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T hree-Body Scattering Theory and Its
Applications

I. An Introduction to Three-Body Scattering
Theory (Faddeev Theory)

II. An Introduction to the Three-Nucleon
Studies

ITII. Application to Light Nuclear Systems —
Three-Body Resonances



QUANTUM MECHANICAL SOLUTION
FOR A GIVEN HAMILTONIAN

APPROACH I
Schrodinger eqgn(Differential equation)

+ Boundary condition

APPROACH II
Integral equation

Boundary condition included
in the equation

Two different approach to obtain
the SAME solution




APPROACH I

—— Boundary condition (two-body case) —
e bound states

V() =0 asr — oo.
e Scattering states

W(r) =

(incident plane wave)

+ (outgoing spherical wave)

as r — oo .
J

~— Boundary condition (three-body case) —
e bound states

V(Z,4y) =0 asxz,y — oo.
e Scattering states

No description in TEXTBOOKS !




TWO-BODY SCATTERING THEORY
IN THE MOMENTUM SPACE



-

Hamiltonian N
For V with finite range:

H=Ho+V (1)

Lippmann-Schwinger equation

(W(E) >=|p >+ Go(E)VIW(E) >. (2)

The first term is one of the boundary
condition: incident plane wave.
The second term should go to outgoing
spherical wave at infinity.

|

The Green's function
(3)}

Go(E) = (E — Hp)™*

Note: Operating (E — Hp) on €q.(2), you get

Schrodinger equation back.
(E — Ho)Go(E) = 1,(E — Ho)|p >= 0.



Evaluation of operators in momentum space

< plH|p >=63(p—p') p°/2u + < pIV|p' > (4)

5 3@ 1)
< plGo(E)|p >= (5)
E —p?/2p
e Go(FE) is singular for £ > 0
at on-shell p: i.e., p?/2u=E.
p Boundary condition N
EF:E+ic,e—0 (6)

makes the second term of L-S equation
\to be outgoing spherical wave.

e regular for £ < 0.




Bound state:
No singularity in Gg = No outgoing wave
No incident wave

L-S equation for the bound state

(W (F) >= Go(E)V|V(E) >. (7)




HOW DO YOU SOLVE TWO-BODY
EQUATIONS?

Basic equation for bound states:

IW(FE) >= Go(E)V|W(E) >, E <O. (1)

Basic equation for scattering states:

(W(E) >=1|p>4+Go(E)VIV(E) >, E> 0. (2)

Note that boundary conditions are included
in the equation through the analyticity.

SIMPLIFY THE EQUATION
Angular momentum decomposition
+ Fourier transform for V

= Vi(p,p’)



— METHOD FOR BOUND STATES ——
To make the bound state equation to a stan-

dard equation, we introduce n(E) where
n(E)|W(E) >= Go(E)VIV(E) > (3)
Or

o0 Vo(p, o)W, (v, E)
EYWi(p, ) = [~ p2dp/ 5 ’
n(E)W,(p, F) , Prdp

E—p2/2p
(4)

n(E) is the eigenvalue of Go(E)V,
which is a real number at £ < 0. Replacing the
integral by numerical sum, you have a matrix
eigenvalue problem which can be solved numerically.

For given E, you solve the eigenvalue equation.
Changing E, you eventually find
an energy E with n(E) = 1.

NOTE
A potential V/n(FE) would have a bound state at E.



METHOD FOR SCATTERING STATES
Note that full wave functions are not much
interesting in the scattering problems.

- L-S equation for T-operator N
T(E) =V + VGo(E)T(E) (5)
with
; T(E)|p >= V|V(E;p) > (6)
T-matrix
T(E; p,p) =< pIT(E)lp > (7)

After angular momentum decomposition

V(p, k)T (E; k,p)

@)
T(E- 1 — / / 2
(Eip,p) =V (p:p)+ | kodk I
(8)
Replacing the integral by numerical sum, you have
linear algebraic equations which can be solved
numerically.

