DF

D. Frekers University Münster

FACETS OF (d,²He) CHARGE-EXCHANGE REACTIONS: From nucleon-nucleon physics to the mysteries of supernova explosions and the double-beta decay

astrophysics ! double-beta decay NN-studies

halo nuclei

stretched states

Nucleosynthesis

Question: When did it start ??

what elements were produced and can we understand the isotopic composition ??

do parameters of the Early Universe have an influence ??

1945: G. Gamow's hypothesis "all of todays elements were made during the early BIG BANG phase of the Universe"

Nucleosynthesis

wrong for 3 simple reasons!!! Binding energy of deuteron (2.22 MeV) is too small !! Binding energy of ⁴He is too large (28.3MeV) !! There are no stable isotopes with A=5 and A=8 !! deuterons are being dissociated until the Universe has cooled down to 80 keV !!! $N_{\gamma} \sim 10^{10} N_{N}$ for further fusion the train has long left the station!! **Universe composition:** ~76% H and ~23% ⁴He

Elements are made in stars but stars have to be big

and they have to explode

Supernovae Cassiopeia A Chandra

Nuclear processes and energy houshold of supernovae

initial condition: $M > 10 M_{\odot}$

energy: fusion 4p ->⁴He +7MeV

at: T ~ 10⁷ - 10⁸ K

lifetime: $10^{6} - 10^{7} y$

after
$$10^{6} - 10^{7}$$
 y

$$4p - 4He - 12c - 2 + 10^{8}$$
 K)

$$4He - 12c -$$

THEN

600y ¹²C burning (¹²C + ¹²C → ²⁰Ne + α +4 MeV) T = 10⁹ K

1y 20 Ne burning (many paths) T = 2 x 10⁹ K (ashes mainly 16 O)

0.5 y ¹⁶O burning (ashes mainly ²⁸Si (Fe)) $T = 2-3 \times 10^9 K$

~1 day ²⁸Si burning (ashes mainly Fe) $T = 4 \times 10^9 \text{ K}$ $\rho = 2 \times 10^7 \text{ g/cm}^3$

then core collapse (~ sec) $T = 10^{11}$ K core bounce & explosion (~msec) $\rho = 10^{14}$ g/cm³ nucleosynthesis (0.1 - 10 sec) entering physics at

end of stellar evolution $\,M_{star}$ ~ 15 M_{\odot}

SN-explosion scenario (cont.)

neutrino trapping and Ye freeze-out

R_{core} ~ 30km λ mfp(v) ~ 0.4km core decouples (Ye freezes out --- but what is its value?) $e^+ e^+ \longrightarrow Ve, \mu, \tau + \overline{Ve}, \mu, \tau$ (all 3 types) conversion of gravitational energy into neutrinos imploding core reaches nuclear matter density $(\rho \sim 10^{15} \text{g/cm}^3)$ and rebounds rebounding shock wave meets infalling material

rapid nucleosynthesis
 explosion into interstellar space

optical/kinetic energy 10⁵¹ erg neutrino energy 10⁵³ erg (10⁵⁷ - 10⁵⁸ neutrinos!!)

Elements are made in EXPLODING STARS (SUPERNOVAE)

but

we cannot generate a convincing explosion in computer simulations

are there missing physics pieces

The experimental setup

at AGOR facility, KVI Groningen

GT+ transitions from nuclei of pf-shell: relevance for astrophysics

H.A. Bethe et al. (1979): Electron-Capture (EC) from nuclei in pf-shell plays pivotal role in the deleptonization of a massive star prior to core-collapse.

