Research Programs at CNS

Shigeru KUBONO Center for Nuclear Study, University of Tokyo

- 1. Outline of CNS
- 2. Research Opportunities and the Scope
- **3.** Nuclear Astrophysics
 - Hot pp-chain
 - Neutron source for the s-process
 - ANC method for the (n,γ) reaction

CNS Organization

CNS Ge Detector Array

18 position-sensitive Ge detectors

 ●Position resolution ≈ 1mm FWHM
 → Doppler Shift Correction
 ●Total detection efficiency = 5 % for 1 MeV gamma rays

Physics of Unstable Nuclei cluster, magicity, halo, G.R.,

PHENIX Experiment at RHIC(@BNL)

High density matter ? Quak-gluon plasma ?

AVF Cyclotron and the ECRs'

Flat-top Acceleration with AVF

Hyper-ECR

CNS ECR Ion Source (14 GHz)

HyperECR の主なパラメター

Microwave power source			
frequency:	14.25 GHz		
max.power	2.0 kW		
Plasma chamber	100		
diameter	50 mm		
, length	190 mm		
Multipole magnet			
multipolarity	Sextupole		
Field strength on the surface	10.6 kG		
material	Nd-Fe-B		
inner diameter	57 mm 150 mm		
length			
Mirror field			
Max.field strength on axis	12 kG		
max.Current	600 A		
max.Power	72 kW		
Turhomolecular pumps	500 1/sec		
	150 1/aec		

High-resolution Magnetic Spectrograph PA

(K = 160) (@ RIKEN E2 hall)

性能表 Specifications

軌道半径	130 - 150	cm
Radius		
分析エネルギー範囲	30	%
Energy range		
測定角度範囲	-20 ~ +13	5度
Angular range		
立体角	6.4	ms r
Solid angle		
横倍率	- 0.37	
Horiz. magnification		
縦倍率	- 4.44	
Vertical magnification		
運動量分解能	0.01	%
Momentum resolution		
最大電流(双極電磁石)	880	А
Max. current (Dipole)		
(四極電磁石)	570	А
Max. current (quadrupole)		
総重量	55	tons
Weight		

CNS RIB Separator (CRIB)

Beam Property of CRIB

 $\Delta X = \Delta Y = 2mm$ $\Delta \theta = \Delta \phi = 20 mrad$

Specifications

Solid Angle5.6 msr(75x75 mr²)Max. Mag. Rigidity1.28 TmRadius of Central Orbit0.9 m

F0→F1 (dispersive Focal Plane) Magnification of X 0.3 Momentum dispersion 1.6 m Momentum acceptance ±7.5 % Momentum resolution P/Δp=800

F0 →F2 (achromatic focal plane) Magnification of X 1.2 Magnification of Y 0.5 Momentum dispersion 0.0 m

Wien Filter

 $\Delta V N = 2\%$ for A Q = 2, E A = 10 M eV

M agnification: 1 (both H & V)

Velocity resolving power:

CNS RIB Separator (CRIB)

target

Estimated RIB Production Rates with CRIB

Test result of Low-Energy RIB Productions

Used the (p,n) & (³He,n) reactions in inverse kinematics. Measured at F2.

RI beam	Primary beam	Reaction	Cross sectio n	Target	Collectio n efficiency	Intensity	Purity with degrader
¹⁰ С 6.1 <i>А</i> MeV	¹⁰ B(4+) 7.8 A MeV (200 pnA)	p(¹⁰ B, ¹⁰ C)n	2 mb	CH_4 gas 1.3 mg/cm ²	30 %	(1.6×10⁵ cps)	90 %
¹⁴ O 6.7 <i>A</i> MeV	¹⁴ N(6+) 8.4 <i>A</i> MeV (500 pnA)	p(¹⁴ N, ¹⁴ O)n	8 mb	CH_4 gas 1.3 mg/cm ²	50 %	(1.7×10 ⁶ cps)	80 %
¹² N 3.9 <i>A</i> MeV	¹⁰ B(4+) 7.8 <i>A</i> MeV 200 pnA	³ He(¹⁰ B, ¹² N)n	5 mb	³ He gas 0.25 mg/cm ²	1 %	2.5×10 ³ cps	3 %
¹¹ C 3.4 <i>A</i> MeV	¹⁰ B(4+) 7.8 <i>A</i> MeV 200 pnA	³ He(¹⁰ B, ¹² N*) n $^{12}N* \rightarrow ^{11}C+p$	≈20 mb	³ He gas 0.25 mg/cm ²	≈ 2 %	1.6×10 ⁴ cps	15 %

^{17}N , $^{22}Mg > 10^4$ aps, ~ 10%

- * (); Actual production tests of 10 C & 14 O were performed at lower intensities.
- * Cross-section values are taken from other exp. results.

Nuclear Astrophysics Programs at CNS

- Primordial Nucleosynthesis
- Hydrogen Burning
 - pp-chain
 - CNO cycle
 - rp-process
- (n,γ) Reaction Study

Ignition Temperature

Setup for ¹²N+p & ¹¹C+p elastic resonance scattering

at CRIB F2

Low-Energy Resonant Elastic Scattering of ${}^{11}C + p$

¹³C(α,n)¹⁶O Reaction is the Main Neutron Source for the s-Process ?

- The ${}^{13}C(\alpha,n){}^{16}O$ reaction on He-burning shell (~0.1 GK)
- The ${}^{12}C(p,\gamma){}^{13}N(\beta^+){}^{13}C$ reaction on H burning shell
- Low/intermediate-mass AGB stars

Levels in ¹⁷O

¹³C(⁶Li,d)¹⁷O

Angular Distributions of ¹³C(⁶Li,d)¹⁷O

¹³C(α ,n)¹⁶O Reaction

→ The role of the sub-threshold state was found to be very small in the s-process nucleosynthesis !

Uncertainties of ANC Method with (d,p) reactions for (n,γ) reactions

- Choice of optical potential ~ 10 %
 ** Potentials that fit a large angular range give less.
- 2. Choice of bound state potential
- 3. Interior contribution
- 4. Breakup effect
- 5. Need transfer data of small uncertainty at very forward angles. ~ exp %
 - total > 12 %

~ 2 %

~ 6 %

~ 4 %

Summary

1) Many interesting research opportunities under the CNS-RIKEN collaboration.

2) Low-energy RIB separator CRIB works well for physics programs.

3) Explosive nucleosynthesis (novae, supernovae, etc.) can be investigated.

NASA / AURA

4) Investigation of the r-process nuclei is of great interest. Please come to CNS for collaboration

- •We welcome all of you to come back to CNS for collaboration works.
- •We encourage especially young people to come to study a new idea on Physics.