A special care should be taken to the singularity.



/op-|-ze— = /mﬂ—wé(p k) (9)

Some important remarks on T(E;,p,p")

T-matrix is called on-the-energy-shell(on-shell)
if E=p?/(2p) = p?/(2u).

T-matrix is real at £ < 0, and complex at E > 0.

In the vicinity of the binding energy, T is well described

by

<p|lV|W >< W|VI[p >
E — €

with ¢y the binding energy and W(p) the bound state

wave function.

T(E;p,p) = (10)
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- Hamiltonian
For V., with finite range:

3
H = Hg + Z Va (1)
L a=1
B)m
73 (P3) y1 (q1)

\@3)
mo @ g

1 (p1)

m3

particle 1: the spectator under V;
particle 2: the spectator under V5
particle 3: the spectator under V3

Ta, Yoo JACODI coordinate
Do the momentum corresponding to z,
Qo the momentum corresponding to yq



THREE-BODY SCATTERING EQUATIONS

A.G.S. egs., one of the variations of Faddeev eqgs.

e AGS egs. N
Uap(E) = (E— Ho)(1—d4p) (2)
+ > Ty(E)Go(E)U,5(E),
V7
with
Ty(E) = Vy + V3Go(E)TH(E).  (3)

N y
T,(E) and Go(E) contain all dynamical information in-

cluding boundary conditions.
In order to understand the structure of the three-body

equations, we iterate eqgs. (3)
Uap(E) = (E — Ho)(1— dap) (4)
+ 2:: T, (F)
YFEaFEp
+ > T(E)Go(E)T;(E)Go(E)Uss(E)
V7,07
Namely, successive T-matrix should be different.




SCATTERING BOUNDARY CONDITIONS

Two-Body
s ® = Y 4
in out
Three-Body
o (o = Yo
in outl
&
— G-
out?2

Outl(elastic), out2(breakup),
and even out3(rearrangement) should
simultaneously be described.



The Green's function

Go(E) = (E — Hp) ™+ (5)

—— in the momentum representation ———

1
Go(F) = (6)
E — p%/2M2—3 — (J%/Qm—(zs)
with
1 1 1

= 4 (7)

p2—-3 Mo  m3

1 1 1
= 4 NG

H1_(23) ™M1 m2-+m3
N J

Note that Go(F) is singular not at a fixed
momentum, but in a certain range.
This is the breakup boundary condition.



Two-Body T-matrix T~ (FE)
Two-Body energy is evaluated by
(Total energy) - (K.E. of the spectator)

- q7/2,u7 (e, 0)

T+(FE) is singular when the two-body energy
is the binding energy of the two-body system
J
Boundary condition corresponding to
2-Cluster scattering channel:

particle-y 4 binding pair(a, 3).




EXAMPLE: THE
NEUTRON-NEUTRON-PROTON SYSTEM

Let the proton be particle no.3.
17 and 15 are singular because of the
deuteron.
Most singular part is, therefore, T1G15.
T his operator is evaluated by
< q1p1l, |g2p2 >.
In the vicinity of the binding energy,

T1 = |g1 > 11(EF) < g1 (9)
where 71 (F) has a pole at the binding energy. Defining
Z12(FE) by

Z12(F) =< g1|Go(E)|g2 > (10)

we derive one-dimensional integral equations with ¢,

the spectator momentum. The resulting equations are

two-body like integral equations with complex Z(E) which
behave like a complex potential, and with 7(E) which

behave like the Green’s function in the two-body equa-

tion.

Xaﬁ(E) — ZaB(E) + Z Zow(E)TW(E)XVB(E) (11)
which should be compared with
T(E) =V +VGo(E)T(FE) (12)

et us observe an example of the singularities in Z12(E)m(E)
numerically.
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SUMMARY

In the three-body system, complexity of the threshold
depend on the three-body energy.

e below all two-body threshold: no singularity at all
anly three-body bound states

e At negative energies: two-body singularities
elastic scattering and rearrangement scattering

e At positive energies: all singularities
elastic, rearrangement and breakup

Singularities reflect the wave function at infinity.