Fuller, Fowler & Newman (FFN) (1982-1985),
M. Aufderheide (1994):
systematic estimates of EC-rates FFN
in stellar environments

-> calculations of GT-centroids only

Langanke, Martinez-Pinedo, Caurier (1999): B(GT⁺)-distributions from modern shell-model calculations some marked deviations from FFN-rates -> Ye increases to about 0,445 (FFN: ~ 0,430)

most dramatic cases are odd-odd nuclei ⁶⁰Co, ⁵⁸Mn

no exp. data on odd-odd nuclei ($^{50}
m V$ is the only stable one)

no exp. data on odd-odd nuclei ($^{50}
m V$ is the only stable one)

odd-A odd-p nuclei

B(GT+) from a proton-odd pf-shell nucleus: ⁵¹V(d,²He)⁵¹Ti

- ⁵¹V g.s. ($J^p=7/2^-$, T=5/2) $\rightarrow 5^1$ Ti ($J^p=5/2^-,7/2^-,9/2^-$, T=7/2) - independent single particle model: $E_x(GTR)=3.83$ MeV (FFN)

C. Bäumer et al., Phys. Rev. C 68 (2003) 031303(R)

51V(d,²He): Angular distributions of $d\sigma/d\Omega$

⁵¹V(d,²He): Comparison with shell-model calculation

odd-A odd-n nuclei

⁶⁷Zn(d,²He)⁶⁷Cu: GT⁺ distribution

no shell-model calculations yet

even-even nuclei

56Fe(d,²He): Comparison with shell-model calculations

odd-odd nuclei

GT⁺ transitions from odd-odd nucleus ⁵⁰V(d,²He)

GT+ centroid comparison

		FFN	SM	Exp.	
even-even	Fe-56 Ni-58	3.8 3.8	2.2 3.6	1.9 4 3.4	
odd-A odd-p	V-51	3.8	4.7	4.6	
odd-A odd-n	Fe-57 Ni-61 Zn-67	5.3 3.5 4.4	4.1 4.6	2.9 4.2 3.4	
odd-odd	V-50	9.7	8.5	8.8	

CONCLUSIONS:

There are good news and bad news for a "SUPERNOVA in a computer"

we keep on the struggle

Spectrum of the ⁵⁷Fe(d,²He)⁵⁷Mn-Reaction

DF

Double beta decay

²He

U

d

Neutrino questions

Main results from v-oscillation experiments:

- neutrinos have mass
- mass scale is ~50 meV (but no absolute $m_V!$)
- flavour lepton number not conserved

Total L-conservation? Hierarchical / degenerate mass pattern?

New information from $0\nu\beta\beta$ -decay:

- Dirac or Majorana particle?
- Majorana neutrino violates L-conservation!
- Value for effective Majorana mass!

Nuclear double beta decay

Important $\beta\beta$ decay modes

$\mathbf{O}_{\nu\beta\beta}$ -decay: half-life & neutrino mass

$$\begin{bmatrix} T_{1/2}^{00}(0^+ \rightarrow 0^+) \end{bmatrix}^{-1} = G^{00}(E_0, Z) \begin{vmatrix} M_{GT}^{00} - \frac{g_V^2}{g_A^2} M_F^{00} \end{vmatrix}^2 \langle m_0 \rangle^2$$

measure! look up nuclear v
structure mass

$$M_{GT}^{00} = \left\langle f \left| \sum_{lk} \sigma_{l} \cdot \sigma_{k} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, \overline{A}) \right| i \right\rangle$$
$$M_{F}^{00} = \left\langle f \left| \sum_{lk} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, \overline{A}) \right| i \right\rangle$$

Neutrino potential (v's don't escape from nucleus)

D. Frekers CNS-2004

$O_{V\beta\beta}$ -decay: half-life & neutrino mass

$$M_{GT}^{00} = \langle f | \sum_{lk} \sigma_{l} \cdot \sigma_{k} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, A) | i \rangle$$
Neutrino

$$M_{F}^{00} = \langle f | \sum_{lk} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, A) | i \rangle$$
Neutrino
potential
$$\int_{lk} \tau_{l}^{+} \tau_{k}^{+} H(r_{lk}, A) | i \rangle$$
Fexpand expression with H(r, A)
$$\int_{lk} u_{r_{lk}} u_{r_{l$$

Easier case: $2\nu\beta\beta$ Half-lives & Matrix elements $[t_{1/2}^{(2\nu)}]^{-1} = G_{\mu}^{(2\nu)} |M_{DGT}^{(2\nu)}|^{2}$ Half life:

ββ matrix element:

$$M_{\text{DGT}} = \sum_{m} \frac{\langle \mathbf{0}_{g.s.}^{(f)} || \sigma \tau^{-} || \mathbf{1}_{m}^{+} \rangle \langle \mathbf{1}_{m}^{+} || \sigma \tau^{-} || \mathbf{0}_{g.s.}^{(i)} \rangle}{1/2 \, \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{M}_{i}}$$

All 1⁺ levels must be considered!

