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Lecture I : Introduction and Realistic Models of Nuclear Forces

e Basic assumptions of nuclear many-body theory.

¢ Basic assumptions in Urbana-Argonne models of nuclear forces.
e The one-pion exchange NN potential.

e T'wo-pion exchange NN and NNN poten{:ié,ls_._

o Three-pion exchange NNN plotential.
-® The phenomenological short-range parts.

o Momentum dependent interactions.

o Comments on Boson-exchange models and effective field theories.

Lecture II : Deuteron and Variational Wave Functions
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Lecture III : Quantum Monte Carlo Calculations

Lecture IV : Nuclear and Neutron Matter




1.1 : Basic_ assumptions of Nuclear Many—Body‘ Theory
Nucleus is a bound state of A nucleons : ¢ = 1,A
Nucleon ¢ has
position r;, spino;:t,] & isospin 7;: p (proton),n (neutron)

| Xi =T 04 T
X =Xy, X, .. XA
R=ry, ro ..rtqa Con J;z'guration Vector in 3A Dz’mens;’ons
la) :  Spin — I'sospin States

Ezample : |1 p, L p,Tn) isone of the 24 spin — isospin states in SHe
o AL

N'Z'; Maz(*He) = 28— 3! = 24

a=1to Max; Maz= o1

Nuclear Hamiltonian

H= z——vz + Yoo(ig) + X V{(ijk) +

i<g i<j<k
N eglect Four — N ucleon and Higher Interactions

Problem : Solve the many-body Schrédinger Equation

H(X) = BIT(X))

General Representations of ¥(X)

U(X) = I;_ Br®1(X) No Core Shell Model
=1,00

(XY= .Y Yu(R)|le) Quantum Monte Carlo
a=1,Maz




Why Use Potentials ?

The Energy of a collection of static particles, either élementar_y or

composite can always be expressed as a sum of potentials

Let A particles (without spin or isospin for simplicity) be in a configuration
R. All the fields and internal states of these particles are in their lowest

energy state. Let the system have energy E(R). We define

ER)=Ep+ > v(ry) + X2 V(v TimTr) + 2 Viu+ .

i< i<j<k i<j<k<l
Ey is the energylof noninteracting particies; v, V,_’V;-'jk;, .. denote 2-, 3-, 4-, ..
body potentials. This is generally possible; BU'1.‘-is useful only when:
Youlry) > Y Vv, tik,th) > X Vi > ...
i<y ‘ i<j<k i<i<k<!
We can then truncate the series and consider only potentials with few parti-
cles. In nuclei we ﬁnd that this series is convergent and omit terms with 4-
and higher-body potentials. |
When the particles are elementary only the fields coupled to these particles
depend on R. When they are composite, ¢.e. they have internal degrees of
freedom, their internal state also depends on R
Classical mechanics : Earth, moon satelite for example
In quantum mechanics it is ca,lleci the Born Oppenheimer approxima-
tion, which becomes exact when the “particles” (in their case atoms) are

stationary.




Gravitational Interactions Between Earth, Moon and Satalite

® Moon M,
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Fujita-Mivazawa Three-Nucleon Interaction

The pion fields of nucleons (1 and 3) polarize nucleon (2). The interaction
of (2) with (1 and 3) then has a term that depends upon positions, spins and

iso-spins of all the three nucleons (1, 2 and 3).

® ®@




I.2 : Basic Assumptions in Urbana-Argonne Models of Nuclear

Forces
Assumption I (is implicit in all models)

Based on : pion is the lightest meson : m, ~ 138 MeV
Other nonstrange meson masses :

My, = 547 m, = 769 m, = 783 MeV : larger than 4m,

We can assume that:

1. The longest-range part is given by one-pion exchange : v
2. Next is a part with the range of two-pion exchange : v**

3. Finally there is a short-range core v® due to heavy mesons, quarks, etc.
Vi = Uy +1J:-‘;5' +v§
Similarly

Vijk = 1’:?; =+ VJ‘: + v

- 12 i 1 V&

T
*3
—— J.l-"" Vaw
- "'3"'“
' w2 T



A_s;s_u_mption IT (is not made in all models)

Based on the observation that velocities of Nucleons in Nuclei are small:
.Density of matter at the center of a large nucle{ls, po ~ 0.16 fm™3
Fermi momentum kp ~ 1.3 fm™:p= %k}-
This gives (Fermi velocity)? (%)2 ~ .07
 However correlations increase the kinetic energy of nuqleons in nuclei to

~ 50 MeV per nucleon. This gives (average velocity)? ~ 0.11.

Velocity ~ 0.3 is not very small.

drati
vij = statzc "|‘ vi; + ,Uqua rg iC

U:;atic = > wp(ri;)O%;

p=1,6
AP=LE __ - |
Of,,_ = ‘[]., o; * 0y, S:jj] ® [1, Ti* Tj]
‘Sg'j = 30; - 13505 - Fi; — 05+ 0; The Tensor Operator

v = > vpl(ris)O
p= H
O =(L-8);®[L, m-7]

The above v®%¢ and v** contain all terms independent of momenta

-and linear in momenta

statz'c_|_ ,Uls — Z (,r.”)op

p=1,8

The Interaction vg(ij) =v

is the most general interaction with static + linear veiocity dependehce.

It can explain all S- and P-wave NN phase shifts
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Need For Quadratic Terms in v;; in F; = 0 (center of mass) Frame
“

The NN phase shifts in S- and D-waves, and in P- and F-waves can not

be fit simultaniously with any v potential.

Both these partial waves have total spin § = 0 and isospin T = 1. For
any v interaction the potentials in these waves are the same: In spin zero

states the tensor and L - S interactions absent.
vg(in § = 0 states) = v.(r) + v (r)7n - 75 + vo(r)oi - 0; + voe(r)oi o7 - 7
InS=0stateo;-0;=—3andinT=1stater;-7;=1

1""{-'I"'E"'lfljl = U{IDE} — 'U:E{T} = T-"r['r} EE E“E{r] = Euﬂ'r{r}

Experimental Data Says : v(!5;) # v('D,)

T e

Problem : There are many quadratic operators
o [L(oi-glY]@[Lm 7] . = Y dorwy
o [P (aioppll@Lim-n]. = 4w o o
o {oi:L,o;-L}®[l,7-74] . S | "
"o {oi:poi-p} @[Ty . - < “
e and more with S;; and L? and p?

and not enough data to determine the associated potentials




In Urbana-Argonne v;4 models we choose :

gl S vp(rij) O
=914 3
GEI_:Q,].‘! = [:[‘ﬂ:I Eﬂi : ﬂ'j}LE, [:L . S}E]' ] [11 e TJ—] 1

o All the NN scattering data (E < 350 MeV) can be explained
e We can define a vj-interaction such that

14—ty =0 inall L =0and 1 states

® Treat (vy4 — vg) in first order perturbation theory

Recent Test

——

2 A\ &
No b:-la—&+%‘

Construct a vy4 p; model in which we choose:

O = [P, (0i - ;)% Q¥ ® 1,7 - 73] ,

Qi = g{ﬂi +L,eg; L} — 0y - o;L*

e Field theoretical, (w, ¢)-meson exchange models favour vy s

e It can also explain the scattering data.

® The resulis it gives for A = 3 and 4 nuclei are very similar to vy, results.
¢ Can not treat vi4p, — vg in first order.

We will return to meson exchange models later.



Tord : R, #0

Relativistic Boost Interaction : A Part of Quadratic Terms

The interaction v;; depends upon the momenta p; and p; of i and j.

We define relative and total momenta:

1
Pij = E{Pi —p;) and Py=pi+py

Ezample : the momentum dependent interaction between two equal charges
_@piop; @ (EL s Ei)

ry 2m? 2m*  8m?
The pfj-te:'m is included in the center of mass frame interaction denoted by
vjj in nuclear theory. The H%-term is the BOOST interaction denoted by
dv(Py;). Including it we get the Hamiltonian:

PE

H=3 o -+ 2 (v +6u(Pis)) + 3 Vige + -

The dv(P;;) is related to v;; by the Foldy-Friar Eq.

ou(P) = ——j:l—a--l.r""’t + ——-[P rP-V, v 4+ —

& l:ﬂ','—r.Fj} = P*?,ﬂdd].

gmz
Up to order P?/m?

It is included in Relativistic Mean Field Theory,

but often neglected in nuclear many-body theory.
Examples of effects of du(P;;) in nuclei

L (§v(Py)) in ‘He ~ 1.9MeV i. e. ~ 7% of By bouk <2% o} V57
2. Nuclear matter equilibrium py = 0.30 fm™® E; = —18.2 MeV without

= (.22 = =14.1 with ﬁﬂ[P,;j}

9



Calculations of A = 3, 4 nuclei using the Hamiltonian

HR=ZI[VIHE+DE +E[1-'|_1+§'”|: ::j}]"" Z Wﬂ‘!

] :-r:j g Bl

Ui = ,—,—pdm = ,—,-—p=r + U] + s
Suggest that terms with p"2* in the nuclear H have small effect.
- Hrep ok :,Mdh&}l c -

Assuming the v,4 operator structure

vij = 3 tp(ri;)Of;
p=L14
vy(r5) = vp(riz) + " (rz) + vy (i)
Our next task is to determine these functions of r
e We can calculate only the one-pion exchange potential v™.
e We model v*" and v®. Model parameters are determined from data.
e Fortunately (¢v™) > (v®* + v®) in nuclei : Good

e But there is a large cancellation between (v**) and (vf)

e In 1993 the Nijmegen group produced a multienergy partial-wave anal-
ysis of elastic NN data below Tj = 350 MeV (PWA93) that was able

to reproduce over 4300 data points with a y?/datum ~ 1.

o Models which fit these 4300 data with x*/datum ~ 1 are “successful”.
They include : Nijm I, Nijm II, Reid93, Argonne vy5 and CD Bonn.

e However all except Argonne v;g, are all adjusted partial-wave by partial-

wave; they do not represent v;; as a local operator.

10




The one pion exchange potential

Pions are pseudoscalar mesons with spin parity 0~, and isospin 1.
The pion field operator ®(r) is a vector in ismp'in space.
The interaction of the pion field with a nonrelativistic nucleon at position

r is described by the interaction Hamiltonian:

Hunn = ‘fﬂf”‘ (Ve(r) - 7) = _fﬁfgi - (Vi@a(r) - 7a),

fawn is the pion-nucleon coupling constant and g the pion mass.

The one pion exchange potential in momentum space is obtained as:

oA, |
wa-' i b ol

2 1 L
u“(@=—% T+Ta O1°qQoz-q @+ ) g

In Configuration Space

fﬂNH daq 1 =iT
i) =t G ™ 01999 s
(7)== /G (2m)? (% + u?)
fann d*q 1 -
- VoV i
If_.t.z e K o L oy« f 2# {qg 73 ”-2}
NN gr

VoV —,
4'.rr,uTT13 iy 2 :

After evaluating the gradients we get:

11




v"(r) = L fann BT T [Tw[r]lSu + (Yﬂ{r] — i—j&[r}) ay - Efg] ,

3 dr
E_.I'-‘r
Ya(r) = pre
3 a3
To(r) = (L4 o+ 33 Yol

Siys=30oyFT oy T —0op 03,

Here Y, (r) and T,(r) are dimensionless functions of pr,

512 is the tensor operator,

The part of v™ containing Ty(r )51z is called the tensor force.

