High-resolution Study of Gamow-Teller Transitions

Yoshitaka Fujita, Osaka Univ. @CNS-SS, '04.Aug.17-20

 Nucleus : 3 active interactions out of 4 Strong, Weak, EM
→ Comparison of Analogous Transitions
→ High resolution (³He,t) experiment at 0°

 $\Delta E = 30\text{-}50 \text{ keV}$

 → β-decay experiment, γ-decay, (e, e') measurements → detailed GT responses up to high excitation energies !

Direct Reactions with Light Projectiles

Resolutions Now and Then

³⁷Cl(³He,t)³⁷Ar spectrum

Y.Shimbara et al.

(³He,t) & (p,n) on ³⁷Cl Original (³He,t)

> (³He,t) convoluted with (p,n) resolution

> > Original (p,n)

Convolution by Y. Shimbara

Key Words

High Resolution

In Charge Exchange Reactions

--at Intermediate Incident Energies--

(³He,t) reaction : one order better resolution than in a (p,n) reaction

Active Operators

Similarity of Active Operators

Gamow-Teller operator in β decay (weak interaction) Spin-isospin interaction in reactions (strong interaction) EM-*M1* interaction in γ decay (electro-magnetic int.)

Isospin Symmetry

Analog States, Analogous Transitions

Vibration Modes in Nuclei (Schematic)

Vibration Modes in Nuclei (Operators)

Microscopic classification of giant resonances

	$\Delta S = 0$ $\Delta T = 0$	$\Delta S = 0$ $\Delta T = 1$	$\Delta S = 1$ $\Delta T = 0$	$\Delta S = 1$ $\Delta T = 1$
L = 0		$\Sigma \tau_i$ IAS		$\Sigma \vec{\sigma}_i \tau_i$ GTR
2 nd order	$\frac{\sum r_i^2}{\text{ISGMR}}$	$\sum r_i^2 \tau_i$ IVGMR	$\sum r_i^2 \vec{\sigma}_i$ ISSMR	$\sum r_i^2 \vec{\sigma}_i \tau_i$ IVSMR
L = 1		$\sum r_i Y_m^1 \tau_i$ IVGDR	$\sum r_i Y_m^1 \vec{\sigma}_i$ ISSDR	$\sum r_i Y_m^1 \vec{\sigma}_i \tau_i$ IVSDR
2 nd order	$\sum r_i^3 Y_m^1$ ISGDR			
L = 2	$\sum r_i^2 Y_m^2$ ISGQR	$\sum r_i^2 Y_m^2 \tau_i$ IVGQR	$\sum r_i^2 Y_m^2 \vec{\sigma}_i$ ISSQR	$\sum r_i^2 Y_m^2 \vec{\sigma}_i \tau_i$ IVSQR
L = 3	$\sum r_i^3 Y_m^3$ ISGOR	$\sum r_i^3 Y_m^3 \tau_i$ IVGOR	$\sum r_i^3 Y_m^3 \vec{\sigma}_i$ ISSOR	$\sum r_i^3 Y_m^3 \vec{\sigma}_i \tau_i$ IVSOR

An operator is a hammer to exite nuclei !

Supernova SN1987A

Crucial Weak Processes during the Collapse (A,Z)=nuclei of Fe Ni region mainly by $\sigma\tau$ can be studied by $(^{3}\text{He,t})$

K.L.&G.M-P $p + e^{-} \rightleftharpoons n + \nu_e$, Rev.Mod.Phys.75('04)819 $n+e^+ \rightleftharpoons p+\overline{\nu}_e$, $(A,Z)+e^{-} \rightleftharpoons (A,Z-1)+\nu_{e},$ $(A,Z)+e^+ \rightleftharpoons (A,Z+1)+\overline{\nu}_e$, $\nu + N \rightleftharpoons \nu + N$, $N+N \rightleftharpoons N+N+\nu+\overline{\nu},$ $\nu + (A,Z) \rightleftharpoons \nu + (A,Z),$ $\nu + e^{\pm} \rightleftharpoons \nu + e^{\pm}$. $\nu + (A,Z) \rightleftharpoons \nu + (A,Z)^*$ $e^+ + e^- \rightleftharpoons \nu + \overline{\nu}$ $(A,Z)^* \rightleftharpoons (A,Z) + \nu + \overline{\nu}.$

B(GT) derivation

 β decay :fundamental, but E_{χ} range :limited "Q-window limitation"

