Effective interactions in shell-model calculations

2003. 9. 19 CISS03

M. Honma (Univ. of Aizu)T. Mizusaki (Senshu Univ.)T. Otsuka (Univ. of Tokyo/RIKEN)B. A. Brown (MSU)

Outline

- Introduction
- Problems in microscopic effective interaction
- Monopole correction
- Beyond-monopole correction
- Summary

Nuclear shell-model

- Powerful tool for the study of nuclear structure
 - Unified treatment of single-particle and collective motions
 - Systematic description over wide mass range
 - Prediction / indication of new physics
- Key ... effective interaction

Model space

- Closed core + valence shell
- 0*ħ* space

p-shell	⁴ He	+	$0p_{3/2}, 0p_{1/2}$
sd-shell	$^{16}\mathrm{O}$	+	$0d_{5/2}, 1s_{1/2}, 0d_{3/2}$
pf-shell	⁴⁰ Ca	+	$0f_{7/2}, 1p_{3/2}, 1p_{1/2}, 0f_{5/2}$

- • •
- *nħ* space
 - p-sd, sd-pf, ...

For unstable nuclei, large deformation, ...

• No-core shell model Few-body ~ light nuclei

Hamiltonian

Nucleons in a mean potential interacting through residual interactions

- Single particle energy (SPE)
- Two-body interaction (TBME)

$$H = \sum_{a} \varepsilon_{a} n_{a} + \sum_{a \le b, c \le d, JT} V(abcd; JT) A_{JT}^{+}(ab) A_{JT}(cd)$$

 n_a ... number operators of orbit *a*

$$A_{abJT}^{\dagger} = (1 + \delta_{ab})^{-1/2} \left[c_a^{\dagger} c_b^{\dagger} \right]^{JT}$$

Effective interaction

- Microscopic (realistic)
 - Derived from NN-interaction
 - Problems for many valence nucleons
- Empirical
 - Fit to experimental data
 - Feasible only for small shells (e.g. CK for *p*-shell)
 - Potential model
- Semi-empirical
 - Modify microscopic TBME empirically

pf-shell

- Current frontier of shell model calculations
- Single-particle vs. collective
- Protons & neutrons occupy the same shell pn-interaction
- Spin-orbit splitting
 - *N*, *Z*=28 magic number
 - "soft" ⁵⁶Ni core → active 2-shell problem
- Astrophysics
 - Electron capture rate

Shell model calculations

- Limitation due to huge dimension of Hamiltonian matrix ex. M = 0 dim. ~ 2×10⁹ for ⁶⁰Zn
- Conventional Lanczos diagonalization
 - Feasible up to ~ 10^8
 - Truncation of model space: $(f_{7/2})^{n_1-t}(p_{3/2} \ f_{5/2} \ p_{1/2})^{n_2+t}$
 - t ~5 calculation is possible for most pf-shell nuclei sufficient for low-lying configurations fails for describing significant core-excitations (ex. 4p-4h band in ⁵⁶Ni)

Monte Carlo shell model

Review: T. Otsuka et al., Prog. Part. Nucl. Phys. 47 (2001) 319

 σ

HF

 σ

 $|HF\rangle$

• Deformed Slater determinant bases

$$|\phi\rangle = \prod_{\alpha} a_{\alpha}^{\dagger} |0\rangle, \quad a_{\alpha}^{\dagger} = \sum_{i} c_{i}^{\dagger} D_{i\alpha} \quad (c_{i}^{\dagger} \dots \text{ HO basis})$$

• Monte Carlo basis generation

$$\left| \phi(\sigma) \right\rangle = \prod_{n} e^{-\Delta\beta h(\sigma_{n})} \left| \phi \right\rangle$$

$$h(\sigma_{n}) = h_{HF} + \sum_{\alpha} \sigma_{\alpha n} O_{\alpha} \quad \text{one-body Hamiltonian} \left(\leftarrow H \right)$$

... auxiliary field (random variable)

- Symmetry restoration by projection
- Basis selection by energy gain (importance truncation)
- Variational basis improvement

 $\sigma \rightarrow \sigma + \delta \sigma$

Few-dimensional approximation

- MCSM wave function is dominated by only a few bases
 - Taking only a few bases from local energy minima (FDA)
 - Optimum 1st basis = *J*-projected HF state
 - Typical error $< \sim 1 \text{ MeV}$
- Empirical corrections
 - Extrapolation from solvable problems
 - Corrections depend on the *J*-shceme dimension (FDA*)