The part containing Y;(r)e - o2 is called the Yukawa.

Within the range of v, pr < 1, and T,(r) > ¥;(r) by a factor > T.

The tensor part of the v™ is therefore much larger than the Yukawa part.
The d(r) part of v™ must be taken together with other short range inter-

actions included in v. We omit it from v" redefined as:

% 2
v'(e) =3 F un-n Xy

Xij = Ty(r)S1z2 + Yy (r)o1 - o3,

The 1/r and 1/r® singular behaviors of Y;(r) and Tx(r) are cut off due to

finite nucleon size. For example, in Urbana-Argonne models

3 3 \em e
A

Note: Yi(r — 0) = Tx(r = 0) = 0; all short range parts in v"
we WAl nehow b cuw offis

12
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Modeling of the two-pion exchange interaction

Assume u}}’r is dominated by the Hﬁmal excitations of nucleons

' :'ﬂ'-H S calr.
The NN — NA Transition Potentials

TTH&S ?@ ‘_l%’ﬁ__'a*&nmﬁ- q@"t'l

]"lT m
UNN-NA = 3% Ti- 7 [Telr)Siz + Yel(r)S: - o] ,

S{E=331‘f'ﬂ'2‘f'—51‘ﬂ'21

S and T are transition spin and isospin operators. They convert N — A,

C o chen . One of the terms in the v**

In the closure approximation it will give a contribution:

L2RAN) _ 1
{mN = Mﬂ.}
1 [_1; fewafenn Fr

(my —ma) 13 4r

8 4 4 4 4
% T(r) {E+ =Ti* Tj = 20i* Of — =0i 04T * Tj + =5 +§

3 3 L 3
= ¥ If”?f[r]ﬂﬂ + smaller terms with T,Y, and Y7

=18

T T
VANSNNYNNaNA

S.ij'l',' i -+ ...

13



The complete v*" will have contributions from many process such as:
NN —+ AA =+ NN, NN =+ RN = NN etc

We can write: Note: R denotes any m — N P-wave resonance

'uh: E Z IFTEET}G& =
p=16 RR'#NN

=3 IPTE{erﬂ + smaller terms with T, Y, and Y7

=148

It is all static because of the closure approximation
e We do not know all the [XF#VN,

¢ Closure approximation is not accurate.
Urbana-Argonne Approximation

" = e Ipﬁ{‘*}ﬂ%

=114
Obtain the 14 strengths [, by fitting the V.V scattering data
Fits with ¥* ~ 1 are obtained.

Present data not accurate enough to determine the smaller terms from

experiment.

e Nead “rone ool dade - b Heeatdt
. Ft date ak E > 350 MeV
comneck don imelenheily 8 J'l'é.ini-'-\hl?

Seakrie : FadA 003
Poln YLnnenteNo

14



Modeling the v
Radial shape of ¢ is basically unknown; we assume

v = %: [Py + urQy + (ur)*Ry| W (r)OF;

Wi(r)=[1+ elr=mu/ “]_I : Woods Saxon

This completes the description of the NN interaction, recall

P 2z R
Vig =g+

It has 3 shape parameters: ¢ = 2.1 fm™2, ry = 0.5 fm and a = 0.2 fm.

All the u;“?’ strengths [, are obtained by fitting the data.

One of the three parameters : P, (), and R, is obtained from the r = 0
limits:

up(r=0)=0 : for tensor potentials

3“’::'{1"}
dr

(r=0)=0 : for other potentials

Other two are obtained by fitting scattering data

Shobe bonawetrern neem 4o be

nelayed .

15
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Need For Three-Nucleon Interaction Vj;

H = Z—%Vf + > v(ij) leadsto :

i<j
Problem I : Light Nuclei are underbO;md
3H Energy |
—8.48 MeV : Experiment
—7.62 MeV : Reid 93; Nijm IT and Argonne V18 - Faddeev
| —7.72 MeV : Nijm I - Faddeev - |
—8.00 MeV : CD-Bonn - Faddeev
Problem II : Nuclear Matter is overbound and dense
~Energy Density _
—16 MeV  0.16 fm™ : Empirical values
—18 MeV 0.27 fm™3 : Nijm II and Argonne V18 LOBT results
10 MeV  0.28 fm~® : Reid 93 LOBT results
~20 MeV  0.31 fm™® : Nijm I LOBT results
~23 MeV 0.37 fm=% : CD Bonn LOBT results

e All the above calculations do not include boost correétion Sv(P;;)
o Jv(P;;) increases 3H energy by 0.4 MeV (away from experiment)

- o 5v(P;;) decreases nuclear matter density to ~ 0.2 fm™3 : Variational AVI8
o 6u(P;;) decreaseé nuclear matter energy to ~ — 14 MeV : Variational AN\

e CD Bonn is more different from other models, we discuss why ?

16




I. THE FUJITA-MIYAZAWA THREE-NUCLEON INTERACTION

——

£=3 - - - -

T
- - =

A SR VIR " 2

1
yamPW) _
R Py oo

(VAN nn TR VN nalid) + vanswn (G v v s valki)) .

It is convenient to use the X;; operators in v™ to express this interaction in

a convenient form:

‘L*’:;?iiﬂpw] = .-EE Age pw { Xy Xjie Hmi - 75, 75 Tk
I =

+ Ca pw|Xij, X[ - 15,75 - ),
b fonalinn 2

A = — ol
BEW S T s — my)(127)29
1
Cox P = Ea‘izﬂ,Pw-
The above equation gives an estimate of Az, pw = —0.04 MeV for the

strength of the anticommutator part of the FM potential.
This estimate could be too large due to use of closure approximation
It could be too small because we include only the A resonance

bottomline : Get Aj; pyw from experiment

17



II. URBANA & ILLINOIS MODELS OF THREE-NUCLEON INTERACTION
We rewrite: L’;ﬁ"Pwl Asg fwﬂh PW — E.trength x operator

ﬂf;'erw Z{x-w Jk}‘["” Tja Ty Tk}‘" [Kmx:k][ft T3 T TI:]

We also calculate the)2r, SW]and Eleﬂ,\interaﬂtiuus using closure.

A R

The realistic V};; is assumed to be:

Vijk = AsrpwOgy " + AgeswOI"" + Aar1aO0J%'* + AgOR,

Dﬁl_ = :ﬁ" T2(r)Te(rsx) : The phenomenological term
A repulsive V., = AROR, interaction is necessary to stabilize matter.
e Urbana IX (U-IX) Vijk = AsepwOy @ + ApOf, with strengths ob-

tained from *He energy and nuclear matter density.

e Illinois 2 and 4 (IL-2 and 4) models have all four terms. The
strengths ; A*™FW_ 4313 and AR are obtained by fitting the ener-
gies of all A < 8 bound states. A range of Ap values is possible. Need

nuclear matter calculations to fix Ag.

e The FET SW is very small : We take A2™SW from effective field theory.

18
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e The AV18 (NN) + Illinois (NNN) Interactions give encouraging results.

e BUT These models are not perfect.

o They do not explain all the available N — d scattering data.

e AV18 explains NN data up to 350 MeV (Lab). Improved model is being

constructed to fit data up to 500 MeV.

e New models of Vj;; should also be constructed to fit the nuclear binding

energies and N — d scattering.

In the next three lectures we discuss how to solve the nuclear

Schriodinger equation with these potentials

Hierarchy of Many-Body Hamiltonians

vi; = v%(ri;); Vijr =0: the simplest & ™osk wrnnealakc .

[ ]

vy =vf; + v, Vig=0: the basic “vg" nuclear many-body problem

vij = vf; + v 4 o, Vi =0: the “vg” problem

vij = vfj + v + v} + Vijp : the “present” problem

(vig — v§) and dv(Py;) : “quadratic terms” treated as a perturbation

19
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LS, T depemdomce of cowpling cowftomly

R. MACHLEIDT i €D- Bonmn ._H.._.

TABLE VII. Parameters of the scalar isoscalar bosons o
and oy, for the pp T=1 potential. An asterisk denotes the default
which is the 'S, parameters. The boson masses g, and mg, are in
units of MeV. A blank indicates that the &, contribution is not

PHYSICAL REVIEW C 63 024001

TABLE IX. Parameters of the scalar isoscalar bosons, o
and o5, for the T=0 np potential. An asterisk denotes the default
which is the 7§, parameters. The boson masses mg, and mg are in
units of MeV. A blank indicates that the ¢, contribution is not

considered. considered.
_m.w___c_—ﬂ (mg ) mwwﬂﬂ (nig,) .m_.._..___l.*ﬂ (mmg) ,mw“h__..pﬂ (mg,)
'Sa 4.24391 (452) 17.61 {1225) 5 0.51673 (330) 14.01164 (793)
o 7.866 (560) = 'Piv "Dy 0.81, 0.53 (*) 71.5, 154.5 (1225)
T 2.303 (424) * (%) g, 0.573 (*)
i 4.166 (470) - 24.80 (%) D, 3.4 (452)
'D, 2.225 (400) 190.7 (*) Py 0.73 (*)
*Fy, 3Fy 1.5 (") 56.21, 74.44 (793) Gy 0329 (*) -
1F,. *H, 3.8 (*) il ot ‘a, 0.62 (*)
"Gy * (%) T 0.96 (*) :
.d_h-.__,“._ * (#) ____.mm = (%)

Owe- boonomn @xchamae od.eln UM. .F_._.J \howe __uhnfhg
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II1. THE DEUTERON DENSITY DISTRIBUTION

The structure of the deuteron and the mixing of its S- and D-waves is
most obvious in the nucleon density distribution p3(r',6) which gives the
probability to find a nucleon at position r' in the deuteron center of mass
frame. It depends upon the projection M of the total deuteron angular
momentum, the distance ¢’ from the deuteron center of mass, and the polar
angle 8 of r'; it is independent of the azimuthal angle ¢.

Note : The interparticle distance r = 2r', and the pj'(r',#) has :

Normalization : fdar" ) =2,
[drw )l (r) =1

and d°r = 8 d°r'. Therefore

i ™M -
oM () = 16" (2r) ¥ (2r) = |4 ’j'_'\[r un,ﬂ:iw}

A) = 2 [Co(2r) ~ 204(2r') Pafcosh)]
pE) = = [Co(2r) + Ca(2r') Palcost)]
Colr) = = (420) + ()
alr) = ~"’—; ulr) w(r) - 55u*(r)
Note that these density distributions are B}"]]'.IHJ.E’E.‘I;I' :T;i f ,;Ig:ﬁ C\"J

A(r',0=7/2) = pE1(,8= 0) = = [Co(ar’) + Ca(2r")] -
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I. THE TWO NUCLEON SCHRODINGER EQUATION

Nuclear Hamiltonian
1 " e
H=S-2-V! + Toulil) + ¥ V(i)
i m i<j i<jck
V(ijk) does not appear in the two nucleon Schridinger Eq.
Cuantum Numbers of Two Nucleon States
Total Isospin T = 0,1 Total Spin S=0,1
Total Angular Momentum J = 0,1,2... Parity = =x1=(-1)*
Orbital Angular Momentum L =J when 5=10

& L=J J+1lwhen §=1

Single Channels : J =L, §=0,1, and F (an exception)

In 25+1L; Notation : 1Sy, 3Py, B, Da, *Dj, ..

