Nuclear Astrophysics Study of Stellar Reactions with Low-Energy RI Beams in Nuclear Astrophysics 2003.9 @CNS

Shigeru KUBONO Center for Nuclear Study, University of Tokyo

- 1. New observations and the current problems
- 2. Unstable Nuclei in Explosive Burning
- **3.** Topics
 - Hot pp-Chain
 - Novae, X-Ray Burst
 - Solar Model

4. Scope; Supernovae and Heavy Element Synthesis

Our Galaxy (~10¹¹ stars)

$$\begin{array}{c} -100 \text{ K light years (ly)} \longrightarrow \\ 4 & 30 \text{ K ly} \end{array}$$

Supernova Remnant in Vela

@1400 ly

30000 years old supernova remnant

Pleiades

@ 4 0 8 ly
SUBARU
(Pleiades M 4 5)

New Stars !

We are in the middle of very active galactic area

Cassio peia-A

(@ 10 K ly first obs. in 1680) Nuclear gamma rays from the decay of 44 Ti observed. (T_{1/2}(44 Ti)~ 60 a)

Quantity of ⁴⁴Ti
 Identify the reactions

NewAstronomy; Observation of Nuclei

(N A S A / C X C / S A O)

Nuclear Gamma-Rays of ²⁶Al

New Observation by Satellites and SUBARU
 = Observation of isotopic nuclei (²⁶Al)

Evolution of the Universe

History of Nuclear Astrophysics

Solar Abundance

Flow-diagram of nucleosynthesis

Direct and Indirect (/Simulating) Methods

Nucleosynthesis by A(p,γ)B

Reaction rate and Rate equation

The reaction cross sections can be written using the astrophysical S- factor S,

$$\sigma(E) = \frac{S(E)}{E} e^{-2\pi\eta}.$$

The Gamow energy defined by the two factors (MB distr. and penetrability) is

$$E_G = (\frac{bkT}{2})^{2/3}, \qquad b = 2\pi\mu E^{1/3} \neq 31.3Z_1Z_2\mu^{1/2}(keV^{1/2}).$$

The reaction rate is the cross sections averaged over the MB dist.,

$$<\sigma\upsilon>=(rac{8}{\pi\mu})^{1/2}rac{1}{(kT)^{3/2}}\int_0^\infty S(E)e^{(-rac{E}{kT}-2\pi\eta)}dE.$$

If there is a sharp resonance in the region, the cross section can be expressed by the Breit-Wigner one-level formula,

$$\sigma(E) = \pi \lambda^2 \omega \frac{\Gamma_p \Gamma_{\gamma}}{(E - E_r)^2 + (\frac{\Gamma_{tot}}{2})^2}.$$

Thus, the reaction rate can be written as follows;

$$<\sigma\upsilon>=(rac{2\pi}{\mu kT})^{3/2}\hbar^2\omega\gamma \left(e^{-rac{E_r}{kT}}\right),$$

Here, the resonance strength $\omega\gamma$ is defined by

$$\omega\gamma = \frac{(2J_r + 1)}{(2J_p + 1)(2J_A + 1)} \frac{\Gamma_p \Gamma_{\gamma}}{\Gamma_{tot}}.$$

The total reaction rate can be

$$<\sigma\upsilon>=<\sigma\upsilon>_{res}+<\sigma\upsilon>_{direct}+_{int}+<\sigma\upsilon>_{tail}$$

Using these reaction rates for all the possible flow processes, one can obtain the rate equation to solve time-dependently,

$$\frac{dn_i}{dt} = \sum_{n_j n_k} n_j n_k < \sigma \upsilon >_{jk->i} - \sum_{n_m} n_i n_m < \sigma \upsilon >_{i+m->n} + \frac{n_h}{\tau_h} - \frac{n_i}{\tau_i}.$$

Nuclear Astrophysics Study of Low-Energy Reactions with RI Beams for Nuclear Astrophysics

> Shigeru KUBONO Center for Nuclear Study, University of Tokyo

- 1. New observations and the current problems
- 2. Unstable Nuclei in Explosive Burning
- **3.** Topics
- Hot pp-Chain
 - Novae, X-Ray Burst
 - Solar Model

4. Scope; Supernovae and Heavy Element Synthesis

Old [-process star of very metal poor

Low-Energy In-Flight RIB Separator

CNS RIB Separator (CRIB)

C R I B

Production target (F0)

Test result of Low-Energy RIB Productions

Used the (p,n) & (³He,n) reactions in inverse kinematics. Measured at F2.