Approximation:

M_S: Single beta decay matrix elements ∆_S: Energy denominator

holds if

- only one strong 1+ intermediate state
- further excited states weak or E_X high

2v DBD Experimental / theoretical results

	experimental	calculated	
Isotope	$T_{1/2}$ [yr]	T _{1/2} [yr]	Matrix elements from different
⁴⁸ Ca	(4.2±1.2) x 10 ¹⁹	6 x 10 ¹⁸ 5 x 10 ²⁰	nuclear structure
76Ge	(1.3±0.1) x 10 ²¹	7 x 10 ¹⁹ 6 x 10 ²²	models vary by factor 10
⁸² Se	(9.2±1.0) x 10 ¹⁹	3 x 10 ¹⁸ 6 x 10 ²¹	
96 _{Zr}	(1.4±0.8) x 10 ¹⁹	3 x 10 ¹⁷ 6 x 10 ²⁰	
100 _{Mo}	(8.0±0.6) x 10 ¹⁸	1 x 10 ¹⁷ 2 x 10 ²²	Factor 100 on half-life
¹¹⁶ Cd	(3.2±0.3) x 10 ¹⁹	3 x 10 ¹⁸ 2 x 10 ²¹	
¹²⁸ Te	(7.2±0.3) x 10 ²⁴	9 x 10 ²² 3 x 10 ²⁵	Similar situation
¹³⁰ Te	(2.7±0.1) x 10 ²¹	2 x 10 ¹⁹ 7 x 10 ²⁰	for Ov ββ-decay
¹⁵⁰ Nd	(7.0±1.7) x 10 ¹⁸	2 x 10 ¹⁶ 4 x 10 ²⁰	

Need calibration points for $\beta\beta$ -decay calculations!

Measurement of $M_{DGT}^{(2\nu)}$ thru hadronic probes

$$M_{DGT} = \sum_{m} \frac{\langle \mathbf{0}_{g.s.}^{(f)} || \sigma \tau^{-} || \mathbf{1}_{m}^{+} \rangle \langle \mathbf{1}_{m}^{+} || \sigma \tau^{-} || \mathbf{0}_{g.s.}^{(i)} \rangle}{1/2 \ \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{M}_{i}}$$
$$= \sum_{m} \frac{\mathbf{M}_{m}^{\mathbf{GT}+} \ \mathbf{M}_{m}^{\mathbf{GT}-}}{1/2 \ \mathbf{Q}_{\beta\beta}(\mathbf{0}_{g.s.}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{M}_{i}}$$

Measure B(GT+) through (n,p)-type reactions Measure B(GT-) through (p,n)-type reactions

$$B(GT) = \frac{1}{2J_{i} + 1} | M(GT) |^{2}$$
forward
angles
$$B(GT) = \widehat{\sigma}(GT) \frac{d\sigma(q=0)}{d\Omega}$$

- Phase cannot be measured
- Simple relation $\sigma \leftarrow B(GT)$
- Little model dependence

The 2v double- β decay

 τ from counting experiments and as 2nd order weak process ($\beta^- \rightarrow \beta^-$) !!!

Half life:

$$[t_{1/2}]^{-1} = G^{(2_{v})} | M_{DGT} |^2$$

$$\begin{split} \mathbf{M}_{\text{DGT}} &= \\ \sum_{m} \frac{<\mathbf{0}_{\text{g.s.}}^{(f)} || \sigma \tau^{-} || \mathbf{1}_{m}^{+} > <\mathbf{1}_{m}^{+} || \sigma \tau^{-} || \mathbf{0}_{\text{g.s.}}^{(i)} >}{1/2 \ \mathbf{Q}_{\beta\beta}(\mathbf{0}_{\text{g.s.}}^{(f)}) + \mathbf{E}(\mathbf{1}_{m}^{+}) - \mathbf{E}_{\mathbf{0}}} \\ \mathbf{G}(2\nu) \sim (\mathbf{Q}_{\beta\beta})^{11} \end{split}$$

matrix elements available thru (p,n) and (n,p) type reactions

48<mark>SC -</mark> **48 48** 3

(p,n)

How to connect these states ??