Coupled Channels : L=J%1, §=1 Mixed by the Tensor Force
Examples: (3S; =* D)), (B F), (*D;-"Gs), ...

out Nosne T_,":':,T

Allowed antisymmetric states have : (S+ T + L) odd.



Representation of Eigenfunctions .

Single Channels : ¥ = RJLS(T').V%S = ;'U»JLS(T)J].%S

Coupled Channels

U = Ry=7-ns(r)VJ{1=7-ns + Rou=L+1)s(r) V3 i=r+1)s
) .

= [s@=7-1)s(P)V{r=1_1y5 + Wa(r=L+1)8 (") VI 7=L+1)8]

'The Spih«angle functions Y ¢ are obtained by:

Couple o; - 0; to total spin S, Next Couple S + L to total J with J, = M.
Channel Potentials : Definition

L(L+1)

) + (VM s|via(r) | VIs)

vyLs(r) =
These include the centrifugal potential for convenience.

NOTATION
v, v°, Ut, ,Uls ,,vl2, ,Ul2a and .Uls2
. denote potenti@ls associated with operators
1, o; -Iaj, Sijy L+ S, L%, L%0; + 0 and (L - S)2
’UT, 'UUT, ,Ut'r’ ,Uls'r ’bl2r’ ,Ul2a-r and ,UI.SZT

are those with above operators X 7; - 7;




In this notation we find, for example :

v(1S0) = vogo(r) = v°(r) + v"(r) — 3v7(r) — 3v°"(r)
v(381) = vioa(r) = v°(r) — 3V (r) + v (r) — 30°7(r)
UCD1) = vin(r) = — 5 +9°(r) — 307(r) +v°(r) — 30777

— 20(r) + 60%7(r) — 30" 4 90" (r) + 60*3(r) — 180'¥7(r)

+ 60" (r) — 18027 (r) + 90! (r) — 270477 (r)

NOTE : In v the v~ are redefiend such that the potentials in 1Sp, 3],
1Py, 3Py 12 and the 3D; channels, and the channel coupling tensors, Vi_,1,

are the same as in vy4.

Single Channel Schrédinger Equation -

1d%u
———aat vyrs(r)u(r) = Eu(r)

E > 0: No bound states in single channels

Schrodinger Equation for the Deuteron

_%ZTS + vioa(r)u(r) +Iv}=0(r)\/§w(f) = Equ(r),
2
_%% + v {r)w(r) + v}zo(r)\/gu(,.)‘z Equw(r).

Channel Coupling Tensor Potentials

Uhe(r) = vH(r) — 3" (r)

Va1 = () +2 (1)




II. THE DEUTERON WAVE FUNCTION

In c;rd*.?:r to see the structure of the deuteron we have to write the deuteron
wave fuction:

Ui = = (u(r) Vi + w(r) Vi) v"_ (lp1ng} — [nap2)) .

“Il:-

as a funetion of r = r, 8, ¢ in the spin states:
|5, Ms) : |1,1), [1,0), |1,-=1)

Ignoring the isospin factor ;_7?-5 (lpina) — |mapz)) for brevity we get:

wi=t = = () + (8 cos®8 — () 1,1
+ gmsﬁ' sinf e"w(r)|1,0) + %Efﬂ:ﬂ e*®uw(r)|1, _'1}] y

ght=o _ 1 r (u{}+ {(SMEH—I}w{r})H 0)

+ Emsﬂ sinf e ®w(r)|1,1) — %msﬂ sinf e“w(r)|1, —1}] \

pM=-1 _ f,i_ﬂ:[ (u[r] + 3{3 cos?6 — l}w[r}) 11, -1)
- gmsﬁ' sinf e *w(r)|1,0) + %sﬁnzﬂ e~ H0w(r)|1, 1}] ;
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IV. THE STATIC POTENTIAL IN THE DEUTERON

Ignore all momentum dependent terms in the NN interaction
,chitatz'C(r) = ’0101(7') + 'ngzo('r) [30’5 . f‘O'j - T — ag; - O'j']

This potential is anistropic : makes the deuteron anistropic

It depends upon the value of MS

(1, Mg = O[v3*|1, Mg = 0) = v101(r) — dvke_(r) Po(cosb)

(1, Mg = £1|v5%)1, Mg = £1) = vi(r) + 2v5_o(7) Pa(cosh)

It is like the interaction between magnetic dipoles
CONCLUSIONS

1. The D-state of the deuteron is close to maximum value at r <2 fm.
2. The deuteron is the smallest toroid knownr: 0.5 frﬁ radius.

3. Realistic NN potentials give a quantitative description of NN inter-
_action at 7 >~ 0.7 fm

4. At r < 0.7 fm the nuclealj. wave function is small.




V. VARIATIONAL WAVE FUNCTIONS FOR A=2,3,4 NUCLEI

The state: @fi‘hl ={(tptn—-1tntp = 101 l(lplng) |n1p2))

‘describes two uncorrelated nucleonsin J =1, M =1,S=1and T =0

state with the deuteron .quantum numbers.

We can write

¥y = (Rs(r)Vigy + Bp(r)Vi5) (Ipina) — lrapa)) -

= (f5(r)+ fi(r)Sy) BY = COBY

with

f5(r) = Rs(r) and fi(r) = jg o(r)

Note : S;; Vi = \/_ym

In general we can write ¥ = CO® to obtain the correlated'éigenstates of
H from uncorrelated states with appropriate quantum numbers. An exact
calculation of the correlation operator CO is as difficult as solVing the many
| body Schréidinger equation. In the variational method we é,pproximate the
® and CO by simple forms with few parameteré and determine them using

the variational principle:

s ((EHDY
st =5 ( gy =0

Our approximations will give us the deuteron exactly, but not nuclei having

A>2.




The uncorrelated states @

The A = 3 nuclei have only one bound state with T =  and J = }. The

uncorrelated states with T, = :!:% and J, = :t:% are uniquely given by:

S;=Altp lp tnl, Altp lp lnl, Altp tn in], Alp tn In]

A is the Antisymmetrizer; All ® are antisymmetric

The A = 4 (*He) has only one bound state with J = 0 and T = 0. The

uncorrelated state with these quantum numbers is:

Sy=Altp lp tn In]

@H}.q_ wwr hewe R dePansime €
The State of Uncorrelated Nuclear Matter
A= oo
Is Noninteracting Fermi Gas

Ssyu=A| I TI e“"xuli)
k<ky n=14 |
Fpyir=A| I I e™xuli)
k<he n=1,2 ]

Xn=14 - Tﬂ'r -Lﬂ1 Tp! 'Lp
SNM : Symmetric Nuclear Matter N = Z = Ei and degeneracy d = 4

PNM : Pure Neutron Matter N = A, Z = 0 (Neutron Stars) and d = 2

Use Shell-Model type wave functions for uncorrelated bound

states of 4 > 4 Nuclei

A=2,3,44& 9 n Siwmble

9



Generalized Jastrow Approximation for CO

co=5| 11 Fifl

icjed

Foij= X folry)Ol ¢ static whad im GMC

=16
Feij= 3 folriy)Ol : static + spin—orbit wh ek i
P c \unren exbonamdnh

Recall: fol'ﬂ =1, Ti*Tj, O1* 0§ 0+ T§Ti* Tjy Sigy O4iTi Ty L+ 8, L-8n-75
& is the symmetrizer; J; do not commute with Fj

The General Assumption

We can alwavs write the exact CO for a nucleus as:

CO = Fix. 4. 5[ I :'Eijk] 5[ II -E'i:|

icfok<d igjad

e included . highl-
Fiik..4 is an A-body operator ,
s G waeled , Mot
Assume Convergence - B aeo Tholon
‘ i

<jck<A feA

1. Fi is used in all Monte Carlo Calculations
2. JFg in most calculations using cluster expansions

3. Monte Carlo calculations also include approximate three-body Fij

10



The equations for F

The eight fp—; g(r) are to be obtained by minimizing the (H)
This is difficult because the (H) is very sensitive to the f,’s at small r,
where the interaction is strong.

We can assume that F obeys a Schrodinger like equation:
1_, Ty
'—EV -+ Vij — Agj) .7:;]' = (0

Aij = 3 Ap(ri;) OF;
p=1_8

and vary the A;; to Iminin:’iize (H). This is a,lv.vé,ys possible and is much
simpler because % some parts of Ap’s can be calculated from the condition on
fo(r = 00), and the rest approximated with rather simple smooth functions
of 7.

The F and v14 commute with the total spin S and i'sospiil T. The equa-
tions for the 8 f,’s breakup into 4 sets:

1& 2: S5 =0 single cha,nnél Eq. for fos=01=0,1

3 & 4: S =1 coupled channel Eq. for f.s=17=01, ft,r=01 and fis =01

The F operator is constructed from these 8 functions

For the equations see: |

I.E.Lagaris and VRP Nucl. Phys. A359, 349 (1981)-Nuc1ear matier

and R.B.Wiringa Phys. Rev; C 43, 1585 (1991)-light nuclei

11
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VI. REPRESENTATION OF NUCLEAR WAVE FUNCTION IN QUANTUM
MONTE CARLO

Nucleus is a bound state of A nucleoﬁs ci=1, A
Nucleon ¢ has
positioﬁ ri, spino;:t,l & isospin;: p (proto;l),n tneutron)
Any nuclear étate can be represented- by

TR = T du®)e)

b a=1,Maz
R= ry, I, ..T4
o =1, Maz) : are spin-isospin states
For example an |o) in*His|pt nt n 1)

3H has 24 spin-isopsin states : Maz =24 :

(pnn npn nnp) ® (111 T N4 A I N W WD)

: Al
—nd_
In General Maz =2 NT Z1

Z and N are the number of protons and neutrons : A=Z+N

Maz = 96 in *He; ~ 4 x 108 in 12C; ~ 8 x 10% in 160
We can reduce Maz by a factor of ~ 4 to 10 by using symmetries and
isospin conservation.

Present range of quantum Monte Carlo: Nuclei up to '2C and 14 neutrons

12 | o




The static operators O{fl’ﬁ are built from
o; - 04, Ti*Tj, and 0;- Ty
We use

o;-0;=2F; -1, Fj; spin exchange operator

ij —

7T = 2F; —1; B isospin exchange operator

a,--r:afz—!—af(é:—-z’y)—I—a{(:c—l—iy) _

Let these operate on a 3-nucleon spin-isospin state for example

-l tn L ptny=214n tp tn)—|1n Lp tn)
menltn L ptny=2tp in tn)—|tn ip tn)
o1t tn L ptn)=(@+ig)dn Ip tn)+2tn Lp Tn)
With above equations we represent each vg ;; and JF;; by a Maz X Max matrix

function of R. In practice we teach the computer how to do it.

