Thomas Nilsson, CERN EP/IS

Physics using Radioactive Ion Beams at ISOLDE CISS03 summer school, Sept. 16 – 20 2003

Why Radioactive Ion Beams (RIB)?

- Nuclear structure
 - Additional isospin degree of freedom extreme N/Z ratios
 - Weakening of shell structure
 - Exotic features clustering, halo
- Decays
 - Structure information from decay
 - Weak interaction probe
 - Tailored probes in applications
- Astrophysics
 - r-, rp-process
 - Solar processes

NUCLEAR PHYSICS EXPANDS IN THREE DIMENSIONS

World Wide Radioactive Beam Facilities

RIB - Production reactions

In-flight production (e.g. FRS@GSI)

ISOL target

Towards pulsed high power U &Th targets

in-source laser spectroscopy: extreme selectivity!

Experimental status: neutron-deficient isotopes around Z=82

REX-ISOLDE facts

- Operating_since 2001-10-30
- 0.3 < E < 2.3 MeV/u
- q/A > 1/4.5
- 7 ≤ A ≤ 153 cooled, chargebred and accelerated
 - A = 208, 238 to be tested
- Works with all elements(?)
 - Molecular beams to be further tested
- $1 < \varepsilon < 5$ % overall efficiency
- Single RIB facility with chargebreeder worldwide

REX-ISOLDE in 2002-2003

- Machine development
 - ¹³³Cs cooled and charge-bred
 - First tests with cooling of noble gases
- 4 REX+MINIBALL runs
 - n-rich Na
 - [−] ³⁰⁻³¹Mg
- ⁹Li on d, ⁹Be-targets
- Test deep implantation of ¹⁵³Sm for DLTS
- Second campaign starting next week

REX proposals

Proposals	Authors	Title	
IS347 P68	D. Habs et al.	REX-ISOLDE Radioactive Beam	
		Experiment at ISOLDE	
IS367 P100	L. Axelsson et al.	Study of the unbound nuclei ¹⁰ Li and	
		⁷ He at REX-ISOLDE	
IS371 P105	L. Axelsson et al.	Investigations of neutron-rich nuclei at	
		the dripline through their analogue	
		states: The cases of ${}^{10}\text{Li}{}^{-10}\text{Be}$ (T=2) and	
		$^{17}\text{C}^{-17}\text{N} (\text{T}=5/2)$	L I
IS379 P114	H. Scheit et al.	Investigation of the single particle	
		structure of the neutron-rich sodium	
		isotopes ²⁷⁻³¹ Na	
IS399 P134	M.V. Andres et al.	Exploring the dipole polarizability of	
		¹¹ Li at REX-ISOLDE	
IS405 P149	D.G. Jenkins et al.	Obtaining empirical validation of	
		shape-coexistence in the mass 70	
		region : Coulomb excitation of a	
		radioactive beam of ⁷⁰ Se	
IS409 P155	P. Reiter et al.	Fusion Reactions at the Coulomb	numbers
		Barrier with Neutron-rich Mg Isotopes	
P156	D. Habs et al.	Coulomb Excitation of neutron-rich	
		A~140 Nuclei	Nuclear
P158	P. Mayet et al.	Coulomb excitation of neutron-rich	Shapes
		nuclei between the N=40 and N=50	
		shell gaps using REX-ISOLDE and the	
		Ge MINIBALL array	Fusion with
IS410 P159	H. Scheit et al.	Evolution of single particle and	n-rich beams
		collective properties in neutron-rich Mg	
		isotopes	

REX Lol

LOI	Authors	x	Title	
I11	M. Wiesche	er et al.	A radioactive-ion beam experiment for	
			the study of the astrophysical rp-	
			process at CERN-ISOLDE	<u> </u>
I12	G. Weyer e	et al.	Defects studies in high-energy ion	Ν
			implanted semiconductors	
I13	D. Forkel-V	Virth et al.	Energetic radioactive ion beam studies	
			of hydrogen in semiconductors	
I21	M.V. Andro	es et al.	Dipole Coulomb Polarizability in the	Astrophysics
			scattering of halo nuclei	
120	L. Campajo	pla et al.	Measurement of the $^{\prime}Be(p,\gamma)^{\circ}B$	
			absolute cross section in inverse	
	~ ~ ~		kinematics	
I 41	O. Sorlin et	t al.	Determination of 4^{4} Ar(n, γ) 4^{5} Ar, and	
			⁴⁰ Ar(n,γ) ⁴⁷ Ar reaction rates by (d,p)	Solid State
			transfer reactions	Physics
I42	G. Pasold e	et al.	Postacceleration of rare earth isotope	
			beams for radiotracer-DLTS on SiC.	
]

