quark RGM in Region III

Region I

Central + Strong Tensor.
YUKAWA theory: Interaction established only here

Strong tensor: The deuteron d-state, and low energy ${ }^{3} \mathrm{p}_{J}$ Phases.

Region II
Not only central, but Spin-Spin, Spin-Orbit, and more complicated operators. Attractive at least even parity.

Attractive: deuteron in ${ }^{3} \mathrm{~S}_{1}-{ }^{3} \mathrm{~d}_{1}$, virtual state in ${ }^{1} \mathrm{~S}_{0}$ 1π exchange is not attractive enough in these states.

Region III Essentially repulsive
${ }^{1} S_{0}$ and ${ }^{3} S_{1}$ phases are negative at higher energy.

pp phaseshift ${ }^{1}{ }^{S}{ }_{0}$

PWA93
—— Nijml potential
—— Nijmll potential

- Reid93 potential
- ESC96 potential

pp phaseshift ${ }^{3} \mathrm{P}_{0}$
- PWA93
—_ Nijml potential
- Nijmll potential
- Reid93 potential
-_ ESC96 potential

pp phaseshift ${ }^{3} \mathrm{P}_{1}$
\qquad PWA93
—_ Nijml potential
- Nijmll potential
- Reid93 potential
- ESC96 potential

pp phaseshift ${ }^{3} \mathrm{P}_{2}$
- PWA93
—— Nijml potential
- Nijmll potential
- Reid93 potential
-_ ESC96 potential

np observable DSG at Tlab $=10.0 \mathrm{MeV}$

- PWA93

—— Nijml potential

- Nijmll potential
- Reid93 potential
- ESC96 potential

＋9L0	8IL＇L－	$\begin{aligned} & 28+8- \\ & \text { (I) } \angle t \cdot 8- \end{aligned}$		
$\varepsilon ャ L^{\circ} 0$	でLLL－	S84＊－		［69］（esid）Xİ－qI $\Omega+8 \mathrm{~L} \Lambda$（
StL＇0	6ELL－	ャ8t＊－		XI－qin $+8 \mathrm{~L} \Lambda \boldsymbol{V}$
てヤじ0	90LL－	8tr＊－	9SL＇t	6 $\mathrm{NLL}+8 \mathrm{~L} \Lambda \mathrm{~V}$
哂0	$\varepsilon \varepsilon L L L$	8Lt゚8－	9St＇s	WL＋8I $\Lambda \forall$
$\varepsilon ャ L{ }^{\circ} 0$	¢ELLL－	8Lt＇8－	＋8L＇t	WLL＋unog－aつ
${ }^{8}$ 汉	$\left({ }^{(} \mathrm{H}_{\varepsilon}\right)$ \＃	$\left(\mathrm{H}_{\varepsilon}\right)$ ］	V	

rof arom！n_{1}

${ }^{2} 6{ }^{\text {I }}$	ゅL＇t	068：8－	SLI＇t	00L＇s	чว \downarrow ¢	
E6 ${ }^{\text {I }}$	ゆL＇I	てヤど8－	091＇t	006＇81	ч\％ 81	
L6＇	8L＇I	$606 \mathrm{~L}-$	†¢6＊ε	$00 s^{6} 0$ L	чว 01	SS
¢6．${ }^{\text {I }}$	$8 L^{\circ} \mathrm{I}$	＋E0．8－	$666^{\circ} \varepsilon$	0sz＇s	ч० ¢	
66°	\＆ $8^{\circ} \mathrm{I}$	カL9 L－	$880^{\circ} \mathrm{Z}$	001 ＇ 2	чэ	
$06^{\circ} \mathrm{I}$	ZL＇	カIS゙8－	$88 t$＇t	00L＇¢	¢ว $\downarrow \mathcal{E}$	
$06^{\text {I }}$	ZL＇I	6et＇8－	09t＇t	006＇81	чว 81	
${ }^{6} 6.1$	$9 L^{\circ} \mathrm{I}$	LIO\％－	$6+て ゙ \downarrow$	$00 S^{\text {co }} 0$	чว 01	$2^{\text {s }}$
$26^{\text {I }}$	$s L \cdot I$	$68.8-$	Iセど力	0sz＇s	ч๐ ऽ	
$96^{\circ} \mathrm{I}$	$08^{\text {I }}$	L08 L^{-}	198＇z	001 ＇r	ч๐ τ	
（m）	（ mj ）		（ムวW）			
	$\left.{ }^{\mathrm{H} \varepsilon} \varepsilon_{z}\langle \rangle\right\rangle$	$\left(H_{\varepsilon}\right)$ I	（NZ）3	${ }^{\text {xvu }}$ u	ऽәииечо	pou