WE MUST KEEP ALL THE Maz STATES
(/| Hlo) # 0 even when o # o

This makes the nuclear many-body problem exceptionally

chéllenging

If vg(ij) were to be spin-isospin independent v.(ry;) like the Coulomb
potential we can keep only one of the pos_sible |} states because in that

case (d’|H|oz) =0 when o # &

13




VARIATIONAL MONTE CARLO (VMC)

Define : S[H J—'J] = 1] F
B B

i<j
17 : Product of i in the order speci fied by B

s, 4/ RO} (R)[Ms Fiy) HIIL, an]‘I’V(R)
55, v/ AR} (R)[Mp Fij][Tl, Fis]®v (R)

In VMC the fdR and the sums over 83, v are carried out with the Monte

(H) =

Carlo method

Central Limit Theorem

_ [ G®R)
[dRGR) = [ iR (R)W(R)
- [ B wmg /e

1. W(R) real positive normalizable probability distribution,- also called
the weight function
2 The density of configurations R; at R is proportional to W (R); i.e. R;
are distributed with probability W(R)

3. The number of configurations N — oo

Generalize to include discret sums

z [ dRG(R, B) = [ z _§le W(&’,%z } lz [ dRW(R, ﬁ)]

14




Montre Canle Imteonakiown
[AR&(R) = T av G(R,)

ol p—
Wivide i"ﬂ’l“%ﬂr\.ﬂ.kﬂ“ volurve € in ﬁj '("l.rq

YA bivs & volume AV
Takke N Nomwplan distabuled wita weighk W(IR)

waﬂn_ d} bwlp.lﬂu} Nﬂ{ P 'b'n-n g{
AV W (R s
(AR W(RY

i CT(.R;'} . 5. i- Na{ G\‘{.Rﬁj
L WI(RY N o W((R,)

N

ﬂ.=

v _AV & (Rw) [dR & (R)

* [fARWIRY) 7 (ARWI(R)

In qpoadbuna mechomiens we need:
f"% (R) & T (RYIR

—e e =l

( F (R)E (R) 4R
Ruj'io"—ﬁ og_ i'n"r?.n,n.q.jh
We do mor need deW(R)

=




Sample R, B, '7 using weight function:

W(R, B, 7) = |8} (R)II, 7L, Fyl®v(R)|

Sampling means getting IV configurations Rx, Bk, Y distributed with proba-
bility W (R, 8, v). We will discuss Metropolis sampling shortly. Now assume

that we have the samples.

() = 22 1 AR} (R) [l Fig H ]I, Fil®v(R) _ N
5, v/ AR} (R)[Il Fif]lll, Figl@y(R) D
ol s SV(R)Ms Fyl B, Fifly (Ra)
N k2N @) (Re) (M1, Fij) [Ty @y (Ra)|
p_ L 2/ (Re)Mg Fijlllly, Fil®v(Re)
N k2T [0 (Ra) Mg, Fig [ Fig] Bv (Ree)|

Metropolis Sampling of W (X)
Based on principle of detailed balance

pc(X) = density of configuration X; at X
If these configurations are allowed to move with the transition probability

T(X — X') then the condition for dynamical equilibrium: 7S .
pc(XNT(X' = X) = pc(X)T(X = X'

o wamt : WX _ po(X) _ T(X' =+ X)
CWEX) (X)) T(X = X))

15



Metropolis Solution T(X' = X) = min !1,

. . /
If WX)>W(X) then T(X' 5 X)=1 and T(X = X) = %
Thé MetrOpoIis algorithm is implemented by sequentially obtaining the con-
figurations Xz = Rg, Bk, 7% in a random walk.

To obtain X1 make a random step from X : X' = X+ AX

o ' !
and accept it with probability : T(Xj — X') =min [1’ PVT[//(()}{())}

If accepted Xp1 = X' If rejected Xpy1 = X
NOTE The conﬁguratidﬁs generated in a Metropolis walk are correlated

If you want N configurations make nV steps and take every nth X
Typically n ~ 10 to 20
It is all done with random numbers

1. Use a new random number 7 distributed between 0 and 1 each time

2. In a step each =} = z; + (n — 0.5)¢
there are 34 componants z; of R
£ is chosen to acc'ept ~ half the steps

3. B’ and 7 are picked randomly from all orders of 1'[.7:;_.,-,
4, If T(X; — X') =1 then accept

5. If T(Xy, — X') < 1 then accept if n < T(X; = X')
reject if n > T(X; — X')

16




In VMC (H) is calculated by Metropolis sampling -

The simplest way to calculate the statistical sampling error is to divide
the N configurations in B blocks; each block has N/B configurations.

‘Let E; be the (H) calculated from configurations in block i,i=1,B

_ 1"
E=— E
Bz'EB z
_ O'B
1 _
2 2
O = — E-F
B B’i:l,B ! )

Minimize (H) by varying A in F equations
(O) are calculated like (H)

Nondiagonal Matrix Elements
JdRUYR)OW;(R)
YU dREHR)T(R)]S dREH(R) Vs (R)]

_ JdRIY(R)OV/(R) \l [ dRTH(R)T1(R)
~ JARY}R)TL(R) ~ \[dRE}(R)T,(R)]

Ory =

Calculate both the factors using W(R) = ¥}(R)¥;(R)
We can calculate electro-weak transition rates and radiative éapture Cross

sections from Oy

Overlaps between ¥; and ¥ are also calculated in a similar way;

set O =1

17
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Applications
B = | :-F;.'lr-_.rﬁbuj'i Ly

Studies of Cluster Distributions in Nuclei

Example : a-d Distributions in °Li :

T(R) = Uy (°Li, Mj; R)

¥ 7(R) = Ty (o; Ro)Wald, My, Ra)d(res — RY" + RY")

Calculate for O = 1:

_ [dRV}(R)OY,(R)
/I dRYH(R) ¥ (R)] [ dRYY,(R) ¥ (R)]
—» Fone- EmJ:HMv

Nucleon Momentum Distributions

Orr

One-body density matrix : pi(ry,r})

Momentum distribution : n(k) = [ p1(ry, rj)e™ =" )dr dr]

In VMC it is simpler to calculate

[dRUV (R )¥p(R-) 1
th = ﬂ: — ¥ W meE
JARVL(R)Ty(R) Ry = (r1 & 3x), 1y, ¥4

pix) =

Quasi-hole Orbitals in "Li for Example

Yoaja(k) = (v ("He, J = O)s(pssa, k) Wy ("Li, M))

Gives the probability to find in the Li ground state : a proton in the pyp

state and “He in its ground state.
—» Elackno wieol, Lo Howh 4= Caprunss.

g, ¥ Shabey & wshes
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*H(e,y)°L1 CAPTURE REACTION

U. of Chicago thesis work ol K. Nollett

A primordial nuclear synthesis reaction
Astrophysically important region is 20—200 keV,
No direct capture data in this region
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*H(a,v)"L1 & *HE(w,7)"BE CAPTURE REACTIONS

U. of Chicago thesis work of K. Nollett

Source of "Li in the big bang
e Astrophysically important region is 20—500 ke V.

"Be reaction also source of solar neutrinos
e Astrophysically important region is 20 keV.
e No data in this region
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e A =7 wave functions have proper 3+4 cluster form.
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L. EVOLUTION IN IMAGINARY TIME

Let ¥; be eigenstates of H belonging to eigenvalue E;
All of these have the same chosen spin, parity, isospin, ...
Wy has the lowest energy Ey.

Suppose we have an approximation ¥y for the Wy,

Yy = Z a;V;

>0

We can project ¥, from ¥y by evolution in imaginary time

The evolution operator e~Ht becomes e~HT for imaginary time T = it
We use the evolution operator e~ #~En)T to control the normalization

(1) = e H- BTy,

120

= age! BBy, lim T — oo
Because (Er — Ep) > (ET — Ei>1)
 When Er = F, then the norm of ¥(r — o) is a3 independent of .
. The estimate of Ey obtained by tuning the “trial energy” Er to keep the
norm of \Ii.('r — 00) fixed is called the Growth Estimate ' |

We can also calculate Ey from:

(Oy|H|¥(r = o0))

(Yy|U(r =+ ) _ o
(Uy|¥(r — o0))

= B Gy B (r = o))

This is called the Mixed Estimate |
2 How com we de tk?—



II. THE SHORT TIME GREEN'S FUNCTION

In general the imaginary time evolution operatér, or propagator, is very
difficult to calculate. However, the propagator, or Green’s function for a

small time A7 is relatively simple. We use:

—(H-F __,—I;T—EA“. _ T
e BT = (e HEEDAN" | p= =

This gives: (We omit spin-isospiﬁ labels now for brevity) .

(1) = e~ H- BTy,

_ (e—(H_-ET)AT) ... (e~ H-B)AT (= (H-En)Ar) g,
T4 1 1T
Now insert complete sets [dR|R)(R| after each ). This gives

¥(Rn,7) = [ dRn1..dR1 dRg G(Ry, Rn1)...G(Ry, Ro) Ty (Ro)
Where G(R,R') = (R|e”#-Fr)A7|R/)
is the Green’s Function of Green’s Function Monte Carlo

(GFMC)

The set of configuration points Ry, ...Ri, Ro make a path, dénoted by P, in

the 3A dimensional configuration space. We use

Pn = R'm "'Rl: RU

dPy, = dRy, ...dR1,dRg

3



III. FEYNMAN’S APPROXIMATION FOR SHO-RT TIME GREEN’S FUNCTION

H=T+V(R)

1 .
T= 3% (——V?) The kinetic energy
i=1,A 2m

V(R) = (E v(ij) + Y, V(ijk) + ) The total potential eﬁergy

i<y i<j<k
For now we assume that v(i5), V' (¢jk) are spin-isospin independent functions

of the _inferparticle distances which depend only on R

e~ (H-Er)AT — oBrATo—HAT gince Ep commutes with H

But T and V do not commute with each other

e—HA'r — 6—(T+V)A'r

=1-(T+V)Ar+ -1—(T +V)2ArE - %(T FVRAP + ...

2
=1=(T+V)Ar+ -;- (T2+ TV + VT +V?) Ar?
~ ST+ TV 4+ VIT 4 VIV + T + VT2 + TVT + V3) A7’

~VAr/2,-TAr ,—VAT/2

Now consider the expansion of e in powers of A7

Va2 e;TAT e~VAT/2 _ 4 —'(T +V)Ar + % (T2 +TV + VT + Vz) Ar?
—% (T3 + %TW + -Z—WT + gVTV + —2—T2V + gvzr? + (0)TVT + V_-") AT?
Obviously the two are not the same, BUT

e~ HAT _ e'—(T+V)A1- = ¢~ VAT/2g-ThrT~VAT/2

.+ terms of order AT% and higher

4



We calculate ¥(7) taking n time steps using the approximate Green’s

function.