Comment on Coulomb

Coulomb interaction
goes to infinity in coordinate space
or singular in the momentum space.

That is why Coulomb interaction is difficult to treat.

However, there is no problem for bound states:
because no singularity from the wave function.

It is relatively easy below the breakup threshold.
Extremely difficult above the breakup threshold(FE > 0).



Introduction to three-nucleon studies
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Figure 1. Differential cross section, vector and tensor analyzing powers caleulated using
the AV18 potential {{solid line) and AV184+UR potential (dashed line). Experimental
points are from ref[7]
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Nuclear Interactions (Primitive models)

e Square well potential
e Gaussian potential
e \Woods-Saxon potential

e Separable potential

These potentials are easy to treat.
Parameters are fitted phenomenologically.



Nucleon-Nucleon Interaction

The interaction is obtained with a certain theory and
fitted to the existing two-nucleon data precisely.

(background theory and accurate phenomenology)

Internucleon
distance (r)

>
>

Region III Region 1
quark? 17w exchange
non-local? local
- + +




OBE(One Boson Exchange) potential

The interaction obtained with a basic idea
that Region II and III
are described by exchanging heavier bosons.

Reid93
AV18
Njimegen I, II
CD Bonn
etc.

In these interactions, parameters are fitted
to describe phase shifts
and observed two-nucleon experiments

below pion production threshold extremely well
(x? =~ 1).

for instance, refer to
http://nn-online.sci.kun.nl/

Some New Attempts
e Effective perturbation theory in Region II and III

e Quark RGM in Region III



Region I
Central 4+ Strong Tensor.
YUKAWA theory: Interaction established only
here

Strong tensor: The deuteron d-state, and low energy
3p; Phases.

Region II
Not only central, but Spin-Spin, Spin-Orbit,
and more complicated operators.
Attractive at least even parity.

Attractive: deuteron in 3s;-3dq, virtual state in 1sg
17w exchange is not attractive enough in these states.

Region III
Essentially repulsive
sy and 3s; phases are negative at higher energy.
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A. NOGGA, H. KAMADA, W. GLOCKLE, AND B. R. BARRETT

TABLE L. 3N binding energies E for different NN interactions
compared to the experimental values. Results are shown for *H, He
and their binding energy difference AE ;. Additionally, we show
the kinetic energies T. All results are given in MeV.

. °H | ‘He
Interaction Eg T Ep T AEp
CD-Bonn —-8.013 3743  —7.288  36.62 0.725
AV18 —7.628 46776 —6917 4569  0.711
Nijm I =7.741 . 40.74  —=7.083. 40.01  0.658.
Nijm II —-7.659 4755 —7.008 46.67  0.651
Nijm 93 —7.668 . 4565 7014 44779  0.654

Expt. - —8.482 = le 0.764




THE a PARTICLE BASED ON MODERN NUCLEAR FORCES

TABLE II. 3N binding energy results for different combinations
of NN and 3N interactions, together with the adjusted form factor
parameters A in units of m .. The binding energies for H ECH)
and *He E %E& are shown. m.H completeness, the splitting AE B 1S

also displayed. All energies are given in MeV.

Interaction A ECH) E(CHe) AEg
CD-Bonn+TM 4784 —8.478 ~—7.735 0.743
AV18+TM e 5156 —8478 —7.733 0.744
AV18+TM’ 4756 —8.448 —7.706 0.742
AV18+Urb-IX —~8.484 —7.739 0.745
AV18+Urb-IX (Pisa) [69] —8.485 —7.742 0.743
AV18+Urb-IX @ﬁcnu& [28] —8.47(1) |
0.764

Expt. | Sl —8482 —7.718

ey EE—rn




“on value, Eq. (6), deter 1ined self-consistently.