$(\tau 0,199)$ วyd

Table: Typical calculated total cross sections in $n-d$ scattering. The cross sections are in mb . Potential used is AV14, but all OBE two-body potential would give similar result. Note that the breakup process is definitely more important at higher energy.

$\mathrm{E}^{\text {lab }}$	10 MV	30 MV	70 MV	100 MV	135 MV
elastic	912	230	43	31.5	18.7
b-up	142	123	82	61.4	53.4
total	1054	353	142	92.9	72.1

Table: The same as the table above but with the contribution ratio (quartet/doublet) is given in the parenthesis. Here, quartet means the quartet induced cross section. If it were just central interactions, the ratio would be 2 .

$\mathrm{E}^{\text {lab }}$	10 MV	70 MV	135 MV
elastic	$912(4.6)$	$43(2.5)$	$18.7(3.9)$
b-up	$142(0.4)$	$82(1.8)$	$53.4(2.8)$

E II. Total n-d cross section calculated from the Paris l in comparison to experimental data:

V)	$\sigma_{\text {calc }}(\mathrm{mb})$	$\sigma_{\text {expt }}(\mathrm{mb})$	
	Ref. 40	Ref. 41.	
1469	$1478 \pm 16^{\mathrm{a}}$	1471 ± 20	
1330	$1296 \pm 10^{\mathrm{a}}$	1337 ± 10	
1225	1207 ± 13	1224 ± 10	
1129	$1118 \pm 10^{\mathrm{a}}$	1128 ± 10	
1047	1055 ± 10		
1028		1038 ± 10	
912	913 ± 13	923 ± 10	
807		824 ± 10	
650	$584 \pm 10^{\mathrm{a}}$	666 ± 7	
587		603 ± 6	

speriments are at slightly different energies $\Delta E_{\mathrm{n}} \approx \pm 0.1$
Y. Koike. J. Haidenbaner and W.Plessas, PR(35 (1987) 396

The main purpose of N -d scattering study To examine if internucleon potentials, like OBE are enough describing nuclear phenomena

What is missing
The three-body force

An important concept
The off-shell effect
\Downarrow
The main purpose of $\mathrm{N}-\mathrm{d}$ scattering study
Investigate three-body force in detail, taking care of the off-shell effect.
variety of methods have been used in momentum space, configuration space, and a combination of these spaces to obtain eigenvalues for a diverse set of realistic nucleon-
an a pumper or cans of the inter: Ionian, the nonrelativistic trinucleon bound lem appears to be well under control.
In contradistinction, threc-nucleon scatter

TABLE I. Spin-doublet results.

BENCHMARK SOLUTIONS FOR A MODEL THREE-NUCLEON .
TABLE II. Spin-quartet results.

First Benchmark solution

The same potential, different method Utrecht: taro dimensimeal integral egs. in mom.sp. Julich/MM : separable EST Hose
LA/Iowa : coordinate space
PRC 42 (1990) 1838

A Three-Body Interaction

Any three-nucleon diagram which can not be reduced to a sum of two-nucleon process is a three-body interaction
Simple and probably most important process: two-pion process with

Successive 2-BI

3-BI

2-BI

This three-body interaction should be important at the cross section minimum at higher energies, because

 potential. Ref. [16] for the $p+d(n+d)$ scattering using the Paris $N N$ (dashed) curves are the results of the Faddeer calculation FIG. 10. Differential cross section in the $p+d$ scattering

$$
\begin{aligned}
& \text { FIG. 11. The same as in Fig. } 10 \text { at } E_{p}=12 \text { (top), 14, 16, } \\
& \text { and } 18 \mathrm{MeV} \text { (bottom). }
\end{aligned}
$$

