In-beam Spectroscopy of Exotic Nuclei Using Intermediate Energy RI Beams

> CNS, University of Tokyo Susumu Shimoura

Contents

Introduction

Structure information of nuclei as functions of N and Z

Formation of Excited States of Unstable Nuclei using

Secondary Nuclear Reactions

- Inverse Kinematics
- Direct reations to be used and their selectivities

In-beam Spectroscopy = Measurement of Decay

- Invariant Mass Spectroscopy
- Gamma-ray Spectroscopy

Experimental Equipments

• Beam Counter, Hodoscope, Gamma-ray Detectors, Targes

Recent Experiments at RIPS (RIKEN)

Structure of light Neutron-rich nuclei

CNS Ge Array

- Specification
- Pulse shape analysis
- Preliminary results

Introduction

Variety of Nuclei

- Two kinds of constituents: Proton & Neutron
- Numbers of Protons & Neutron => Properties of Nuclei
 - Independence / Coherence
- c.f. Number of electrons => Properties of Atoms

Nuclear Structure as functions of Z and N

- Ground State Properties (mass, size, lifetime, moments...)
- Spectroscopy of Excited States
- Nuclear Response

Inverse Kinematics

Formation of Excited States and Their Decays

Measure all the momenta

- Target is a Probe= Projectile* is Physical Target to be studied
 - Simple interaction = Direct reaction
- Velocities of Ejectiles are almost same as that of projectile
- Gamma-rays are Doppler-Shifted

Excitation of Beam-Like nuclei with Targets as Probes

Heavy Nuclei: Strong Coulomb Field Coulomb Excitation, Coulomb Dissociation Hydrogen, Deuterium Inelastic Scattering Charge Exchange Reaction Knockout Herium-4 Inelastic Scattering Nucleon Transfer Other light elements Inelastic Scattering Knockout Fragmentation

Selectivities

Coulomb Excitation, Coulomb Dissociation

- Number of virtual photons
 - ► E1 > E2 > E3 ...
 - ► M1 > M2 ...
- Interaction with Protons only
 - Isovector Excitation

Nuclear Excitation

Interaction with Protons and Neutrons

- Isovector/Isoscalar Excitaion
- ►E1 << E2

note: Isoscalar E1 Excitation is Higher order

- Higher angular momentum may be transferred
- Proton/Deuteron can make spin-excitation
 - ▶ (p,n): dS = 0, 1; (d,2n),(d,2p): dS=1
 - ► IAS, GT, SFD, ...
- Helium-4 cannot make both the spin and isospin excitation
 - Natural parity states for even-even nuclei
 - ►ISGMR, ISGDR, ...

Example of E1/E2 by Coulomb/Nuclear excitation 12Be (Iwasaki et al., Phys. Lett. B481 (2000) 7)

- Momenta of all the decay particles including gamma rays ->
- Excitation energy (from invariant mass)
- Selectivities, Particle-particle, particle-gamma, ..., correlation ->
- Spins and Parities

Invariant Mass Spectroscopy

$$M_{inv}^2 = (\Sigma_i E_i)^2 - (\Sigma_i \vec{p_i})^2 E_{decay} = M_{inv} - \Sigma_i m_i$$

Decay energy is independent of incident energy

- For small decay energy, Resolution is relatively good
 - Example:
 - ► 70 MeV/nucleon
 - E(decay)=1 MeV
 - Resolution of Momentum = 1 %
 - Resolution of Decay energy = 250 keV
 - Tips: http://www.cns.s.u-tokyo.ac.jp/~shimoura/releq/

Transition Probabilities

- Cross section of Coulomb Excitation -> B(EL)...
- Cross section of Nuclear Excitation -> Deformation Length -> B(EL)...
 - Adequate reaction model required (DWBA ...)
- Lifetime and Branching Ratio -> B(EL)...

Doppler Shift of Gamma-Ray

• Transformation between CM and Lab system:

$$E_{\gamma}^{L} = E_{\gamma}^{C} \gamma (1 + \beta \operatorname{cos} \theta^{C}) E_{\gamma}^{C} = E_{\gamma}^{L} \gamma (1 - \beta \operatorname{cos} \theta^{L}) \cos \theta^{L} = (\beta + \cos \theta^{C}) / (1 + \beta \cos \theta^{C})$$

 $\left| dE_{\gamma}^{C}/d\theta^{L} \right| = E_{\gamma}^{L}\gamma\beta\sin\theta^{L} \simeq E_{\gamma}^{L}\gamma\beta$ around 90 degree

Good angular resolution of gamma detectors

Granuality corresponds to intrinsic resolution of detectors

• Example: Scattering angle vs. Energy of Gamma (data)

- 2.1 MeV gamma-rays from in-flight 12Be* are shifted
- 0.5 MeV gamma-rays from positron annihilation are not shifted

Experimental Equipments

Spectroscopy of Neutron-Rich Be isotopes

Low-lying 12Be states

- 1- intruder state (Coulex)
- collectivity of 2+ state (p,p')
- isomeric 0+ state (isomeric "beam" from fragmentation)
- proton/neutron matrix elements using different probes
 - ► (p,p'), (alpha,alpha'), Coulex
- Cluster states in 12Be and 14Be
 - Inelastic excitation to resonances
 - Resonant fragments in fragmentation reaction
- Halo structure of 14Be derived from its IAS by (p,n)

reaction

Coulomb displacement energy, decay properties

CNS Ge Array

Requirement:

• Detectors should be located as close to the target as possible

- Detectors around 90 degree with respect to beam axis
- -> Largest Doppler-shift broadening