(n,p)

48 48<mark>Sc -</mark> 48 2-

(p,n)

(³He,t)

Experimental matrix elements

 $M_{DGT} = \sum_{m} {}^{m}M_{DGT} / E_{m}$ 0.0668 ± 0.0097 $T_{1/2} = \checkmark$ (2.04 ± 0.60) x 10¹⁹ yr **Compare to counting exp't:** T_{1/2} = (4.3 ± 2.5) x 10¹⁹ yr

D. Frekers CNS-2004

Higher lying states (E_x > 5 MeV)

116Cd $2\nu\beta\beta$ decay

 $\Sigma M_{DGT} = 0.069 \pm 0.009$

d²₀/dΩdE [arb.units] $E_d = 183 \text{ MeV}$ $\Delta \tilde{E} = 150 \text{ keV}$ 20 1+ 15 g.s. 1.05 MeV MeV 10 5 0 -1 0 1 2 3

counts

60

40

20

0

³He⁺

450

30

25

g.s.

RCNP

1.0

2

2.2

447.5

3

 $^{116}Cd(^{3}He,t)^{116}In$

 $E_{He} = 450 \text{ MeV}$

Mulan

445

E_t [MeV]

¹¹⁶Sn(d, ²He)¹¹⁶In

 $\Theta_{cm} = 0-1^{\circ}$

6

5

16**O**

g.s.

7

8

 $\Delta E = 150 \text{ keV}$

Θ**†=0°**

E_x [MeV]

Westfälische Wilhelms-Universität Münster

D. Frekers CNS-2004

Experimental matrix elements

 $M_{DGT} = \sum_{m} {}^{m}M_{DGT} / E_{m}$ = 0.0726 ± 0.0155 positive $T_{1/2} = (1.72 \pm 0.73) \times 10^{19} \text{ yr}$ Compare to counting exp't: $|_{1/2} =$ $(4.3 \pm 2.5) \times 10^{19} \text{ yr}$

DF

Halo nuclei

d

³S,

²He

⁶He – prototype of a halo-nucleus

3-body α+n+n structure ("Borromean system")

3-body calculations*:

- narrow 0⁺, 2⁺ states (g.s., ~1.6 MeV)
- 2⁺ "soft mode" state at 4.3 MeV; Γ=1.2 MeV
- 1⁺ resonance at 4.5 MeV
- 0⁺ resonance at 5 MeV
- no conclusions about "soft dipole" modes (at low energies).

*B.V. Danilin et al., PRC 55, 577 (1997)

easily reachable thru resolution 120 keV angular distributions

⁶Li (d, ²He) ⁶He

IKP Münster

D. Frekers CNS-2004

Spin-orbit splitting halo nucleus 7He

Origin and strength of spin-orbit force?

- p- and sd-shell nuclei: $V_{s.o.} \sim 5-6$ MeV
- halo nuclei: reduction of s.o. interaction because of large radial extent?

Theoretical predictions for ⁷He s.o. splitting:

large scale shell models Resonating Group Methods }	2 - 3 MeV	⁷ He g.s. : J ^π =3/2 ⁻ ⁷ He s.o. : J ^π =1/2 ⁻
Quantum Monte Carlo	~ 1 MeV	partner

Experimental situation for 7 He states above g.s.

Reaction	E _x [MeV]	Γ [MeV]	method
¹² C(⁸ He,n) ⁷ He	0.6	0.75	inv. mass claimed by recent
¹ H(⁸ He,d) ⁷ He	2.9	2.2	miss. mass
⁹ Be(¹⁵ N, ¹⁷ F) ⁷ He	2.95	1.9	miss. mass
¹⁰ B(π ⁻ ,pd) ⁷ He	2.8	2.0	miss. mass
⁷ Li(n,p)	~6, 20.0	?,9.0	charge-ex.