(calc-exp)/exp for cross sec. minimum

K. Sekigucki etal. PRC 65('02)

Section 5.2 Comparison of Data with Theoretical Predictions

Figure 5.1: The differential cross section $d \sigma / d \Omega$ in elastic $N d$ scattering at $E_{d}=140$ and 270 MeV . The light shaded bands contain NN force predictions (AV18, CDBonn, Nijm I, II and 93), the dark shaded bands contain the NN + TM 3NF predictions. The solid, short dashed and long dashed lines are the AV18 + Urbana $\mathrm{IX}, \mathrm{CDB}$ onn $+\mathrm{TM}^{\prime}$, and AV18 + Urbana IX + phenomenological spin-orbit 3NF predictions, respectively.

Figure 5.9: The differential cross section $d \sigma / d \Omega$ in elastic $N d$ scattering at $E_{d}=140$ and 270 MeV . The thick solid lines are the predictions with Δ-isobar excitatior and the thick dotted lines contain 2N force predictions based on Paris Potential.

Figure 5.2: The vector analyzing power A_{y}^{d} and the tensor analyzing power $A_{z z}$ in elastic $N d$ scattering at $E_{d}=140,200$, and 270 MeV . For the description of bands and curves see Fig. 5.1.

er $A_{z x}$ in of bands

Figure 5.3: The tensor analyzing powers $A_{5 y}$ and $A_{z z}$ in elastic $N d$ scattering at $\cdot E_{d l}=140,200$, and 270 MeV . For the description of bands and curves see Fig. 5.1.

5.3 Summary of Comparison : Result for the $d-p$ data and Theoretical Predictions

By comparing the present $d-p$ elastic scattering data with the theoretical predictions, we can categorize the observables into the three types.

Type I : $d \sigma / d \Omega, A_{y}^{d}, K_{x x}^{y}-K_{y y}^{y^{\prime}}$

For these observables, the clear discrepancies exist between the data and the 2 N force predictions, especially in the angular range where the cross section take minimum. The deviations are explained beautifully by inclusion of 3NFs. All 2π-exchange 3NF potentials considered here (TM, TM', Urbana IX) provide almost the same 3NF effects (magnitude and direction).

Type II : $P^{y^{\prime}}\left(=-A_{y}^{p}\right)$
The TM' 3NF as well as Urbana IX 3NF describes well the difference between the data and the 2N force predictions, however the inclusion of the TM 3NF shift the calculated results to the right direction but too much. The c-term of the TM 3NF which should not exist under the chiral perturbation theory might be the origin of the wrong 3 NF effect (See Sec. 1).
Type III : $A_{x x}, A_{y y}, A_{x z}, K_{y}^{y^{\prime}}, K_{x z}^{y^{\prime}}$
No calculation has its superiority for these observables. Although large effects of 3 NFs are predicted at the angles $\theta_{\mathrm{cm} .}=90^{\circ}-120^{\circ}$, they are not at all supported by the data. It is interesting to note that the TM^{\prime} and Urbana IX 3NFs provide very similar effects. On the other hand, the 3NF effects by the TM 3NF are quite different from those by the TM' and Urbana IX 3NFs.

Table 5.6 shows the summary of the result of the comparison for the $d-p$ elastic scattering data. Here we do not mention about the phenomenological SO-3NF, since the inclusion of this 3NF to the AV18 + Urbana IX prediction leads only a minor modification for all measured observables.

Generally, the discrepancies between the data and the 2 N force predictions are clearly seen at the angles where the cross sections are in the minimum and they

Y. Satou et al. CNSPreprint

Abstract
We have measured the cross sections and analyzing powers A_{y} and $A_{y y}$ for the elastic and inelastic scattering of deuterons from the 0^{+}(g.s.), $2^{+}(4.44 \mathrm{MeV}), 3^{-}(9.64$ $\mathrm{MeV}), 1^{+}(12.71 \mathrm{MeV})$, and $2^{-}(18.3 \mathrm{MeV})$ states in ${ }^{12} \mathrm{C}$ at an incident energy of 270 MeV . The data are compared with microscopic distorted-wave impulse approximation calculations where the projectile-nucleon effective interaction is taken from the three-nucleon t-matrix given by rigorous Faddeev calculations presently available at intermediate energies. The agreement between theory and data compares well with that for the $\left(p, p^{\prime}\right)$ reactions at comparable incident energies/nucleon.