Realistic effective interaction

- Derived from NN-potential
 - Renormalized G-matrix
- Examples
 - KB ... T.T.S.Kuo and G.E.Brown Nucl. Phys. A114 (1968) 241
 - Hamada-Johnston potential
 - Renormalization due to core-polalization
 - G... M. Hjorth-Jensen, et al., Phys. Repts. 261 (1995) 125
 - Bonn-C potential
 - 3rd order Q-box + folded diagram

KB interaction

J. B. McGrory et al., Phys. Rev. C2 (1970) 186

KB interaction

G interaction

M. Hjorth-Jensen et al., Phys. Repts. 261 (1995) 125

G interaction

Empirical modifications

• KB' by McGrory et al.

 $\left\langle f_{7/2}^2 J \left| V \right| f_{7/2}^2 J \right\rangle \implies -300 \text{keV for } J = 0, 2$ $\left\langle f_{7/2} p_{3/2} J \left| V \right| f_{7/2} p_{3/2} J \right\rangle \implies +300 \text{keV}$

Monopole Hamiltonian

- Determines average energy of eigenstates in a given configuration.
 - Important for binding energies, shell gaps

$$H_{m} = \sum_{a} \varepsilon_{a} n_{a} + \sum_{a \le b} \frac{1}{1 + \delta_{ab}} \left[\frac{3V_{ab}^{1} + V_{ab}^{0}}{4} n_{a} (n_{a} - \delta_{ab}) + (V_{ab}^{1} - V_{ab}^{0})(T_{a} \cdot T_{b} - \frac{3}{4}n_{a}\delta_{ab}) \right]$$
$$n_{a}, T_{a} \dots \text{ number, isospin operators of orbit } a$$

- Monople centroids
 - Angular-momentum averaged effects of two-body interaction

$$V_{ab}^{T} = \frac{\sum_{J} (2J+1) V_{abab}^{JT}}{\sum_{J} (2J+1)}$$

KB3 interaction

A. Poves and A. P. Zuker, Phys. Repts. 70 (1981) 235

• KB'

$$V_{fr}^{T}(KB') = V_{fr}^{T}(KB) - (-)^{T} 300 \text{keV}$$

 $f...f_{7/2}, \quad r...p_{3/2}, f_{5/2}, p_{1/2}$

• KB1

$$V_{ff}^{0}(\text{KB1}) = V_{ff}^{0}(\text{KB}) - 350 \text{keV}$$

 $V_{ff}^{1}(\text{KB1}) = V_{ff}^{1}(\text{KB}) - 110 \text{keV}$

• KB3

$$V_{ffff}^{J0}(\text{KB3}) = V_{ffff}^{J0}(\text{KB1}) - 300 \text{keV}$$
 for $J = 1, 3$
 $V_{ffff}^{21}(\text{KB3}) = V_{ffff}^{21}(\text{KB1}) - 200 \text{keV}$

Other matrix elements are modified so as to keep the KB1 centroids

KB3

FIG. 1. Experimental and theoretical energy levels of ⁴⁸Ca.

FIG. 12. Theoretical levels for the KB, KB', and KB3 interactions compared with experiment in 49 Ca.

E. Caurier et al., PRC50 (1994) 225

G. Martinez-Pinedo, et al., PRC55 (1997) 187

KB3

FIG. 5. Comparison between the experimental and the shell model positive parity energy levels in 52 Fe. Dashed lines connect the experimental levels with their calculated counterpartners.

C. A. Ur et al., PRC58 (1998) 3163

KB3

FDA*

Shell gap

Modify KB3 to fit the shell gap for ⁵⁶Ni \longrightarrow KB3G A. Poves et al., NPA694 (2001) 157

 $V_{fp}^{0}(\text{KB3G}) = V_{fp}^{0}(\text{KB3}) - 100\text{keV}, \quad V_{fp}^{1}(\text{KB3G}) = V_{fp}^{1}(\text{KB3}) - 50\text{keV}$ $V_{ff_{5/2}}^{0}(\text{KB3G}) = V_{ff_{5/2}}^{0}(\text{KB3}) - 150\text{keV}, \quad V_{ff_{5/2}}^{1}(\text{KB3G}) = V_{ff_{5/2}}^{1}(\text{KB3}) - 100\text{keV}$ $V_{pp}^{T}(\text{KB3G}) = V_{pp}^{T}(\text{KB3}) + 400\text{keV} \qquad p \dots p_{3/2} \text{ or } p_{1/2}$