(Rle~H-BDATIRY  (R|ePraTe=VAT/2g~TAT=VAT/YRY

In each time step we make an error of order A73.

3

T .
Total error = nAr = ) =0 limn—o0

verify that the error is negligible by doubling n

In fact we can use the more approximate Green’s function:
(Rle=E-EDAT|RY ~ (R|ePrAT (1 - évm) o TAr (1 - %.VA‘T) R)

which has an error of order A72. We then have an error of order n~1, and
need much larger values of n to obtain a desired accuracy.
For spin-isospin independent interactions V(R)AT is a real number, and
(RleETATe—VAT/Ze—TATe—VA':‘/2RI) — eETATe—V(R)AT/2<RIe-TAT|RI)8—V(R’)AT/2
_ B e—if(R)Ar/zao (R, R')e~V®)A7/2
The Green’s function of noninteracting particles is a simple gaussian:

mm)

—534

Go(R, R) = (RIe IR = [T eap |

When the interactions are spin-isospin independent functions of
interparticle distances the short time Green’s function is a

simple, real, posi‘tive function of R and R/



IV. IMPROVED FORM FOR THE SHORT TIME GREEN’S FUNCTION

It is possible to improve the accuracy of the Fe‘ynman Green’s function.
It has errors of order A73; for example it misses the TVT term.

Consider a configuration in which particles 1, 2 are close to each other, so
that v12 and V%g are large. In this éase most of the errdr' in the Feynman’s
approximation will come from terms having many powers of v1s and V3, such

as:
272 2 2
(v12)°Vis, VvV,
We can calculate the two-particle Green'’s function:
! - —H,“AT !
9ij(rij, ri;) = (rijle™ " Iri;)
H “v2 +
P — “ Vis
ij Vi T Vi

very accurately. The Green’s function:

. P ’
Ga(R, R') = Go(R, R’ [ g"’(r”’r‘f)]
(R, ) = Go(R, R z‘l;Ij 90,45 (Tij, Ti5)

_ is more accurate. It has errors from terms like v;;T'w;x which are large only
when three particles are close. Bottomline : we can take bigger Ar,
smaller n with this Gs.

Since V (ijk) is smaller than v(:j) we can use

G(R, R!) - eETATé—%(R)AT/2G2(R, RI)e—Va(R')AT/2

V3(R) = ZkV'(z'jk)' in configuration R
i<j< |



V. MIXED ESTIMA'I‘ES

(O)M' g = (Qvl()I\II(T))
Ay [e(n) -
_ [dP,y(R,)'OG(Ry, Rp_1)...G(Ra, Ro) Uy (Ro)
= 7P, ¥y (R,)IG(Ry, Ro1)...G(Ra, Ro) Uy (Ro)

_ {¥(n)|0[¥(r))
Qs = gy w )y |
= 2({0) iized — {O)v + terms of order (¥y — Ty )?
_ {Ty|O|Ty)
(O = (‘I’VITIIV)

Fort-unately

(¥ (/DE/2) _
WrRED) o0

E(r)> Ey and =Ey lim 17— oo

(H) Miged =

Use Monte Carlo For [dP,

Sample Paths from a probability function : P(P)

let NP=xIrV(Rm)TOG(Rn,R,,_l)...G(Rl,RO)WV(RO)/P(P)E ‘\:;?w
Dp = Ty (Rn)/G(Rn, Ru-1)-.G(Ra, Ro) ¥y (Ro)/ P(P) B

>} Vp
O) ppipey = BT

| {P} is the ensemble of sampled paths
We wwunk choone P(P) con.n.u H«I .

7



Sampli'ng Paths in Simple Systems with v(r;;) : Kalos’s Method
U(R) and G(R,R’) are real scalar functions

1(Ro) [y (Ro)|

P(P) = | T] I(R)G(RsRis) I(qu,_l)

I(R) = |¥y(R)| Importance function

All the I(R;) except the last I (Rp) cancel

P(P) = | ¥y (Ry)|G(Rn, Ra—1)-.-G(R1, Ro) [Ty (Ro)|

¥y (Ra) Ty (Ro)
[Ty (Rn)|| Ty (Ro)|

Dp =
= 1 When ¥y (R,) and ¥y (Ryp) have same sign

= —1 When ¥y(R,) and Yy (Ry) have opposite signs

In a similar way

Np = Ty (Ra)O(Ra) Ty (Ro)
[Ty (Ra)[[¥v(Ro)

In the special case O = H and ¥y (R,)H(R,) ~ EUy(R,)

Np ~ Ey When Uy(R,) and ¥y (Rg) have same sign

~ —Ey When ¥y(R,) and Uy (Ry) have opposite signs

THE FERMION SIGN PROBLEM

Both (p) Np and S(py Dp — 0 as T — 00

We will deol with U doken
- 8 |



WEIGHTS

= Importance sampled Green's function
= GO(R‘i: R’i—-l) 'UJ(R,“ R’i—l)‘

N (0:9) gmn
w(R'H B4--1) - I(R/l,—l) m].;.[n g{),mﬂ,.”

Where ... represent contributions of three-body interactions to G(R;,R;_1).

The simplest way to sampie thé paths uses the probability
G for 7 '
A .
V1N P(P) = Go(Ri, Ra-1).-Gol R, Ro)| Ty (Ro)
OIUNING - :

For this probability _ft_mctioh we have:

Dy = Uy (R) G(Roy Ron_1)...G (R, Ro) ¥y (Ro)/P'(P)

= w(Rn, Rut)..w(Ry, Ro) X sign[Ty (Rn)L(Ro)]

and similarly

Ty (R)
= O(Rp)w(Ry, Rn-1)..w(R1, Ro) x sign[Ty(Rn)¥(Ro)]

Np = (W) w(Ray R 1).-w(Ra, Ro) X sign[Ty(Rn)E(Ro)

ey Ve
(P} Dp

(O) Mized —
In Quantum Monte Carlo R; are called walkers on step i

The number of walkers = number of paths in the ensemble = Np

w(Ry, Ri-1)...w(R1, Rg) = Weight of walker at step i



Implementation of the “simple” method
Principle : Sample Ry, R;,...R, sequentially

1. Get Np configurations (walkers) Rg(I = 1, Np) by sampling [Ty (R)|?
by Metropolis method. “ |
2. Assign weight Wy(I) = 1 to each walker
- Wolken ’ - _
3. For eachlI , sample Go(R, Ro(I)) to get the Ry(I). The 1st step.
The Go(R, R) is a gaussian, and there are many a.nalytic‘methods to sample

gaussians,
4. Set weights : Wi(I) = w(Ry(I), Ro(1))Wo(I)
5. For each I, sample Go(R, R1(I)) to get the R,(I). The 2ed step.
6. Set weights : Wa(J) = w(Reo(I), Ra (1)W1 (1)
7. Repeat steps 5-6 to take n steps

(O) Mised = Sr ORA(I))Wr(I) x sign(l)
SIWo(l) x sign(])

“Simple”, BUT it does not work
All W,(I) +0asn— o0
This happens even in Bose systems

Independent of the Fermion sign(l) = sign[Tv (R, (1)) ¥y (Ro(1))]
Whek & wnong L

10



WHY ? The paths leave the nucleus and go in space where
Uy (Ra(T)) ~ 0

The Gy(R,R’) does not know where the nucleus is 1!

At each step

T(R)G (R Rict) 75— = 9 (R R Rict
The Kalos P(P)

P(P) = |¥y(R.)|G(Ra, Ru-1)...G(Ry, Ro) [Ty (Ro)|

Knows where the nucleus is

We want walkers distributed with P(P) NOT with F'(P)

11



BRANCHING AND GROWTH -

At each step i we have walkers R;(J) distributed with P'(P) and the
weighted walkers are distributed with the desired P(P).

'Branching is used to produce walkers distributed with P(P) by redefin-
ing the ensemble {R,,(I )} of the walkers

In the new ensemble the number of walkers with R = R;(J) is

= Integer part of W;(I)
+ 1 with probability [W;(I) — Integer part of W;(I)]
Example 1. W;(J) = 1.3 Number of walkers = 1+1 with probability 0.3

Example 2. Wi(I) = 0.8 Number of walkers = 1 with probability 0.8

The new walkers have unit weight, and are distributed with P(P)
Walkers do not leave the nucleus and calculation becomes possible
The number of walkers is NOT constant |

The G(R,R/) has a factor e®r47. It controls the magnitude of G(R,R’),
and is also a factor in w(R, R/).
When By > Ej the weights are large and the walker population grows.

An Ep < Ey will reduce the population.

The Growth Estimate of E; is obtained by tuning Er such that

the popuiation stays stable.

12



Gradient Correction : One more trick for efficient sampling

Nucieh . ~ Vex
R+ ‘_ R".-\ R.

The Go(R, R;—1) is spherically symmetric gaussian in 3A dimensions cen-

tered at R;_;. We can go to
R. =R,;_1_+AR or R_=B,,-__.1—AR

with equal proba.bility when sampling Go(R, Ri_1).
Suppose we have a large number,2M walkers with unit weight at R;_;
and we let them go to Ry. We will have M walkers at R+

Their weights are:
W+ = 'IIJ(R+, R.i..]_) and W_ = 'LU(R_, qu:_.l)

After branching we will have MW, walkers at Ry and MW_ at R_

- We can réproduce this result by moving each walker to

R+wz'th' probability = .I/ij_tw___  weight = &;ﬂ:
R_with probability = ,.. W.,.W - ,wezght M

This is better because we have walkers with similar weights.

Less load on branching

13



V1. ISSUES IN GFMC CALCULATIONS OF NUCLEI

The Short Time Pfobagatof
' The Green's Function : Gup(R,R)) = (R,ale”#-ATR! B)

is a Maa: X Max Matrix function of R and R/, \X?, \3) Ane b\m‘ﬂ"so’)\?l*\
Stoken .

we will suppress a, 8 'subscripts for brevity

. G(R, Rr) - CEOATG[)(R,'R’)I;;(R) SH g@.’l(rﬁ’ zg) T (R’) :
| i<y gO,‘bJ(er’ 1.3)

W@ =[1-5 T v

i<j<k

9ij(tij, vi;) = The ewact 2 —body Green's function
90,i3(rij, ;) = The noninteracting 2 — body Green's function

Go(R,R') = The noninteracting many — body Green's function

The two particle Green’s functions g;;(r;;, rt;) are noncommuting matrix
g J 3 *ig :

operators. We have to symmetrize their product. As in VMC we write:

STI 9ij(Tis ¥ij) _ ~ 1) 9i5(Tij, Tij)

| i<j 90,ij (rzgy rzj) £ i<y gO,i.'i(rij7 réj)
I1(€) denotes the product of g;; in the order denoted by &
The sum over the order labels ¢ is done together with the path integrals -

by Monte Carlo sampling.