Key words: (d, d^{4}) reaction, DWIA analysis, Three-nucleon t-matrix

[^0]
APPLICATIONS OF FEW-BODY METHOD

Especially to hypernuclei and unstable nuclei
It is useful to introduce a three-body model with constituent particles of $N, \wedge,{ }^{4} \mathrm{He},{ }^{9} \mathrm{Li}$ etc.
The direct information from two-body scattering in hypernuclei and unstable nuclei is in many cases hopeless.

Interests are: bound states and resonances.
Typical unstable nuclei: neutron halo.
\Downarrow
Neutron is weakly bound or about to bound(but unbound).

Borromean system:

an interesting result from the three-body theory.
Three-body system can be bound even when no subsystems have any bound states.

HOMEWORK EXERCISE

Let us take a three identical boson system. Assuming a simple Yamaguchi separable potential acting just on s-wave

$$
\begin{equation*}
V\left(p, p^{\prime}\right)=g(p) \lambda g\left(p^{\prime}\right) \tag{1}
\end{equation*}
$$

with

$$
\begin{equation*}
g(p)=1 /\left(p^{2}+\beta^{2}\right) \tag{2}
\end{equation*}
$$

you derive a simple three-body equation(many references).

Keeping β unchanged, you solve two- and three-body equations for bound states. You do not find any bound state for small λ. Potential is too weak. Increasing λ you find:

Binding Energy

Efimov

What is more surprising is Efimov states

You can also examine the following theorem as an extended homework:

If the two-body subsystem has a bound state at $E=0$, three-identical bosons interacting in s-wave have infinite numbers of 0^{+}bound states. (Efimov)

Example of Borromean system: ${ }^{6} \mathrm{He}$ as $\mathrm{n}-\mathrm{n}-{ }^{4} \mathrm{He}$ system

Example of Efimov states:

 He_{3}, at least two O^{+}states some unstable nuclei?

As an application of the present lecture:

We learn

Two-body potential resonances

\Downarrow
Three-body resonances

Contour deformation

$$
\begin{equation*}
T\left(E ; p, p^{\prime}\right)=V\left(p, p^{\prime}\right)+\int_{0}^{\infty} k^{2} d k \frac{V(p, k) T\left(E ; k, p^{\prime}\right)}{E-k^{2} / 2 \mu} \tag{1}
\end{equation*}
$$

You can replace the contour OA by OB, if

- there are no singularity inside $O A B$, and
- the contribution from BA is zero.

Contour deformation makes the singularity in the Green's function regular. At the same time, it makes you to go down on the complex energy plane.

TRACE OF THE TWO-BODY T-MATRIX POLE

thresholds and cuts in n-d scattering

${ }^{6} \mathrm{He}$

Data taken from experiment.

$$
\mathrm{T}=0 \text { states of }{ }^{6} \mathrm{Li}
$$

Taken from the calculation by A. Eskandarian and I.R. Afnan P.R. C46 (1992) 2344.
2^{+}and 1^{+}are in different sheet. Reflecting nuclear structure.

There are two critical thresholds:

- Deuteron: Opening d- α channel makes the width of 2^{+}and 1^{+}very large.
- $p_{3 / 2}$ in ${ }^{5} \mathrm{He}$: Positions of these resonances are very close to this threshold. However,
- In the simple shell model, 1^{+}may be described by $\left(p_{1 / 2}\right)^{2}$, while 2^{+}by ($\left.p_{3 / 2}, p_{1 / 2}\right)$.
- The neutron is " bound" to ${ }^{5} \mathrm{He}\left(\mathrm{p}_{3 / 2}\right)$ in 2^{+}, and therefore the pole is below the threshold.
- 1+ does not have such a structure and therefore the position is above the threshold. However, the FSI in $\mathrm{p}_{3 / 2}$ is very important in the decay mode of 1^{+}.(Observed in both theory and experiment) So, the position is strongly affected by the threshold.