	KB	KB3	KB3G	Exp.
$\Delta(^{48}\text{Ca})$ (MeV)	2.16	5.26	4.73	4.81
$\Delta(^{56}\text{Ni})$ (MeV)	3.52	8.57	7.12	6.39

 $\Delta({}^{48}\text{Ca}) = 2BE({}^{48}\text{Ca}) - BE({}^{49}\text{Ca}) - BE({}^{47}\text{Ca})$ $\Delta({}^{56}\text{Ni}) = 2BE({}^{56}\text{Ni}) - BE({}^{57}\text{Ni}) - BE({}^{55}\text{Ni})$

KB3G

FDA*

GT- strength ⁵⁸Ni to ⁵⁸Cu

GXPF1 interaction

M. Honma et al., PRC65 (2002) 061301(R)

- Modify G interaction
- 195 TBME and 4 SPE are determined by fitting to 699 experimental energy data of 87 nuclei
- 70 well-determined LC's of parameters are varied
- Mass dependence $V(A) = V(A = 42) \times \left(\frac{A}{42}\right)^{-0.3}$
- Data selection to avoid intruder: $47 \le A$, $Z \le 32$
- Energy evaluation by $FDA^* \longrightarrow 168 \text{keV}$ rms error

GXPF1 vs. KB3G

Estimated rms error (FDA*)

nuclei	states	rms error in MeV (# of data)			
		GXPF1	KB3G		
<i>N</i> , <i>Z</i> <28	Yrast [*])	0.154(136)	0.235(129)		
	Yrare	0.201(45)	0.263(23)		
<i>N</i> or <i>Z</i> =28	Yrast [*])	0.184(92)	0.647(87)		
	Yrare	0.195(57)	0.802(44)		
N>28, Z<28	Yrast [*])	0.145(129)	0.296(126)		
	Yrare	0.145(75)	0.302(55)		
N, Z>28	Yrast [*])	0.186(55)	0.401(51)		
	Yrare	0.187(23)	0.458(23)		

*) Ground states are excluded

GXPF1

- MCSM (~13 bases / each level)
- $(f_{7/2})^{16}$ prob. in g.s. 69% cf. $(f_{7/2})^8$ in ⁴⁸Ca g.s. 94%
- O Members of 4p-4h band

Binding energies

Electro-magnetic moments

GT- strength ⁵⁸Ni to ⁵⁸Cu

G vs. GXPF1

V(abcd ; JT) abcd ; JT abcd ; JT $7=f_{7/2}, 3=p_{3/2}, 5=f_{5/2}, 1=p_{1/2}$

- T=0 ... attractive
- T=1 ... repulsive
- Large modifications in *V(abab*; *J*0) with large *J V(aabb*; *J*1) pairing

J-dependent modification

Monopole centroids

Effective single-particle energy (ESPE)

Y. Utsuno et al., PRC60 (1999) 054315

- Assume the lowest filling configuration
- Evaluate energy difference by H_m due to
 - removing one nucleon from an occupied orbit
 - adding one nucleon to an empty orbit

GXPF1

G interaction

GXPF1

Ca (Z=20)

Multipole Hamiltonian

Decomposition of Hamiltonian

 $H = H_m$ (monopole) + H_M (multipole)

Collective properties

M. Dufour et al., PRC54 (1996) 1641

- Particle-particle (p-p) representation
 - Diagonalize V(abcd;JT) matrix in terms of p-p bases

- Particle-hole (p-h) representation
 - Diagonalize (*acbd*;) matrix in terms of p-h bases

$$H_{M} = \sum_{abcd,\lambda\tau} \omega_{acbd}^{\lambda\tau} S_{ac\lambda\tau} \cdot S_{bd\lambda\tau} \implies \sum_{\lambda\tau k} e_{k}^{\lambda\tau} Q_{\lambda\tau k} \cdot Q_{\lambda\tau k}$$

$$S_{ac\lambda\tau} = \left[c_{a}^{\dagger} c_{c}^{-} \right]^{\lambda\tau}$$

$$iarge for = 20, 40, 11$$

Collective strength

• Empirical fit reduces E^{10} and e^{20}

(cf. Attractive modifications to *T*=0 monopole terms)

• Pairing strength

T=0 > T=1 in G and GXPF1

T=0 < T=1 in KB3G (~ KB)