D. Frekers CNS-2004

The A = 7 system

7Li(d, 2He)7He

unexpectedly weak GT-transition strength (⁷Li = a +t)

strong reduction of spin-orbit force not observed

although favoured by GT-operator, no low-lying spin-orbit partner visible

several braod states observed at: 2.9 MeV (seen before) 5.3 MeV 8.0 MeV 18.0 MeV (strong!!)

Charge Symmetry Breaking

Measurement of nn-scattering length ann thru D(d,²He)²n

Spectroscopy of n-n FSI thru (d,²He) on CD₂ foil at Θ_{BBS} =0°

Momentum dependence of D(d,²He)²n: extrapolation to momentum transfer q=0

Experimental data at $Q_{c.m.}$ = [0° - 1°] and e_{nn} < 9 MeV correspond to momentum transfers q: 0.05 fm⁻¹ < q < 0.18 fm⁻¹

Apply transformation to q=0: $\frac{ds(q=0)}{dW} = \frac{S_{DWBA}(q=0)}{S_{DWBA}(q)} \frac{ds_{exp}(q)}{dW}$ Check q-dependence of ds/dW with angular distributions: data and DWBA-calculation

Impulse Approximation, leading order:

$$\frac{d\sigma}{d\Omega}(\epsilon_{pp},\epsilon_{nn}) \sim \frac{k_f}{k_i} \sqrt{\epsilon_{pp} \epsilon_{nn}} |t_{\sigma\tau}|^2 B_{GT^-}(\epsilon_{pp},d\to {}^2He) B_{GT^+}(\epsilon_{nn},d\to {}^2n) \\ B_{GT}(\epsilon_{NN}) = \frac{1}{3} |\langle NN(\epsilon_{NN},a_{NN}) || \sum_k \vec{\sigma_k} \tau_k ||d\rangle|^2 , N = n,p$$

Isospin symmetry

B(GT⁺) from ³²S and analog transitions

D. Frekers CNS-2004

Isospin breaking in A=32 isobars

Reason: low proton threshold in 32Cl ?

Stretched states -- another case for (d,²He) ??

q-dependence of (d,²He) reaction

or

when does the ²He fall apart?

Fragmentation of stretched particle-hole states

stretched states excitation through (e,e')

Conclude:

astrophysics:

The (d,²He) probably the best tool so far to locate GT transitions

GT transition strength need also be known for non-stable nuclei experiment: radioactive beams, inverse kinematics theory: needs to be credible, if to venture into the unstable region; credibility will be gained by extended experiments

halo nuclei spectroscopy:

the (d,²He) reaction was only a side-effect, the tool may be limited!

 $2\nu - \beta\beta$ decay: the potential still not fully exploited need more test cases need information of phase cancellation of GT states $2\nu - \beta^+\beta^+$ (EC-EC) could be a further potential

further applications:

neutron-neutron scattering length spin correlation of the 2p-system from ²He decay (EPR) (ongoing KVI-project !!) stretched state spectroscopy

The l-forbidden transition Ground state in ³²S (d,²He) → △l=0 $1d \frac{3}{2}$ 2s 1/2 $\log ft = 7.9$ $1d \frac{5}{2}$ 1p 1/2 0.2 0.2 0.175 $1p \frac{3}{2}$ 1+ (1,15) $1s \frac{1}{2}$ Protonen Neutronen d²₀/dΩdE_X [mb/sr/(50 0.15 0.125 ╬ Ground state in ³²P 0.1 Grounc $1d \frac{3}{2}$ state ^{1}H 0.075 $2s 1/_2$ 0.05 00000:000000 $1d \frac{5}{2}$ $1p \frac{1}{2}$ 0.025

0 ^ლ吧

E_x [MeV]

1p ³/₂

 $1s \frac{1}{2}$

Protonen : Neutronen

Experimental Background Reduction

D. Frekers CNS-2004