Level structure of ${ }^{9} \mathrm{Be}$ and ${ }_{\wedge}^{9} \mathrm{Be}$
At low energies, they decay into $\alpha-\alpha-\mathrm{n}(\wedge)$.
Very good example of the three-body resonance.
Many levels are found in experiments. Still spin-parity assignment is difficult for some levels.
important two-body structures:

- $\alpha-\alpha$ rotational band: $\ell=0,2,4$.
- s-wave α-B system
- Bound state at -3.1 MeV in $\alpha-\wedge$
- No structure in α-n because of Pauli principle
- p-wave α-B system
- Strong central and strong ℓ-s force in $\alpha-n$
- Poor information but at least not strong central nor ℓ-s force in α - \wedge

$\varepsilon-100 \nmid 10$

Lto	L8＇1－	0ヶ0	$68^{\prime} \mathrm{I}-$	Iセ0	26 I－	Va
$99^{\circ} 0$	98.1 －	LSO	＋8．1－	850	68^{\prime} I－	日a
790	L9＇I－	Ss＇0	S9＇1－	$95^{\circ} 0$	$69^{\circ} \mathrm{I}-$	SW
89°	¢0\％－	$65^{\circ} 0$	86 I －	290	00°－	H．L
Z／J	3	U／J	\exists	Z／I	3	
	0		V		In	
uoisjudax quopnoy						
（10 ${ }^{\circ}$ ）				109	${ }^{2} \mathrm{~g}_{6}$	
$\begin{aligned} & 8 \varepsilon^{\circ} 0- \\ & \varepsilon \varepsilon^{\circ} 0- \\ & \operatorname{so}^{\circ} 0- \\ & \varepsilon z^{\circ} 0 \end{aligned}$	$\begin{aligned} & 6 \varepsilon^{\circ} 0- \\ & \varepsilon 1^{\circ} 0- \\ & 90^{\circ} 0- \\ & \varepsilon z^{\circ} \end{aligned}$	$\begin{aligned} & \angle \varepsilon^{\circ} 0- \\ & ゅ I^{\circ}- \\ & \angle 0^{\circ}- \\ & \text { L'O- } \end{aligned}$	$\begin{aligned} & \text { I } \varepsilon^{\circ} 0- \\ & \varepsilon \varepsilon^{\circ} 0- \\ & \varsigma \varepsilon^{\circ}- \\ & \varepsilon^{\circ} 0- \end{aligned}$	IE0－	$\begin{aligned} & \mathrm{I} \varepsilon_{0} 0- \\ & \tau \varepsilon^{\circ} 0- \\ & +\varepsilon^{\circ} 0- \\ & 6 \varepsilon^{\circ} 0- \end{aligned}$	VGgdSWHL
				£๕0－		
				¢¢0－		
				£が0－		
¢ว	gv	Win	gว	gV	WIn	
	$+\frac{2}{5}$	$+\frac{\frac{\tau}{\varepsilon}}{}$				

6201	0 ± 6	886	¢18	$\mathrm{Sl}_{1} 8$	978	vc
こじ6	£9\％	$09^{\prime} 6$	$\varsigma \varepsilon^{\prime} L$	$0 ¢ \cdot L$	$\angle L L$	HC
99%	¢¢＇8	85%	069	t8＇9	$8 E^{\circ} L$	S
856	188	$98^{\circ} 6$	$6 L^{\prime} \mathrm{S}$	$t L^{\prime} \mathrm{S}$	LS＇9	H．
ตว	$\begin{gathered} \text { GV } \\ \left(+\frac{z}{6}\right)+\frac{z}{l} \end{gathered}$	WII	ตว	$\stackrel{\text { qV }}{\left(-\frac{2}{\varepsilon}\right)-\frac{2}{1}}$	WIO	

	$\left(\frac{z}{6}\right)+\frac{z}{l}$ pue $\left(-\frac{z}{\varepsilon}\right)-\frac{z}{1}$ AIX 日าดvL
рпэu！јечı［әрои	njo $\mathrm{V}+(N+N \varepsilon+\infty)$［euon