RI beam	Primary beam	Reaction	Cross sectio n	Target	Collectio n efficiency	Intensity	Purity with degrader
¹⁰ C 6.1 <i>A</i> MeV	¹⁰ B(4+) 7.8 A MeV (200 pnA)	p(¹⁰ B, ¹⁰ C)n	2 mb	CH_4 gas 1.3 mg/cm ²	30 %	(1.6×10⁵ aps)	90 %
¹⁴ 0 6.7 <i>A</i> MeV	¹⁴ N(6+) 8.4 <i>A</i> MeV (500 pnA)	p(¹⁴ N, ¹⁴ O)n	8 mb	CH_4 gas 1.3 mg/cm ²	50 %	(1.7×10 ⁶ aps)	80 %
¹² N 3.9 <i>A</i> MeV	¹⁰ B(4+) 7.8 A MeV 200 pnA	³ He(¹⁰ B, ¹² N)n	5 mb	³ He gas 0.25 mg/cm ²	1 %	2.5×10 ³ aps	3 %
¹¹ C 3.4 <i>A</i> MeV	¹⁰ B(4+) 7.8 A MeV 200 pnA	${}^{3}\text{He}({}^{10}\text{B},{}^{12}\text{N}^{*})\text{n}$ ${}^{12}\text{N}^{*} \rightarrow {}^{11}\text{C}+\text{p}$	≈20 mb	³ He gas 0.25 mg/cm ²	≈ 2 %	1.6×10 ⁴ aps	15 %

¹⁷N, ²²Mg > 10⁴ aps, ~ 10%. ²³Mg, ²⁵Al, ²⁶Si.

- * (); Actual production tests of 10 C & 14 O were performed at lower intensities.
- * Cross-section values are taken from other exp. results.

23

Stellar reaction of ¹¹C(p, γ)¹²N

Elastic Resonant Scattering of p + A(RIB)

Low-Energy Resonant Elastic Scattering of ¹¹C + p

Nuclear Astrophysics Study of Low-Energy Reactions with RI Beams for Nuclear Astrophysics

> Shigeru KUBONO Center for Nuclear Study, University of Tokyo

- **1. New observations and the current problems**
- 2. Unstable Nuclei in Explosive Burning
- **3.** Topics
 - Hot pp-Chain
 - → Novae, X-Ray Burst
 - Solar Model

4. Scope; Supernovae and Heavy Element Synthesis

Cygnus 1992(@10 K ly)

May 1993

January 1994

Novae, the problems

¹⁹Ne(p,γ)²⁰Na stellar reaction

High-resolution magnetic spectrograph (PA)

Ignition temperature

Early rp-process

¹H(²¹Na,γ²²Mg) Measurement at TRIUMF

Typical temperature and density for nucleosynthesis

	Temperature	Density		
Sun	1.5 x 10 ⁷ K	10 ² g/cm ³		
Novae	$2 \sim 4 \ge 10^8$	10 ^{3~4}		
Supernovae	$1 \sim 2 \ge 10^9$	105~6		

Nuclear Astrophysics Study of Low-Energy Reactions with RI Beams for Nuclear Astrophysics

> Shigeru KUBONO Center for Nuclear Study, University of Tokyo

- **1. New observations and the current problems**
- 2. Unstable Nuclei in Explosive Burning
- **3.** Topics
 - Hot pp-Chain
 - Novae, X-Ray Burst
 - Solar Model

4. Scope; Supernovae and Heavy Element Synthesis

Supernova 1987A

February 1987; @ Large Magallanic Cloud Before After

Nucleosynthesis in Supernova - prediction -

RIKEN Accelerator Research Facility

RI beam intensities predicted at RIBF

Proton number

Age of the Universe

Hubble's Law $V = H \cdot f$ H; Hubble constant Then, t = r / v = 1 / H

If $H \sim 70$ Km/sec/Mpc, $t \sim 14$ billion years

Age of Halo stars Age of the universe > Age of the Halo stars

Nuclear Astrophysics is a fun !