14 | | X



P(P) For Sampling Paths

In Simple Systems ¥(R) and G(R,R’) are real scalar functions and we

use the Kalos

)= | Enmv(m)lG(‘m,m—l)m

.fo%z(Ro)
In nuclei ¥(R) is a complex vector, G(R, R') is a complex matrix
Carlson’s P(P)
Vecion : ¥i(Ri) QFG(Rr;, R’i-l)‘I’i—l(Rd;.;j
1[0y (R, i(Ro)] = [9) (RE(R:)] + € T [Ty (Re) Uos(Rs)|

In the following we set ¢ = 0 for simplicity

N 1Ty (Ry), Ti(Ry)]
PO = LI T R, v R

ITWv(Ro), Tv(Ro)]

= I[\FV(Rn)a v, (R'n)]

NOTE : In the simple case:
Iy (R:), Wi(R)] ¥y (R)G (R, Ri—1) Vi (Riy)| -

IWy (Ri-1), ¥i-1(Ri1)] [Ty (Ri—1)¥i—1(Ri-1)|

= [Ty (Rs)|G (R, R'i-—l)l_m

Carlson’s P(P) = Kalos P(P).

15



Carlson’s P(P) = [} (Ry)[Mliz10 G(Rs, Ri)[ Ty (Ro)
It gives: .

O} (Rp) [[ie1n G(Ri, Rio1)] Uy (Ro)

Dr = Iy (R,), Ua(R,,)
_WRIGE) .
[T} (Rn) Ta(R,)
=41

i

: Has'-Fermion Sign Problem

In simple systems we have regions in which ¥y (R) is > 0 and < 0.  These
are sépera,ted by nodal surfaces on which ¥y (R) = 0. The requirement that
Uy (R') = ~Py(R) when R’ is obtained from R by interchanging the posi-
tions of two identical (two 1 p for example) particles implies the existance

of such regions and nodal surfaces.

The Dp = 1 when ¥y (R,,) and ¥y (Ry) have the same sign, and —1 when
they have opposite signs.

After many steps approximately half of the paths have Dp = 1 and the
other half have —1. The average value of the ) Dp — Of. The sté,tistical
sampling error however continues to decrease as 1 / v/N¢ and the relative error

increases.

16
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For A < 7 Fermion Sign is No Problem
The growth of Statistical Error is Tolerable
Constrained Path Calculations For A > 8

Principle : We can discard configurations for which ¥y(R;)1;(Ry) =0
¥y(R) is the exact ground state : we do not know it.

We approximate it with Ty (R).
Fixed Node Calculations in Simple Systems

<0 20

R‘\‘/ Rh
</ Reo
R

N veded manfece

Discard configuration R; when Ty(R;) = 0 or changes sign

™

between two moves

The calculated energy is > Ey in this case. 9¢ (» *we Emengy
A Pe lowank emergy dbe wibh woden o;,‘?v

17



In nuclei ¥y (R) is a vector and we do not calculate it
We sample the order of I] F;;
The Chosen Algorithm

Discard configurations with probability function £ (Re[ll};r; (Rp)TL(R,)]/1)
¢(z < 0) = 1 and £(z) — 1 rapidly as & becomes larger than 0
Constrain : Suscardea Re[¥h (Rn)¥n(R,)]/T =0

One obtains stable stat_isti‘cal errors,

BUT calculated energy‘i:a,n be above/below the Ey
A very useful trick

Release constraint and propagate.
If the constraint provided by ¥y is “good”
The E(r) remains the same or goes down a bit.

If not improve ¥y

18
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Energy (MeV)

SPECTRA OF LIGHT NUCLEI

0

L 1+ -

; Argonne v :
10E2H ~—12* B E
o H With Illinois-2  :
:mé g E . GFMC Calculations 1
j E— 4He 1+ X:‘"%E L’J+ 22 May 2003 -E
_4DE- ﬁLi o X—l*‘ 4+ _:
sof LT e L E
- ~ E : . ® =
: Be 9ge Lo i 5
10 10ge 10 E
-Eui_ AVIE ™ _-
: 1.2 Exp
-90 :- : I or -:
-100 120

AV18: Argonne vz with no NNN potential -
— significantly underpredicts experimental values
— error increases with increasing size of nucleus

[L2: Argonne vyg and Illinois-2 NNN potential
generally very good agreement with experiment

— note correct ground-state spin for B obtained

only with NNN potential
Many other nuclei and levels have been computed

¥ ey . .
L2C results are preliminary



IV. REALISTIC MODELS OF THREE-NUCLEON INTERACTION

Based on terms with theoretical spin - isospin and spatial dependence and

with strengths obtained from experiment

Illinois Vijp = g};’PW s Fujita — Miyazawa |

+ Vi?:’sw :2—pion S — wave
+ V3MAR .3 _pions and 1 or 2 delta

+ Vzﬁc : Phenomenological repulsion

- This V;; has FIVE parameters
strengths of the 4 terms + short range cut off

We fit energies of all the 17 bound / narrow states of A < 8 nuclei,
calculated accurately with the Green’s function Monte Carlo method, and
the density of nuclear matter, calculated with approximate

variational-chain summation calculations.

PROBLEM : We can detefmine at most three parameters from

this data

Need to calculate more obsemables



Table of parameters in Urbana-Argonne V;;; Models'
Parameters with * are not varied. They have “theoretically plausible values”

Short range cutoff = (1 — e‘”’z) . A’s are the strengths

Model ¢ ALV ASW  ASR Az
fm=? MeV | MeV =~ MeV MeV |

UIX  2.1* -0.0293 - - 0.00480 &— No¥ ok

JIL1 21% —0.0385 . 0.0° 0.0026* 0.00705* ©O¥%

L2 21* 0037 —10° 00026 000705 «— “bort"

L3 15 —0.07 —i.o*_ 0.0065 0032 ©¥

IL4 2.1*  —0.028* —-1.0* 0.0021 0.0039 O¥

The strengths are reasonable within a factor of ~ 2 |

'V, contribution is typically few % of V3 . Its strength AZ}" can not be

determined from nuclear binding energies . Compai'e IL1 and IL2

Nuclear matter calculations (in progress ) will eliminate IL2 or IL4
" IL3 uses xPT strengths ALY and A5V

Illinois V;;; models do not explain the A, in d-n Scattering
Kievsky : sz,f = [w(rij, Tjr Thi) 5 Lig * Sij)

can be added to Illinois Vj;i to fit both the energies and the n-d scattering.

Problem : Origin of Kievsky V% is unclear

7



Pion Exchange'Interactions Give Large Contributions

Contributions of two- and three-nucleon pion and reminder (v = vij — v)

potentials in MeV for Av18+IL2 Hamiltonian. u‘ f;

o7 | 'UR V27r ‘ V3'n' VR )
SH  —45.0(2) -13.5(2) —2.98(2)  0.182(3)  1.34(1)
‘He —105.4(4) —30.9(5) -16.3(1) 0.63(1) 7.26(7)
He —127.(1) —44.2) -20.3(4) —0.91(6) | 9.6(3)
6Li —150.(1) —38.(2) ~—19.8(4) —0.44(5) 9.1(2)
i —178.(2) —54.(3)'7‘ —25.6(6) —-1.1(1) 12.3(4)
SHe —153.(1) —66.(3) ~—25.6(6)  —4.0(2) 13.3(4)
SLi —211.(1) —67.(2) —34.2(5) ~3.8(1) 17.4(3)
8Be —234.(2) —69.(3) —38.5(9)  —0.9(2) 18.3(6)
n —10.11(9) —49.(1)  —0.07(5)  —5.4(3) 19(1)
& —12.0(1) -61.(1) 0.31(9) —5.9(4)' 2.6(2)

V3 is essential to reproduce the energy of ®He and SLi

- The dominant term of V37 is attractive in isospin T' = 3/2 triplets and zero
in isospin T = 1/2 triplets (s. e. in ®H and *He)
V2 is strong and attractive in isospin T' = 1/2 triplets

In stable nuclei V27 is the largest of all Vijr terms

BUT in neutron drops in external wells and in pure neutron matter the

V3" dominates.over V27 and v over v™

Bl > U] i weddaon
| ‘Anoph.
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SNM : Symmetric nuclear matter with N = Z = A/2 without Coulomb
PNM : Pure neutron matter with N' = A4

Ground State Energy Per Nucleon, B, =3 ( f‘}

ShalAe -Sto"3 ﬂu.ch)
E(F) . — F (

e

Basic Equations

Degeneracy : d=4 (SNM) and 2 (PNM)

6mip 1/3
Fermi momentum : .k;-:( - )
Pressure : P(p) = FEE"E':F’}
dp
2
(In)compressibility : K(p) = Paﬂ E{p 't

\p=p,
Equilibrium (P = 0) Values of SNM
po~0.16 fm™ E(m)~—16 MeV

K(pp) ~ 240 MeV



Variational Wave Functions for Nuclear Matter

Fermi Gas Product Wave Function : &p

. (I)p(x1,x2...xA) = 451(X1)¢2(x2)...¢A(XA)
X; = r,;',.cr,-, T of‘nucleon i

di(x) = gtker Xixi with |k;| < kg

The ¢;(x) are occupied single particle states. The number of ¢; equals the

number of nucleons A.

In the prddu‘ct wave function ®p nucleon i oCcupies state o

Sums over particles i = 1, A and states i = 1, A are equivalent
Antisymmetric Fermi Gas Wave Function : &4 =&

B(X) = @4(X) = A2p(X)

X = X1,Xq,...X4

For ény symmetric operator @ such .as H

(24|0|24) _ (24]0|2p)
(®al®a)  (Dal®P)

We need to antisymmetrize only one side of the expectation value

Correlated ¥y =S8 [] F;®4(X)

i< :



- The Energy Expectation Value
To begin with omit V(ijk) and use the simpler
1, y
H= > -=Vit+ > o(ij)=T+v;
i=1,4 2T Li<j<A |
The variational energy is given by:

AEy = (@4|STTF(T; + vi)STTF|®p)
(@4STIF STF|®p)
_ JdR®(X)S T F(T; + vi)S 1 F&p(X)
~ JdROL(X)STIF. ST F®p(X)

Now both ®p and ® 4 are eigenstates of T; with eigenvalue:

3
Erg = 10m'kF per nucleon

It is then convenient to write:

1 /dROL(X)STF(T! + vyy)STTFPp(X)
A [dROY(X)STIF STF@p(X)

By = Epg +
Where T7 does not act on ®p. Ey is energy per particle.
The Cluster Expansion

~ The pair correlation operator Fi; has a finite range beyond which it is 1.

Most of the pairs in uniform miclea.r matter are outside the range of cor-
relations and have F;; = 1.

Cluster Exparsions are obtained by replacing F;; = 1+ (F;; — 1) in the

 expectation values.



Expand in powers of (F;; — 1)

1 dR®(X)S TI[L + (Fis — DI(TY + vig) STI[L + (Fis — 1)]@p(X)
A [dROL(X)STIL + (Fy — 1)] SH[I + ( i — 1)]@p(X)

Ey = Epg + —

Rules of the expansion

1. Do not approximate the Fp,, By 1 in the expectation value of vmn. The
range of vy, is often shorter than that of Fip,.

2. For the same reason do not replace JFy,, in \I!J{, by 1 in the terms
containing V2 Fp, and VpFmn + Vi in the expectation value of T

| 3. For the same reason do not approximate F;; by 1 only on one side of
H , (Iy or ¥,). Either in both or none.