$60^{\circ} 0$	$6 \mathrm{Z}^{\circ}$	200	590－	\＄0 0	080－	va
60°	［5\％	200	IS 0 －	＋0＇0	$90^{\circ} 0$	ga
2I＇0	60°	E00	$90^{\circ} 0$	$90^{\circ} 0$	IS 0	SW
020	99.1	$90^{\circ} 0$	$65^{\circ} 0$	ガ0	$60^{\circ} 1$	HL
Z／I	3	ひ」	a	U／I	3	
g）		gv		WIN		

（Z00Z）I00巾I0＇99 D MAIAGY TVOISAHd

Table 9.2: Euergy Levels of ${ }^{9} \mathrm{Be}$

$\begin{gathered} E_{\mathrm{x}}^{\mathrm{a}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{*} ; T$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	Reactions
g s.	$\frac{3}{2}^{-} ; \frac{1}{2}$		stable	2, 3, 4, 9, 10, 11, 12, $13,14,15,16,17,18$, 19, 20, 21, 22, 23, 24, $25,26,27,28,29,30$, $31,32,33,34,35,36$, $37,38,40,41,42,43$, $44,45,46,48$
1.084 ± 7	$\frac{1}{2}+$	217 ± 10	γ, n	$\begin{aligned} & 4,9,10,13,16,18,19 \text {, } \\ & 21,23,24,32,36,38, \\ & 40 \end{aligned}$
2.4294 ± 1.3	$\frac{5}{2}{ }^{-}$	0.77 ± 0.15	$\gamma, \mathrm{n}, \alpha^{\prime}$	$\begin{aligned} & 4,9,10,11,12,16,17, \\ & 18,19,21,22,23,24, \\ & 25,26,32,33,35,36, \\ & 37,38,40,44 \end{aligned}$
2.78 ± 120	$\frac{1}{2}{ }^{-}$	1080 ± 110	n	$4,9,12,38,44$
3.049 ± 9	$\frac{5}{2}{ }^{+}$	282 ± 11	${ }_{7} \mathrm{n}$	$\begin{aligned} & 4,9,16,18,19,21,23, \\ & 24,32,36,38,40 \end{aligned}$
4.704 ± 25	$\left(\frac{1}{2}\right)^{+}$	743 ± 55	γ, n	$\begin{aligned} & 4,9,16,21,23,24,38, \\ & 44 \end{aligned}$
6.76 ± 60	$\frac{7}{2}$	1540 ± 200	γ, n	$\begin{aligned} & 9,11,16,17,18,19, \\ & 21,23,24,25,35,40 \end{aligned}$
7.94 ± 80	($\frac{1}{2}^{-}$)	≈ 1000		12, 19
11.283 ± 24		575 ± 50	n	9, 12, 19, 24, 35, 36
11.81 ± 20	$T=\frac{1}{2}$	400 ± 30	γ, n	9, 12, 13, 37, 44
13.79 ± 30	$T=\frac{1}{2}$	590 ± 60	γ, n	9, 16, 37
14.3922 $\pm 1.8{ }^{\text {c }}$	$\frac{3}{2}{ }^{-}$; $\frac{3}{2}$	0.381 ± 0.033	$\gamma, \mathrm{n}, \alpha^{\prime}$	$9,16,19,23,36,37$
14.4 ± 300 15.10		≈ 8000	γ	$\begin{array}{\|l\|} \hline 36 \\ 16,37 \end{array}$
15.97 ± 30	$T=\frac{1}{2}$	≈ 300	${ }_{\gamma}$	16, 37
16.671 ± 8	($5^{+}{ }^{+}$)	. 41 ± 4	\%	9, 16, 19, 36
$16.9752 \pm 0.8{ }^{\text {d }}$	$\frac{1}{2}{ }^{-} ; \frac{3}{2}$	0.49 ± 0.05	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}$	4, 5, 6, 15, 16
17.298 ± 7	$\left(\frac{5}{2}\right)^{-}$	200	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	5, 6, 7, 13, 16, 19
17.403 ± 7	$\left(\frac{7}{2}\right)^{+}$	47	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	$5,6,7,16,19$
18.02 ± 50			γ	16
18.58 ± 40			$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	6, 16

[^0]: ${ }^{1}$ E-mail: ysatou@rarfaxp.riken.go.jp
 ${ }^{2}$ Present address: Soei International Patent Firm, Tokyo 104-0031, Japan.