model channels n,,, &(2N) E(°H) V(rodsg  V(rH)sge
(MeV) (MeV)  (fm) (fm)

2 ch 2100 2361 -=7807 1.80 1.96

3 ch 5,250 4341 —8.189 1.75 1.92

582 10ch 10,500 4249 -8017 1.76 1.94
1I8ch 18900 4.460 —-8439 1.72 1.90

34ch 35700 4488 —-8514 1.72 1.90

2 ch 2,100 2038 -—-7.674%. 1.83 1.99
Jech . 35250 3999 -8.034 1.78 195
FSS 10ch 10,500 3934 —-7909 1.78 1.5
18ch 18,900 4.160 -8.342 174 1.93
34ch 35700 4.175 -8390 1.74 192

Y. Fujiwara ot al. PRC (4("02)




Table: Typical calculated total cross sections in n-d
scattering. The cross sections are in mb. Potential
used is AV14, but all OBE two-body potential would
give similar result. Note that the breakup process Is
definitely more important at higher energy.

ER [ 10 MV 30 MV 70 MV 100 MV 135 MV
elastic 12 230 43 31.5 18.7
b-up 142 123 82 61.4 53.4
total | 1054 353 1472 92.9 72.1

Table: The same as the table above but with the con-
tribution ratio (quartet/doublet) is given in the paren-
thesis. Here, quartet means the quartet induced cross
section. If it were just central interactions, the ratio
would be 2.

E@ [ 10MV 70 MV 135 MV
elastic | 912 (4.6) 43 (2.5) 18.7 (3.9)
b-up | 142 (0.4) 82 (1.8) 53.4 (2.8)




E II. Total n-d cross section calculated from the Paris
| in comparison to experimental data.

V)]  Ocac (mb) Texpt (mb)
Ref. 40 Ref. 41
1469 1478+16° 1471420
1330 1296+10* . 1337+10
1225 - 1207+13 1224+10
1129 11184107 1128+10
1047 ~ 1055+10 =
1028 | ©1038+10
912 913+13 923+10
807 824+10
650 | 666+7
587 - 584+10° - 603+6

(periments are at slightly different energies AE, ~ +0.1

V. Kolke , 3. Haidembanar axd W.Plessas  PRCIE (198739
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The main purpose of N-d scattering study
To examine if internucleon potentials,
like OBE
are enough describing nuclear phenomena

What is missing
The three-body force

An important concept
The off-shell effect
J
The main purpose of N-d scattering study
Investigate three-body force in detail,
taking care of the off-shell effect.



variety of methods have
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A Three-Body Interaction

Any three-nucleon diagram which can not be reduced
to a sum of two-nucleon process is a three-body
interaction
Simple and probably most important process: two-pion
process with

= ™
A
= e
Successive 2-BlI 3-BI 2-BI

This three-body interaction should be important at the

Cross section minimum at higher energies, because
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Section 5.2 Comparison of Data with Theoretical Predictions
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Figure 5.1: The differential cross section de /df} in elastic Nd scattering at Ey=140
and 270 MeV. The light shaded bands contain NN force predictions (AV1S, CD-
Honn, Mijm I, IT and 93), the dark shaded Lands contain the NN + TM aNF
predictions. The solid, short dashed and long dashed lines are the AV1S - Urhana
IX, CDBonn + TM', and AV18 + Urbana IX + phenomenclogics] spin-arbit 3NF
predictions, respectively.
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Chapter 5. Discussion
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Figure 5.%: The differential cross section do JdSt in elastic Nd scattering at Ey= 4L
and 270 MeV. The thick solid lines are the predictions with A-isobar excitatior
and the thick detted lines contain 2N force predictions based on FParis Potential.
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Chapter 5. Discussioy

04— 270 MeV

IIlIIJI.""