4. The antisymmetric ® 4 has A! terms. Of these the one in which nucleons
1,2,...A are in single parltic?le states ¢1, ¢2,...94, as in Pp, givés the direct
contributions. The rest give exchange contributions. |

5. Terms in which uncorrelated nucleons are exchanged give zero contri-
bution since the single particle states ¢; are orthogonal.

6. Normalization of the ¢;, (Q is the normalization volume)
¢i(x) = \/— e NxIxT

{dilos) = 6;
A= pQ

7. The sum over nucleons or single particle states is given by

o= 2 )

i=L,4  ki<kr xf=td xi=pn



Division of Cluster Contributions

The vy = E t'p[rij}ﬂﬁi Fij = E F{rli ij
=114

1. Static contributions contain only the static parts (Of} 1%} of v;; and
Fi;j. These are large and calculated most accurately.

2. Spin-Orbit contributions contain one or more spin-orbit operators
from either v;; or F;;. Most difficult to calculate due to gradient operators
in spin-orbit correlations.

3. Quadratic contributions contain gquadratic 'u‘” and static fi'}‘"?
Note: contributions from quadratic » and spin-orbit f are included in the

spin-orbit contributions. MNele: Neo qua dnake comelalamd e
1:!,,. {..U.""" FU'-E"} " hrenallh lt?-‘t-ﬂl"‘-'t""-]'ﬂ cho™
[tr* — 2b — dir] : Tw:l-l:nm:n-n:l:,-r direct cluster contribution to the static

potential energy

The denominator is approximated by 1, and in the numerator we keep only
the F}; all other F are approximated by 1. This gives:

11
[v* — 2b — dir] = AT Y [ dridrsem kerkmy Ty Ty

E fp{ru}vq{rﬁ}f (I"ij} u :j) fl{k r|+kJ-r_,] ffx;

|‘?1F_ |

Al
= d wt, ot
32 ﬂ ﬁﬁﬁx?ﬁ{}f I-“-il xl x'l- x] x.]'

5 f”{m}v‘*(rq}f’(r.ﬂﬂi’}ﬂiﬂ-ﬂ&) XX

Agor=1,G



Operator Algebra

The static operators Og';-:l"‘ have a closed algebra for multiplication:

P __ r A"
. r=1,

where KP?" are real numbers. For example:
Sij0i 05 = Sy
| g; * 0 crz--&j=3-—20,--aj
'SijSij =6+20;-0; — 2.5',-3-
Using this algebra we can express any product of Op =" operators as a sum

of these operators:

The v, associated with the unit operator has special significance. It is called
the C’-paft of the product of operators. For example:.
C[Sijoi - 0] =0
Clo; - o; a,-. c0j] =3
C[S:3S4] =6
The sum

Z Xi 7t XzT Xj T 01.3 Xe Xz XJ XJ =16 6131
X§aX7F X5 X5
Note that there are 16 two-nucleon spin-isospin states x{, X7, X7, xj, and we
can consider the above sum as the trace of the 16x 16 matrix representing

the operator O%; in the basis of these 16 states.

7



Only the C[O};0f;04] contmbutes to the [v® — Zb dir]. We obtam

[v* — 2b — dir] = P > C Op Oq Or fdrzg Blrig)v ¥ (res) £ (rig)

pgr=1,6

[v° — 2b — ex] : Two-body exchange cluster contribution to the

static potential .energy

| 11 o
[v® —2b — ex] = ~I02 ;fdrzdr e~k r,+k r) T(g) ( )ng( )XJ (3)
‘ 1<]
(| 2, P M) OFOLOy ) it
W= 1, ‘ :

Here x7 () means that nucleon j is in the spin state x7.

The spin-isospin exchange operator ¢;;

It is more convenient to have Xfo:ijTx;T = 71 (&) X7 (4 )XJT( )G f(5) than

| xﬂ( NG X5 (z)x T(3) in 2-body cluster contrbutions. We can then take
the trace of the product of operators, which is just 16 x their C-part. The

operators for spin and isospin exchange are respectively:

1
1""“0@ 0-_7) Gnd R;:—l-l-q'z.frj)

s 1
P 2(

= 5

The spin-isospin exchange operator:

o 1

1+Gi 'O'j)(1-|-7'z' 'Tj)
We can vai*ify_ that:

X G DG ) = XX e



The Slater Function {(kpr)
The exchange contributions contain:

> ket = Z(kpr)
k;<kp d

U(z) = 3[sin(z) — z cos(z)]/z® z = kpr
The Slater function is normalized such that £(z = 0) = 1

Using the exchange operator and the Slater function, we obtain

[ — 2 —ex] = -2 ¥ Cle050505] [ drfther) fp(r,,) Ui F(r)

2 par=16
= __fdrﬂz kFr)C’[e”FSvs .7-'3]

Two-body Kinetic Energy Contribution

These are divided in to two parﬁs. The first denoted by T%¥ contains (VZ +
V2)F§;, and the second denoted by T3 has terms with (V;F;) - (V;®). The
V2® terms give the Fermi-gas kinetic energy Epg, and are not included.in

the cluster expansion. We obtain:

[T3—2b dzr]—-—— [ arCLFy(—VEF)
[T}~ 2b—ez] = —— [ drt(kpr)Cles Fi(—VEFS)]

In most cases it is convenient to combine the 77 and v° because the

Schrodinger like equations for F imply a cancellation between them.



The [T5 — 2b — ez]

1611 _
2 — B = A 020 Ap .otk ritk; T}
[T5 — 2b — ex] A szki,k,;kp f dr;dr;e
- % Cle; FiiViFij) - (iki)eﬂ'(krrﬁk,--r,-)

== % /drijﬁ'(mj)ﬂl('r,;j) X C[ewﬂjvaﬁj] . f'ij
Here #'(r) = 84(r)/0r anci i is a-unit vector. Note :

Z e—z’k,--r_.; (iki)eiki-ri — _g:g’ ('r”)f'gg

ki<krp
The [T} — 2b — dir] = 0
The total 2-body static contribution is giveri by:

[2b — 5] = [v° — 2b — dir] + [v° — 2b — ex]

+ [T¥ — 2b — dir] + [T — 2b — ex] + [T — 2b — ez

In a similar way we calculate the {2b — qj contribution containing interac-
‘tions dependent on p? or L? and static correlations. The [2b — g] does not
have any kinetic energy terms.

The last 2-body contribution is [26—Is]. It containes potential an& kinetic
energy terms with either vjj or f}f or both.

All the 2-body contributions have been calculated exact-ly. The [2b—total]
containing all the 2-body contributions is the largest term (by magnitude)

in the cluster expension of the energy of SNM.

10



The Three-body Cluster Contribution: [v* — 3b — dir]

We consider [v* — 3b — dir] as an example of three-body cluster contribu-
tions.

The 3-body cnrrel&.t;_c'm operator is denoted by:

Mijk = S[Fij FjeFl 3
— ;,r:”_l 5[1-1. I’f’mﬁﬂ Moat & emen
By expanding the numerator of the (H) we get the 3-body term:

[v* — 3b— N] = MijviMije — Fijui;Fij
The above result is obtained by replacing;:
FirFri = [1+ (Fji — D)1 + (Fii — 1)]

in both ¥ and ¥, and expanding 'If*trfjﬂr in powers of (F — 1). The 0 th
order term: Fjuf;F;; gives the [v* — 2b], and all the three body terms are
contained in [v* — 3b — N
In addition we have 3-body terms from the expansion of the denominator:
D= [dROY(X)STI[1 + (Fy — 1)) STI[ + (Fj — 1)]@p(X)
= [ dRa!(X) (1 + %{F: 1)+ ) $p(X)

They contain

[v* — 36— D] = Fiyvly Fs(Fjie — Fic = 2)

where Fijvi;Fij comes from the numerator.

11



The: [v* — 3b — dir]

Including [v* — 3b — N] and [v® — 3b — D] we obtain:

. [ _
[ v° — 3b—dir] =~ dr;dr;dry,
A k,(i<5) '[ J

X X7 XX e (MM — Figofi Fag(Fir + Ty — 1)) XXX XGXEXG
2 : |
1 |
= %--&'5 /dr,,;jdr,;k Tr (M'ZJ%M - ﬁjvfjﬂj(fﬁc + fgt - 1))
In the exact calculation of [v® —3b—dir] in SNM (PNM) there are d° = 64 (8)
3-body spin-isospin states. We consider the vj; and the F as d® x d® matrix
functions of R and calculate the trace as in quantum Monte Carlo method.

The other 3-body contributions can be calculated in a similar way. For

example:

o .
1
[v° — 3b—e;] = %ﬁ fdrijdl‘ik ﬂ?j .

X Tr (e Mul M — e Fijol Fig(F2, + Fi — 1))

The static, potential and kinetic and quadratic potential contributions
have been calculated in this way by Morales, Pandharipande and Ravenhall
(Phys. Rev. C 66, 054308 (2002)). The >3-body spin-orbit contributions are
more difficult to calculate. They contain new terms in which the gradients in

- (L - S) operate on F;; and Fi. Only selected terms are sumed to estimate

the [3b — 3] contribution.

12



FHNC-SOC Chain Summation Method
Fermi Hypernetted Chain and Single Operator Chain

Sum all FHNC diagrams With-central links: only irreducible exist
Sum all dié.gra,ms with rings of siﬁgle opefa.tor links: irreducible and those

that can be seperated in to two or more rings.
Single operator chains with open ends give zero contribution

Sum multiple operator diagrams to the extent that they can be treated as

single operator rings.
' The FENC-SOC sum gives

1. Two-body contribution exactly
Exact 3-body for central links

Approximate 3-body with operator links

> W W

Approximate contributions of all > 4-body clusters.
5. The approximations can be good in many cases. |
6. It is always better to use FHNC-SOC than to neglect many-body cluster

contributions.

15



Angovne Upg + Ualbromna K V;i‘u.

TABLE II, Cluster contributions calculated with CSM: SNM at
p=pg, ®=080 4. =180 fm, and d,=4.80 fm, T,=22.1 MeV,

and ES°Y=—8.0 MeV,

n 2 k) 4 "5 =5 Total
vl -667 111 —69 34 —-11 =802
i 203 -20 24 —1.1 0.4 20.0
v 4.5 35 0.2 0.0 0.0 8.1
V;n 1.9 1.0 0.3 -0l .1
u£+Tb -1.8 —-01 =01 0 0 - 2.0
144 —34 26 —-08 =310

g —u3F |

HC'-E;:I' '|||:| ,‘a

TABLE MI. Cluster contributions calculated with CSM: SHM at
o=1.35p;, e=0289, :ir= 1.50 fm, and d,=3.99 fm; Tp=29.0 and
ECTM=—33 MeV.

n 2 3 4 5. i35 iy
vl =97 409 . —63 2§ 05 —855
T, 27 —B5. 25 -88 02 30.1
v, 99 EEC 05 A1 -0l 144
Vi 47 - 27 08 -03 75
vi+T, =-27 =03 =01 0 0 ~3.1
Erle. | —SED- ERR -l 2% Sl =333
-~
Exoch: - \ E:‘]I-':f-

TABLE I Cluster contributions calculated with CSM: SNM at
p=0.5p5, a=0.60, d,=2.23 fm and d,=8.93 fm; T,=13.9 Me¥

and £C°M= =71 MeV.

n 2 3 4 5 =5 Total

v —-365 74 —-49 26 =09 323
T 100 -16 14 -07 0l 9.2
vl 1.2 08 00 " 05 00 1.9
Vi 06 0.1 01 00 0.7
vi+T, -06 0 0 0 0 —0.6
et 1 W 5 R g | R W R

-259 |

5.0



TABLE X. The 3-body cluster contribution from F* correlations
calculated exactly and with CSM for SNM in MeV.