Summary

- ISQL vs. in-flight:
 - Thicker targets -> higher production
 - Better RIB beam quality
 - Energy adapted for decay, traps and laser spect.
 - Decay losses
 - Isobaric contaminants
 - Chemistry of target/ion source
- Beam handling important for post-acc. etc.
- Protons most versatile driver, GeV regime optimal in x-section vs. intensity
- Production processes crucial parameters for the experiments

Thomas Nilsson, CERN EP/IS

 $B_0 = 0$

Physics using Radioactive Ion Beams at ISOLDE CISS03 summer school, Sept. 16 – 20 2003

Ground-state properties

- Masses
- Moments

Principle of a Penning trap

K. Blaum

The triple-trap mass spectrometer ISOLTRAP

Recent results from ISOLTRAP on 32,33,34Ar

IMME test: T = 3/2 quartet @ A = 33

Fine structure of the mass surface

Laser spectroscopy and nuclear physics

With laser spectroscopy it is possible to study nuclear properties: Hyperfine structure splitting in electronic transitions:

$$\Delta E_{HFS} = \frac{A}{2} * K + \frac{B}{4} * \frac{\frac{3}{2}K(K+1) - 2I(I+1)j(j+1)}{I(2I-1)j(2j-1)}$$
$$K = \frac{F(F+1) - j(j+1) - I(I+1)}{j(j+1)(2I+1)}$$

 $\begin{array}{l} \textbf{A} \Rightarrow \textbf{magnetic dipole moment } \mu \ (\textbf{I} > \textbf{0}) \\ \textbf{B} \Rightarrow \textbf{electric quadrupole moment } Q \ (\textbf{I} > 1/2) \end{array}$

Isotopic between two isotopes

$$\delta V_{IS}^{A,A'} = (K_{NMS} + K_{SMS}) * \frac{M_{A'} - M_{A}}{M_{A'}M_{A}} + \frac{F_{el}}{K_{el}} * \delta \langle r^2 \rangle^{A'A}$$

⇒ nuclear charge radii

Recent Results on ⁷³Kr: nuclear moments & spin

- Nuclear structure studies
 - Decay properties
 - Low-energy reactions

ISOLDE Si-ball (EP+EU project)

Mass 9 isobar

B(GT) along the N~Z line

The ⁷⁴Kr ground state

TAgS measurements (IS370 experiment)

• $\Sigma B(GT) = 0.67 + 0.03 (0-3 \text{ MeV})$

Theoretical calculations P.Sarriguren et al. NPA 691 (2001) 631

ΣB(GT) = 0.65 (0-3 MeV) oblate shape
ΣB(GT) = 0.60 (0-3 MeV) prolate shape
HF+BCS+QRPA SG2 interaction

Neither oblate and prolate solutions reproduce exp. B(*GT*)

Description of the ground state as a mixing

mixing parameter $\alpha = 0.60$ *i. e.* g. s. shape coexistence

Agreement with in–beam results $\alpha = 0.52$

E. Poirier PhD. Thesis ULP Strasbourg (2002)

IS392 TONNERRE

MINIBALL segmented Ge-detectors

Digital electronics

Coulomb excitation of ³⁰Mg

mass measurements of ¹¹Li

D. Lunney

Mass measurement of ¹¹Li at *ISOLDE* with *MISTRAL*

W. Geithner et al., PRL 83 (1999) 3793

¹¹Li, charged particles

¹¹Li, gamma rays

Beta-delayed neutrons from ^{14}Be

$$P_n = \Sigma i P_{in} = 101(4) \%$$

 $P_{2n} + 3P_{3n} = 0.8(8) \%$

⁹Li on d, ⁹Be-targets using REX-ISOLDE

Fundamental interactions

- CVC and CKM unitarity
- Scalar currents

CKM (Cabibbo-Kobayashi-Maskawa) matrix unitarity

SM:
$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1$$

Exp.: $|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 0.9968 \pm 0.0014$

 \rightarrow unitarity violated by 2.2σ

ш

$$(1+\delta_R)(1+\delta_C) \equiv Ft = \frac{K}{2G_V^2(1+\Delta_R)}$$

 Δ_R – nuc. ind. radiative corr. δ_R – nuc. dep. radiative corr. δ_C – Coloumb corr.