• Good angular resolution (1-2 degree) corresponding to intrinsic

- resolution of Ge detectors (a few keV)
 - Planar-type
 - Pulse-shape analysis

position along the electric field

- 6cm-dia x 2cm-thick x 2 Ge-crystals
- Each crystal is segmented to 3 x 3
- Locates around 90 degree with respect to beam

Electric field of planar detector

Z [cm]

Pulse-shape analysis of segmented Ge Good resolution for ONE direction

Time (nS)

Pulse shapes as a function of depth for Planer Detector (a) hit segment (b) total

Zero cross timings of 2nd derivative signals for "hit segment" and "total"

Signal processing of segmented Ge detector

Array Configuration

Locates 18 detectors around 90 degree with respect to beam

Performance (Simulation)

- Energy Resolution after Doppler-Shift Corrected (v/c = 0.3)
 - ► 8 keV (FWHM) 17 keV (FWTM) for 1-MeV gamma
- Total Detection Efficiency (epsilon x Omega)
 - ► 5 % (All) 3.4 % (more than single hit)
- Peak-to-Total Ratio
 - 23 % (All) 42 % (more than single hit)

Performance (Experiment)

T(total) vs T(hit segment) [Sourse Test]

Performance (Experiment)

Not yet applying Pulse Shape analysis

COUNTS/30keV

oulomb excitation of ³⁴ Mg Physics Letters B522(2001)227	A large excitation cross section of 286(52)mb was obtained from the γ -ray yields. U B (E2:0 ⁺ \rightarrow 2 ⁺) = 631(126) e ² fm ⁴ B (2 \sim 0.58 !!	large deformation of ³⁴ Mg
	COUNTS/40KeV B0 Pb(³⁴ Mg, ³⁴ Mg, ^y)Pb 40 Frame COUNTS/40KeV 60 656(7)KeV 10 Frame frame frame 10 Frojectile frame 10 Frojectile 10 Frojectile	0.7 0.6 0.4 0.4 0.4 0.3 0.4 0.5 0.4 0.4 0.4 0.5 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4

PHA C 365; (39AMET) + 9Be Youeda et al.

Low-lying intruder 1⁻ state in¹² Be

Iwasaki et al., Phys. Lett. 491B (2000)8

Large deformation length of 2⁺ state in¹² Be

Motivation

Breakdown of N=8 Shell Closure in¹² Be

Fragmentation [Navin et al., PRL 85 (2000) 266]: ¹²Be+¹¹Be(1/2⁺, 1/2) S-factor of s-state: 0.42

(p,p') [Iwasaki et al., PL B481 (2000) 7]: Large deformation length (2 fm) of ground state

COULEX [Iwasaki et al., PL B491 (2000) 8]: Low lying 1⁻ state (2.7 MeV) 'intruder state'

Where is the 2nd 0⁺ state?

Possible decay channels (for full stripped ion):

0 < Ex < 1.02 MeV : No decay (beta decay) 1.02 < Ex < 2.1 MeV : electron-positron emission 2.1 < Ex < 2.7 MeV : electron-positron emission E2 : 0 -> 2 +; 2 -> 0 + 2.7 < Ex < 3.17 MeV : electron-positron emission E1 : 0 -> f ; f -> 0 + E2 : 0 -> 2 +; 2 -> 0 + 3.17 MeV < Ex : neutron emission

Isomeric 0⁺state in12Be

Meanlife of 0 state : (probably) nanosec to microsec 'ISOMER' produced by projectile fragmentation gamma rays of cascade decay

Experiment

Doppler Shift Correction

E1-E2 spectrum (E1>E2)

Broad locus at E1 ~ 2 MeV, E2 ~ 0.15 MeV

(Doppler Shift)

Preliminary

Doppler shifts as a function of Timing

0.14 MeV and 2.1 MeV gammas are emitted from in-flight ¹² Be

Simulation by GEANT

Angular Correlation

Solid line : 0 -> 2 -> 0 Dashed line : 2 -> 2 -> 0

: `

Rikkyo-CNS-Tokyo-RIKEN

Takeuchi et al., Phys. Lett. B515 (2001) 255

Motoboyashi etal., PLB346('95)9

Array Configuration

Locates 18 detectors around 90 degree with respect to beam

The hodoscope consisted of thirteen 5 mm thick ΔE - and sixteen 60 mm thick E-Figure 3.4: Schematic view of the plastic scintillator hodoscope. plastic scintillators.

Figure 3.5: A granular array of 55 NaI(Tl) detectors.

Nal(TI) Array

Geometry

crystal 4cm ×8cm ×16cm 160 crystals radius of "ball" (Nal center) : 30 cm

Performance

angular resolution : 8 deg full-energy-peak efficiency at 1 MeV : 30 % intrinsic energy resolution : 70 keV for 1 MeV energy resolution of Doppler shift correction: 70 keV for 1 MeV γ from β=0.3 particle

Germanium Array

Geometry

crystal

planar type : direction of γ-ray // electrode active volume : 2cm² × 6cm⁴ segmentation : 3×3 2 crystals in the same cryostat = 1 detector 18 detectors (36 crystals) : around 70, 90, 110 degree

radius of "ring" (Ge center) : 11 cm

Performance

angular resolution : 1 deg (pulse shape analysis) full-energy-peak efficiency at 1 MeV : 5 % intrinsic energy resolution : < 3 keV for 1 MeV energy resolution of Doppler shift correction: 8 keV for 1 MeV γ from β=0.3 particle