0.5p; Po L.5pg
Exact CSM Exact CSM Exact CSM

T —-1.8 =16 =25 .-20 -k =@5
Ui, 5.7 7.4 o1 A ¥ 1% 104 109
vl 0.9 0.8 3.2 3.5 6.3 8.0
Vs 1.7 156 (AR S0 SR 138
e =1E =10 =54 =41 =103 =856
Total 3b 5.0 2 NG s 1901~ 23

Monalen J ?mdkmk»md#. : Ravemhall
P Rewm CE6, 054308 (2002)
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2002 Urbana Calculations (Variational) of Symmetric Nuclear
Matter with Argonne v;; and Urbana Vi, E(p) in MeV /A,

Density [fm™?] 0.08 0.16 024
1-b Trg 139 221 291 Exact
2-b all —25.9 —43.7 —56.2 .
3-b static 49 109 191 ¥
3b(L:-S)+>4ball =22 =17 408 Approx.
(Ep — BEy) Pert. —06 -18 -3.3 7

We haure g
\S%

_ s um:lt-".":ﬁﬂd‘?“ﬁ
E(P-f) of RPone neukrnow waaM-en £

Calculated Ep(p) —99 —14.2 —10.6 Tmmﬂr
Empirical By(p) —12.1 —16.0 —12.9 i

m ! I I I L]
S P'lii‘_:-r. EJ‘L-I:-L.:_!-W-. -
w0 [~ PRU 85, 529F (200D)
|« FP(1agy)
- L=\ ]
e o L O AVerV ¥+ &V
2
Eﬂ l—
10 =
i 1 | i | i
0.0 0.1 0.2 03 ™
neutron density "ﬁ:l».f o)\ &d- i "
FIG., 2.r The neutron EOS for |IE ﬁ:gme}m:ar sets. The ©73 "
filled circles are the Friedman-Pan aripande (FP) variational do¥r

calculations and the crosses are SkX. The neutron density is in | edurd’

units of neutron/fm?,
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Illustration of the periodic box in two dimensions.
The solid dots give positions of particles in the
simulation square, while the circles show positions
of assumed image particles filling the entire plane.
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Renudls of PB (NZ1W) : Uy ' (No LS) MeV
Dermlby (§v2?) 0.04 0.08 0.\¢ 0.24%

GFMC = Covnt. 632 l0.-6% 19.80 31.90-<'%
GFMC - Uncowrt, £.35  10.8%  14.9) 3215 4 Viflee
vcs 6 g Qw2 938

Rauwb of PB (N=we): vg™ (avy )

GFMC- covak 643 10,02 1854 30.04
GFMC- Uneon. 632 9.90 1300 28.35

ves T0 10:3 1%y 263 j
Pnnb.le;rm: 25 conranbukonws do 2 3 b cluweny
OR mn covntneimn T

Barxk Eakwoken S) E(F) wii Fwa'

GFMC = Uneon 63 9.9 \}o 2W-&

AE (Box) -0.2 -O:% -0.6 -0.%
(@AWY -0.-l =08 -%.5 -10.%
E(f 60 8% \2.\ 4.9
E(f)
. : 0.3% 0.
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Probetien éﬁ, Newnrer Stenn

Energy of Low Density Neutron Matter

The nn scattering length a ~ —18 fm

Low density means |kpa| < 1 or p < 4 x 107"
At densities of interest |kpa| >> 1

Dilute (range of interaction < rg) superfluid Fermi Gases with |kpa| >> 1
have (Hee Pl Rew. Lex-. A1, 0504l (2003))

3 k3 1
—35/=0 -MﬁE + terms of order o

ki

Flp= —=
(o 3

Nonrelativistic (Skyrme) and relativistic mean field EOS have

E{p= ;i} 131} i + terms of order k% or p.
A

L%ﬂliﬂcj ‘ermn O E‘:ﬂ b‘f = ‘(“":h“- 22

Rerulbe 6], Newbnion Malter Caleudabion
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13 ke
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Asymwmetnic Nucleon Makten
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Correlated Basis Theory: Feenberg, et.al.(1969)

Many approaches.
Present approach: Fantoni and Pandharipande (1988)

The correlated state: 1 X)=(S igj Fi)|®x),
where |® ) are uncorrelated Fermi gas (or Shell model) states and Fj; are
pair correlation operators.

The | X) are not orthonormal.
The FP arthonormalization: (|X) are orthonormal)

| X} == |X) such that (diagonal matrix elements are preserved)

XIH1) = G
= (Ox|s—EVI+ £ o)+ 5 VEHiK)+ - |ox)
and |
(Y| £ Onareli)| X) = (@v| T 017 6) + z O\ (ig) +- -+ |@yx) .

Past Applications: including 2nd order v57 (neglect V5°
e Real and imaginary parts of optical potential (Fantoni, et.al. {1983))

e Response of nucleon matter to electromagnetic probes (Fabrocini,
et.al. (1989))

e Weak interochow) we yaacleon praken (2002)



Results C‘;MMH £ Weale Mmterackions

Including All 2-body Direct+Exchange lTerms

_ (@F|Oesf|1®1)° |
1= [@FlOparefor) 1ATES CUITERS

p=0.16fm”
— %,=05 (p,=p,)
0.851- — X, = 0.4
- Fermi L
i o il xp—ﬂ.g X
i —x,=02 (p,=4p,)
o ] L | 1 | ]
i 0.5 1 1.5 25 3
0.0
0.5
5
0.8 Gamow-Teller
0.7% - | N | : | 2 L . i : i
0 035 1 1.5 : 2 15 3
q(fm )

General Properties:
e Relatively independent of proton fraction: z,,.
e g-dependence introduced through 1+2nd order : j terms.

e n depends upon the initial and final nucleon momenta by < 3%
through the exchange contributions.

e 1 also depends slightly upon total density of system: p.



Correlated Basis Effective Interaction

1
(X|HIX) = (x| = 5= VE+ T ofjplis) -« |@x)
T 4 i<y

In two-body cluster approximation:
ﬂEf_f[*.?:' = 55}5'[13} 2 ’”e_f_f 7(ij) -

; |
vgit (i5) = Fijlvij — ;‘?2] Fi;

”ﬁ?(iﬂ = —7—?1" ? Fu% )Fij + Fij( %‘.Fﬂ 6')‘]

Several studies of weal interactions in nuclei and nucleon matter use
Landan-Migdal effective interactions derived -from spin and isospin sus-
ceptibilities of nucleon matter.

We therefore study the susceptibilities of symmetric nuclear matter which
are proportional to E; ! _ defined as:

TFiFT

E(p,z,y,2) = Eolp) + Eclp)e* + Eo(p)y” + Ear(p)?" ,
2 = (put + Pni — Pt — Ppi)/p : T polarization
y = (pnt — Pul + Ppt — Ppi)/p : o polarization
z = (pnt — Pny — Pot + pp1)/p : o7 polarization

and that of pure neutron matter proportional to E;" defined as:

E(px=1y,z=y) = B (p)+ EF"(0)y* .



Susceptibilities

Dashed lines : v57} Solid lines: vS3°

Results using SNM F}; for p = 0.08, 0.16, and 0.24 fm ™.

e Contribution of momentum dependent terms is small.

o E,, E;r and EI'** are insensitive to the density dependence of the
effective interaction via Fj;.

e Two-body Uf? gives a fair approximation to symmetry energy, £-.

o F}; for SNM (p, = p,) reproduce EX'YM of pure neutron matter

e The above four simplifications are possible because Fermi-gas and v/}
contributions to E,, E. and E.. ADD,



Eo(p): Total Energy

Dashed lines : v‘:ﬁ Solid lines: ugﬁs

&

Results using SNM F; for p = 0.08,0.16, and 0.24 fm~.

e
¥ EDM{MEP 2002) "
% E, (MRP 2002) J—
20 FHuaC -SoC
-
= 0F
20k
| 1 | | |
40“ .05 0.1 15 0.2 0.25

o At low densities, the two-body v(/} gives a fair approximation to the
Ey(p) of PNM and SNM.

o Minimum of SNM FEy(p) at pp = 0.16 fm™ is not obtained at the
two-body level. Three-body interactions and cluster contributions are
repulsive and essential to obtain this minimum.

e These complications are because Fermi-gas and v5 contributions to
Eo(p) CANCEL.

Need VEB & more,
LJK
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5. Fantoni et al, | Correlated basis theary
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TDA Calculations : RPA 2?- (in P ‘“W)

Calculate the response of an infinite system utilizing the
effective weak operators, Oy :

R(w,q) = D {®F|Oess|®r)* 6(wr — wr — w)

Nate: Wy = (SIIF)| ;)
W) = (STIF)|Pp)

Effects of correlations are in v.sy and O, ¢y

Obtain final state wave functions, ¢, using Tamm-Dancoff Approxima-
tion (TDA) using Hartree-Fock |®;).

Current TDA Calculation

L1

¢y obtained by diagonalization of the effective Hamiltonian matrix caleu-
lated between (> 1000) particle-hole states of total momentum .

Infinite system is approximated as a Fermi Gas contained in a periodie

||| 1%

Single particle states, ¢; = eikiTi Xorli) where E, = ELI fi;. Increase box

size, L, to increase the size of p-h Hamiltonian matrix.

B> = TXRIB=Redy (heke, B2Ke)

ets <® =
Diogovnakize Hyg + Vg, +o ger «Ap
)
Hownraee - Foclk HT: w aao calendaled

B
G'M'ﬁn.. 'UTE{.;.



TDA Response Functions - Gamow-Teller

: £ -1
wRE
| — HE =g, 0+2)+3ky/04~
— TDA (direct) 05
a3 = TDA (d+e & Ghm] 76 E.:!E :ifum
— TDA (d+¢ & O_) :
= f
g Pl 3 coherent states
mE L @ 27.6- 0,052
- T, @ 28.0 - 0.059
T, @ 28.1 - 0.062
0kl =
Du 3 1] l:i i :!11] : I i _3:}
w (MeV)
s~ FG (inf)
" — FG (box) .
0ps- — HF /"ﬁ‘}\k
— TDA (direct) 4,4
il —-mh{dﬁﬂtﬂm:l .
TDA (d+e & Dm,j

Veps exchange matrix elements have small effect
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GFMC Strudien o} Fermi Supenfluids
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