Lv] &0 120 184
Oom, [deg]

Figure 5.2: The vector analyzing power A; and the tensor analyzing power A.. in
elastic Nd scattering at Ey=140, 200, and 270 MeV. For the description of bands
and curves see Fig. 5.1
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Chapter 5. Discussion

5.3 Summary of Comparison : Result for the d—p
data and Theoretical Predictions

By comparing the present d-p elastic scattering data with the theoretical predie-
tions, we can cabegorize the observables into the three types.

Type 1 : do/dQ, A2, KY — KY,

For these obeervables, the clear discrepancies exist between the date and
the 2N force predictions, especially in the angular range where the cross
spction take minimum. The deviations are explained beautifully by inclusion
of 3NFs. All 2w-exchange 3NF potentials considered here (TM, TM’, Urbana
[X ) provide almost the same 3NF effccts (magnitude and direction).

Type IL : P¥ ( = —A})

The TM' 3NF as well as Urbana X 3NF describes well the difference between
the data and the 2N force predictions, however the inclusion of the T 3NF
shift the caleulated results to the right direction but too much. The e—term
of the TM 3NF which should not exist under the chiral perturbation theary
might be the origin of the wrong aNF effect (See Sec. 1)

Type 111 ¢ Agz, Ay Azay K, K2,

No calculation has its superiority for these observables. Although large effects
of 3NFs are predicted at the angles @, = 90° — 120°, they are not at all
supported by the data. Ik is interssting to note that the TM' and Trbana IX
3NFs provide very similar effects. On the other hand, the INF effects by the
TM 3NF are quite different from those by the TM' and Urbana IX 3NFs.

Table 5.6 shows the summary of the result of the comparison for the d-p elastic
scattering data. Here we do not mention about the phenomenological S0-3NF,
since the inclusion of this 3NF to the AV18 + Urbana IX prediction leads only 8
minor modification for all measured observables.

CGenerally, the &isnmpam:lcs between the data and the 2N force predictions are

clearly seen at the angles where the cross sections are in the minimum and they
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Abstract

We have measured the cross sections and analyzing powers 4, and Ay, for the elas-
tic and inelastic seattering of deuterons from the 0% (g.s.), 27(4.44 MeV), 37(9.64
MeV), 17(12.71 MeV), and 27(18.3 MeV) states in 133 at an incident énergy of 270
MeV. The data are eompared with microscopic distorted-wave impulse approxima-
tion caleulations where the projectile-nucleon effective interaction is taken from the
three-nucleon t-matrix given by rigorous Faddeev calculations presently available at
intermediate energics. The agreement between theory and data compares well with
that far the (p, ') reactions at comparable incident energies, nucleon,
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APPLICATIONS OF FEW-BODY METHOD
Especially to hypernuclei and unstable nuclei

It is useful to introduce a three-body model with
constituent particles of N, A,*He, °Li etc.
The direct information from two-body scattering in
hypernuclei and unstable nuclei is in many cases
hopeless.

Interests are: bound states and resonances.
Typical unstable nuclei: neutron halo.

U

Neutron is weakly bound or
about to bound(but unbound).

Borromean system:

an interesting result from the three-body theory.

Three-body system can be bound even when
no subsystems have any bound states.



HOMEWORK EXERCISE

Let us take a three identical boson system. Assuming
a simple Yamaguchi separable potential acting just on
S-wave

V(p,p') = gp)Ag(p) (1)
with

g(p) =1/(p* + 3% (2)

you derive a simple three-body equation(many refer-
ences).

Keeping [ unchanged, you solve two- and three-body
equations for bound states. You do not find any bound
state for small A. Potential is too weak. Increasing A

you find:

Binding Energy
2 Three-Body(ground st.)

Two-Body

0 P — -
A
Borromean



What is more surprising is Efimov states

You can also examine the following theorem as an
extended homework:

If the two-body subsystem has a bound state at £ = 0,
three-identical bosons interacting in s-wave have

infinite numbers of 0T bound states. (Efimov)

Example of Borromean system:
®He as n-n-%He system

Example of Efimov states:
Hes, at least two O states
some unstable nuclei?