Interaction	E^{01}	E^{10}	E^{20}	e^{20}	e^{40}	e^{11}
G	-4.20	-5.61	-2.96	-3.33	-1.30	+2.70
GXPF1	-4.18	-5.07	-2.85	-2.92	-1.39	+2.67
KB3G	-4.75	-4.46	-2.55	-2.79	-1.39	+2.47

Spin-tensor decomposition

B. A. Brown et al., Ann. Phys. 182 (1988) 191

• *jj*-coupling to *LS*-coupling

$$\langle j_a j_b JT | V_M | j_c j_d JT \rangle \implies \langle l_a l_b LSJT | V_M | l_c l_d L'S'JT \rangle$$

• Decomposition in terms of tensor rank k

$$V_{M} = \sum_{k} V_{k} = \sum_{k} U^{k} \cdot X^{k}$$

 U^k and X^k ... irreducible tensors in space and spin

k=0 ... central

 $k=1 \dots$ spin-orbit

normal part : S = S' = 1anti-symmetric part: $S \neq S'$

 $k=2\ldots$ tensor

Central

- for *T*=0, G ~ GXPF1 except for *l*=3, *L*=0
- for T=1, large correction to l=3, L=0 and 2
- G and KB3G are different

in *T*=0, *S*=0

Tensor

- large in T=0, L=2 m.e.
- for *T*=1, G ~ GXPF1 except for a few m.e.
- for *T*=0, corrections to G is not large.
- G and KB3G are different in several large *T*=0 m.e., while they are very close for *T*=1 m.e.

Spin-orbit (normal)

- G ~ KB3G

except for T=0, l=3, L=2

Spin-orbit (anti-sym.)

- M.e. are small
- Several corrections to G, () which are absent in KB3G
- G ~ KB3G

with a few exceptions

GXPFM interaction

- Start from G interaction
- Vary 70 parameters
 - Monopole
 20 TBME+4 SPE
 - Monopole pairing (*JT*=01) 10 TBME
 - Quadrupole pairing (*JT*=21) 36 TBME
- Mass dependence $A^{-0.3}$
- Adopt 45 best determined LC's
- Fit to 623 energy data \rightarrow rms error 226 keV by FDA*
 - 267 keV (yrast, 87 data) and 324 keV (yrare, 44 data)
 for N or Z=28 nuclei ... not very good!

Shell gap

	GXPF1	GXPFM	KB3G	Exp.
$\Delta(^{48}\text{Ca})$ (MeV)	4.97	4.66	4.73	4.81
Δ (⁵⁶ Ni) (MeV)	7.58	6.91	7.12	6.39

Collective strength

Interaction	E^{01}	E^{10}	E^{20}	e^{20}	e^{40}	<i>e</i> ¹¹
G	-4.20	-5.61	-2.96	-3.33	-1.30	+2.70
GXPF1	-4.18	-5.07	-2.85	-2.92	-1.39	+2.67
GXPFM	-3.88	-5.61	-2.96	-2.85	-1.44	+2.59

Monopole centroid

G vs. GXM

Core excitation

- Apparent in semi-magic nuclei
- Difficulties in "monopole-corrected" interactions

^{56, 57}Ni problem

Modify *V*(7373; *J*1) ⁵⁶Ni 4 2+ Ex (MeV) -300keV *_J*=4 2 +250keV *–J*=5 $(f_{7/2})^{-1}(p_{3/2})^{1}$ (Monopole centroid is 0+ 0 GXPF1 GXPFM GXPFM' KB3G exp. unchanged) ⁵⁷Ni 4 GXPFM → GXPFM' Ex (MeV) 5/2-(2) KB3G → KB3G' 2

 $(f_{7/2})^{-2}(p_{3/2})^{1}$

GXPFM GXPFM'

KB3G

GXPF1

3/2-

exp.

0

KB3G'

KB3G'

Quadrupole modification

 $\begin{bmatrix} c_{f7/2}^{\dagger} & \phi_{p3/2} \end{bmatrix}^{(2)} \cdot \begin{bmatrix} c_{p3/2}^{\dagger} & \phi_{f7/2} \end{bmatrix}^{(2)}$ term strength (MeV) - GXPF1 -0.81 - G -0.38 - GXPFM -0.32 - KB3G -0.34

Summary

- Microscopic interaction can be modified for a practical use
 - T=0 ... more attractive
 - T=1 ... more repulsive
- Monopole modification is important, but not enough
 - Pairing strength
 - Quadrupole-quadrupole strength
- Fitting to exp. energy data gives reasonable modification
- Prospects
 - General rule for modifying microscopic interactions
 - Microscopic origin of modifications