New physics or bad corrections? Test at extreme -> ⁷⁴Rb (and later ⁶²Ga)

CKM (Cabibbo-Kobayashi-Maskawa) matrix unitarity

WITCH – Weak Interaction Trap for CHarged particles

cooler & decay Penning trap + retardation spectrometer

WITCH retardation spectrometer

¹³⁰Cd - r-process waiting-point nuclide

rp-process above Z = 32

Masses are the most critical nuclear physics parameters for reliable calculations in astrophysics!

Conclusions of second lecture

Thomas Nilsson, CERN EP/IS

Physics using Radioactive Ion Beams at ISOLDE CISS03 summer school, Sept. 16 – 20 2003

Condensed matter physics

Radioactive ions as dopants in semiconductors that change with time.

New cooled 2D Si pad detector for Emission Channeling

IS368 - Where sits Er in ZnO ?

^{204m}Pb: Material & Life Sciences

Bio Medical Research at ISOLDE

PET scan of a rabbit 60 min p.i. of ISOLDE produced 142-Sm in EDTMP solution

A look into the future (very personal view)

- Aim: increase intensities 1000 times compared to today
- Preliminary design study done
 - http://www.ganil.fr/eurisol
 - 1 GeV SC proton LINAC
 - 100 mA direct production
 - 4 mA on neutron spallation targets
 - Advanced target/ion source techniques
 - Key elements Be, Ar, Ni, Ga, Kr, Sn, Fr
 - SC LINAC as post-accelerator (100 MeV/u)
 - Innovative new instrumentation

Key experiments identified

- Superheavies creation through ¹³²Sn fusion
- Drip-line nuclei (N<70) through secondary fragmentation of ¹³²Sn
- Neutron-rich nuclei as high-spin probe
 - Hyperdeformation
- Detailed information of r-process path
- Real DS starting 2004?

. . .

Site?

Long base-line \mathbf{v} experiments

- Solar neutrino deficit
- Neutrino oscillations (Super-K, LSND, SNO)
- Accelerator based exp. look for

 $V_{\mu} \rightarrow V_{\tau}$

CERN ν -factory base-line scenario

Leptonic CP violation $V_e \rightarrow V_\mu \neq V_e \rightarrow V_\mu$

CERN needs for higher intensity proton beams

- Planned uses of high intensity proton beam and interesting directions of improvement :
 - LHC: increased beam brightness at injection
 - CERN Neutrinos to Gran Sasso (CNGS): higher proton flux
 - Anti-proton Decelerator (AD)
 - Neutrons Time Of Flight (nTOF) experiments
 - ISOLDE
- Potential uses of high intensity proton beams:
 - Fixed target Physics with low to medium energy muons and neutrinos
 - Neutrino Superbeam
 - "Neutrino Factory" based on a muon storage ring
 - "Muons Collider"

RAMA - "New" tools (for RIB)

Existing idea (GSI, RIKEN plans):

– e-scattering – Luminosity, kinematics???

With new drivers (eg. SPL@CERN) we will not only produce 10² – 10³ more RI, but also >10³ more muons (nuFact) and anti-protons (AD+) than today!

⇒Combine to Radioactive Antiprotonic and Mupnic Atoms (RAMA)

Radioactive muonic atoms

Process	Observable	Deduced quantity	Physics
Capture in high orbit (atomic x-sections), cascade	Muonic x-rays <i>O</i> (MeV)	Charge distribution	 High-precision data on charge radii and moments novel structure features far from stability parity non-conservation in Fr, Ra atoms
Muon capture (semi- leptonic) feeding highly excited states, high multipoles ${}^{A}_{Z}X + \mu^{-} \rightarrow {}^{A}_{Z-1}X + \nu_{\mu}$ N.B.: One step further from stability on n-rich side!	De-excitation γ, particles, daughter activity	Capture rates	Nuclear structure@high excitation energies collective excitation modes in neutron- rich nuclei renormalization of g _A in nuclear medium Nuclear astrophysics v scattering (supernova), v post-processing, Neutrino physics

Antiprotonic radioactive atoms

Combined cyclotron and ion traps

Ideas for exotic probes for RIB (RAMA@ECT*)

- p-bar antiprotonic atoms
 - Intersecting storage ring with 10⁹ p-bar stored
 - Electron cooling on both rings
 - Multi turn injection
 - Merging reactions
- μ^- muonic atoms
 - Cyclotron trap (PSI)
 - Hydrogen layer (RIKEN-RAL)
 - Storage ring

Conclusions

- The ISOLDE scientific programme is very active and diverse, both within basic and applied research
- ISOL-techniques used in the production and separation have important connections to other research fields
- Large physics output obtained with "first-generation" ISOL facilities – time to make a major step forward with EURISOL
 - Due to technical and scientific synergies, CERN could be the most efficient site