RAPID COMMUNICATIONS

THREE-BODY ANMALYSIS OF THE OCCURRENCE OF . .. PHYSICAL REVIEW C 61 051303(R)

TABLE 1L *'C ground and excited states three-body cnergy for different two-body input parameters.

.m— =52,
n-"%C binding energy A f o’ i, £ £€) £3 W

{keV) (frm) (keV) (keV} (keV)

i) 15,51 20.38 ARE.03 18.87 03,8 1.01
104 | 5.89 16.05 3201.54 115.72 100.09 0.94
113.2 160 15.15 3317.35 127.41 111.76 092
139.60 16.2 13.77 3371.24 150.32 135.29 (.89
168.5% 16.4 12.64 3426.03 175,34 163.48 (.86
200 16.6 11.71 348295 202,15 194.15 0.84

to recluce the excitation energy to a few keV or correspond- Thus,
ing to scattering length to about a hundred fermi that the




As an application of the present

lecture:

We learn

Two-body potential resonances

Y

T hree-body resonances
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Contour deformation

V(p,k)T(E; k,p")
E —k2/2u

T(Epp) = V(p.p) + /O " k2dk (1)

E+ic

>

|
:

You can replace the contour OA by OB, if
e there are no singularity inside OAB, and

e the contribution from BA is zero.

Contour deformation makes the singularity in the Green'’s
function regular.
At the same time, it makes you to go down on the

complex energy plane.



TRACE OF THE TWO-BODY T-MATRIX POLE




thresholds and cuts in n-d scattering

n-d cut

2225 0 E(MeV)



Im E(MeV)
o+ 2t 2 4 Re E(MeV)
5 - ! ! ! ! Ly
P32 Cut
2L
P1/2 Ccut

Data taken from experiment.



T=0 states of °Li

Im E(MeV)
1+ -2 3t 2 4 Re E(MeV)
I : o ; : : : : ! .
deuteron cutO
P32 Cut
B [ ]
oha
ol
2L
01/2 cut

Taken from the calculation by
A. Eskandarian and I.R. Afnan
P.R. C46 (1992) 2344.

2+ and 171 are in different sheet. Reflecting nuclear
structure.



There are two critical thresholds:

e Deuteron: Opening d-a channel makes the width
of 27 and 17 very large.

® D30 IN °He: Positions of these resonances are very
close to this threshold. However,

— In the simple shell model, 1t may be described
by (P1/2)? , while 2% by (p3/2,P1/2).

— The neutron is " bound” to >He(psz/,) in 2+, and
therefore the pole is below the threshold.

— 11+ does not have such a structure and therefore
the position is above the threshold. However,
the FSI in p3/; is very important in the decay

mode of 17.(Observed in both theory and ex-
periment) So, the position is strongly affected
by the threshold.



Level structure of °Be and 3Be

At low energies, they decay into a-a-n(A).
Very good example of the three-body resonance.

Many levels are found in experiments. Still spin-parity
assignment is difficult for some levels.

important two-body structures:
e «-« rotational band: ¢ = 0, 2, 4.

e S-wave o-B system
— Bound state at -3.1 MeV in a-A

— No structure in a-n because of Pauli principle

e pP-wave a-B system
— Strong central and strong #¢-s force in a-n

— Poor information but at least not strong central
nor ¢-s force in a-A
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E. CRAVO, A. C. FONSECA, AND Y. KOIKE

TABLE 1. a-a states (MeV) for all three a-a potentials in the
absence of Coulomb repulsion.

UIM AB CB
L=0 ~1.34 ~1.33 Co-127
L=2 ~ 1.30-(0.29) 1.36-i(0.30) 1.49-i(0.44)
L=4 0.49-i(1.54) 9.58-i(1.18) 10.20-i(1.87)

=

we-use, not only Ali-Bodmer (AB) [14] and Chien-Brown

() T158]1 natantiale bt alen nne derived in the framework




THREE-BODY CALCULATION OF THE STRUCTURE OF i Be

TAEBLE 1V, m+ binding energies (MeV) for different o-o and
Mo interactions. The Coulomb repulsion has been included in all
partial waves neaded for convergence.

LM AR CB
TH —5.96 —5.98 —6.02
M5 —6.50 — 673 —6.75
DE —7.08 — .36 — 757
DA -7.74 - B8.27 —8.19
Expt. [26] -6.71

II1. STRUCTURE OF ..h__,mm BOUND 5TATES

el Ml VTS N o R SR R, L U ISR (S Y [ Ly I
TABLE V. Same as in Table 1V for £'(3 ") binding energies
(MeV),

UM AR CB
TH —3.44 ] —3.17
MS —4.05 - 3487 —3.80
DE —4.63 —4.59 -4 4]
A —5.18 —35.35 —5.05
Expt. [24] —3.67

E.Crave, A.C. Tonseea ,and Y. Kolke

PHYSICAL REVIEW C 66, 014001 (2002}

TABLE V1. a-particle rms radius in fermis {point particle) for
all -ex and A-a potentials.

{
LM AB CE UM AR CB

TH 1.3 1.8% 1.87 1.88 1.95 1.95
MS 1.82 1.84 1.82 180 .24 |83
DE 180 1.82 1.80 1.77 1.20 l.&0
DA 1.83 1.82 1.51 180 120 181

gleciric quadrupole moment, and magnetic dipele and octo-
pole moments. Although most of these observables have not
been measured for _w__m_w, they provide a better understanding

FL | =

TABLE VII Same as in Table V1 for the A-particle ems radivs
in fermis (point particle).

[ ] [
—
]|
—

LM AEB CB UM MB CB

TH 2.14 2.21 218 210 2.24 2.22
M3 2.16 2.18 2.15 2.13 2.16 2.16
DE 212 2.14 2.11 2.09 2.11 211
DA 2.17 2.14 2.14 2.16 2.14 2.15

U14001-3




THREE-BODY CALCULATION OF THE STRUCTURE OF Be

TABLE XI. Same as in Table X for the magnetic octopole mo-
ment g (py fm?) of the 7 and §° excited states,

3 5+
2 2
UM AB CB UM AB CE

TH -03% —-043 =043 017 023 023
MS -0 -035 -035 -007 -0.06 —005
DE =032 =033 -033 -014 -013 -0.13
DA =031 =031 -031 -037 -03% -—(.38
‘Be 601 (2.01)

for the excited state.
In the present work we find two pairs of resonances: one
helow breakup threshold and one above breakup threshold.

TABLE XIL Position and width of the $7(37) resonance
(MeV) for different - and A-o potentials in the absence of the
Coulomb repulsion.

E.Crave, A.C.Fonseca Pr e Koike

PHYSICAL REVIEW C 66, 014001 (2002}

TABLE XIII, Position and width of the 37(3") resonance
(MeV) for different a-o and A-a potentials in the absence of the
Coulomb repulsion.

UM AB CB
E rn E | e E 142
TH - 2.00 0.62 —1.98 .59 —2.03 0.68
M5 - 1.69 0.56 — 1.65 0.53 — 1.67 .64
DE —1.89 (.38 - .84 0.57 - 1.86 (.66
DA — 192 (h41 — 1.89 (1,40 —1.87 047

LM AB CB
E I'2 E ra E I'f2
TH 1.26 0.14 0.59 0.06 .66 0.20
M5 0.51 0.06 0.06 003 1.0 0.12
DE —0.06 004 =131 0.02 0.51 0.09

A -0.30 .04 — (.64 0,02 0.29 0.09

J..._..._ -....-...._. MAa 1o Wl._...._. T oy kal Pl e 1..._1_..._ 7 +... 5+ i
So far the most accepted un nderstanding of e Tevel struc-

wre of  Be is the work of Yamada et al. EE, where a varia-
ional {e+3N+N) + A closter model that includes

TABLE XIV. mu-_“w..”_ and W.Jm.q”_ excitation energies (MaV)
for different A-o and a-a potentials,

—rr—

37(37) Bl
UM AB CB UM AB CB
TH 657 574 579 986 831 048
M3 7.3%8 6.54 .90 038 B.535 0.66
DE 777 730 735 960 863 972
DA 876 815 R13 088 940 1029

(b1 40H01-3




Table §.2: Energy Levels of 9Be

E. s J5 T | Tem (keV) Diecay Reactions
(MeV £ keV)
LS. i3 stable | 2, 3, 4, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24,
95, 26, 27, 28, 29, 10,
a1, 32, 33, 34, 35, 36,
37, 38, 40, 41, 42, 43,
44, 45, 46, 43
1084 7 i 217 +10 7 n 4,9, 10, 13, 16, 18, 19,
91, 23, 24, 32, 36, 35,
40
24204 + 1.3 g 0.77 £ 0.15 Yoo |49 10,11, 12, 16, 17,
18, 19, 21, 22, 23, M4,
25, 26, 32, 33, 35, 30,
37, 38, 40, 44
278+ 120 3 1080 + 110 1 4,0, 12, 38, dd
3049 £ 9 g+ 282 + 11 o0 | 4,0, 16, 18, 19, 21, 23,
24, 32, 34, 38, 40
4.704 £ 25 (n* T43 & 55 T, 1 4, 0, 16, 21, #3, 24, 38,
44
.76 4 60 L 1540 = 200 7 1 9, 11, 16, 17, 18, 18,
21, 23, 24, 25, 35, 40
7.94 & &0 {37) ra 1000 12, 18
11.283 £ 24 575 £ 50 n 9, 12, 19, 24, 35, 36
11,81 £ 20 T=1% 400 % 50 1 9, 12, 13, 37, 44
13,70 & 30 Tr= % O £+ GO A, 1 g, 16, a7
14.3022 + 1.8 ¢ 378 | 08810083 [ yomyo |9 16,19, 23, 36, 37
14.4 = 300 = 800 36
15,10 + 50 T 16, 37
15.97 = 30 T=1 =z 00 + 16, 37
16,671 £ 8 (5% - d1£4 ¥ 9, 16, 19, 35
16,9752 + 0.8 4 1= 3 049+£005 | . pd |4 6 615, 16
1T.208 =7 (81 200 Ao, d e |5 607 18, 16, 19
1TADE LT (§1* 47 Tom, pyd, e | B 6T, 16, 19
18.02 + 50 " 16
18.08 & 40 T, oo, e | G116

10




Table-1
FExperimentally well established low lying levels

Present ( Keike ) Arai et al, SC and NM
E(MeV) I (MeV) ~ E(MeV) T (MeV) E(MeV) I (MeV)
32 0 0 0 0 0 0
12 (virtual atate) 1.684 0.217
0/2= 2.33 " [k 2.27 0.001 2.429 0.00077
I 2.82 0.50 2.63 0.46 2.780 1.08
a2 3.91 0.35 3.41 0.6 3.049 0.282
3/2 4.95 1.95 4.7 16 ., 44 s
J.rhu____...u ==l mxw.nll!_.,.....
Table-2
Higher lying resonances
“Energy Present ﬁ__nh._?-.u Aral ef al. S5C WM
(MeV) E R U S ) E I E TR i
< 6.7 tail of the 1" 43 08 27 None 559 133 &7
~87 668 108 { 646 12 I 6.76 154 I~ 638 121 I°
~67 665 246 £ 53 29 ¥ None 6.76. 183 3
>67 818 632 I 19 21 5 794 ~1 17 None
1128 1036 114 37  None 11.28  0.575 1128 114 f7

1ﬂ—r~a1ru S Iltwu... mu_. Wml __.___.E.___..ﬁ