(*p*, *n*) reaction at intermediate energies (E = 100-500 MeV) "proportionality" : B(GT) and $\sigma(0^{\circ})$ $\sigma(0^{\circ}) = KN_{\text{GT}} | J_{\text{GT}}(0^{\circ}) |^2 B(\text{GT})$

Breakthrough against "Q-window limitation" but resolution : rather poor ($\Delta E = 200-400 \text{ keV}$)

(³He, *t*) reaction at intermediate energies (E = 130-150 MeV/u) "high resolution" ($\Delta E < 50 \text{ keV}$) magnetic spectromerter, matching techniques "proportionality" : good (B(GT) > 0.03) Breakthrough against "Energy resolution limitation" Reliable B(GT) values for individual transitions

Nucleon-Nucleon Int. : E_{in} dependence at q = 0

N.-N. Int. : $\sigma\tau$ & Tensor- τ *q*-dependence

Analogous Structures and Transitions in T=1/2 System

T=1/2, 3/2 Isospin Symmetry for A=15 Nuclei

T=1/2 Mirror Nuclei : Structures & Transitions

Analogous Transitions in β decay in CE reaction in γ -decay in IE reaction

T=1 symmetry : Structures & Transitions

 $^{26}Mg(p, n)^{26}Al \& ^{26}Mg(^{3}He, t)^{26}Al spectra$

B(GT) values from Symmetry Transitions (A=26) from (³He,t) from β**-decay** B(GT) B(GT) 0.106(4)3.724 1+ 2.740 0.113(5)0.117(4)0.112(4)2.072 0.091(4)1.851 0.537(14)0.527(15) 1.081(29) 1.098(22) 1.058 0+<u>IAS</u> 0.228 0+ 0+ 5+ 26 Mg ²⁶Si 26_{AI} $T_{7} = -1$ $T_{7} = +1$ $T_{7}=0$

Grand Raiden Spectrometer

in

Large Angle Spectrometer

RCNP Ring Cyclotron

♦ SUMITOMO

Beam line WS-course

T. Wakasa et al., NIM A482 ('02) 79.

Matching Techniques

Contour Map within the Acceptance

Concentric L=0 angular distribution around 0°

Higher- E_x region in ²⁶Al : T=1 & T=2 states

Importance of Isospin : in *p*-decay of ²⁶Al

for T = 0, 1 states : $E_X = 6.31 \text{ MeV}$ for T = 2 states : $E_X = 14.1 \text{ MeV}$

⁹Be(³He,t)⁹B spectrum (I)

⁹Be(³He,t)⁹B spectrum (II) x50

T=3/2 system: structures & transitions

Nuclear Chart

Z					NI: 47	NI: AO	N- 10	NH FA	NI EI	M- 59	0.023s	
					0.00346s	0.00938s	0.012s	0.012s	0.0197s	0.038s	0.045s	
••••••••••••••••••••••••••••••••••••••					Co 46 0.00587s	Co 47 0.01435	Co 48 0.01325	Co 49 0.0261s	Co 50 0.044s	Co 51 0.05335	Co 52 0.115s	
					Fe 45 0.004s	Fe 46 0.0097s	Fe 47 0.02185	Fe 48 0.044s	Fe 49 0.075	Fe 50 0.15s	Fe 51 0.305s	
					Mn 44 0.01435	Mn 45 0.0367s	Mn 46 0.034s	Mn 47 0.1s	Mn 48 0.1581s	Mn 49 0.3821s	Mn 50 1.75m	
		Cr 40 0.00543s	Cr 41 0.0107s	Cr 42 0.0134s	Cr 43 0.0216s	Cr 44 0.053s	Cr 45 0.05s	Cr 46 0.265	Cr 47 0.5s	Cr 48 21.56h	Cr 49 42.3m	
		V 39 0.0092s	V 40 0.0195s	V 41 0.0304s	V 42 0.0456s	V 43 0.141s	V 44 0.15s	V 45 0.547s	V 46 0.4226s	V 47 32.6m	V 48 15.97d	
	Ti 37 0.00744s	Ti 38 0.01965	Ti 39 0.0315	Ti 40 0.0534s	Ti 41 0.085	Ji 42 3.1995	Ti 43 0.509s	Ti 44 60y	Ti 45 3.08h	Ti 46 8.25	Ti 47 7.44	
	Sc 36 0.01625	Sc 37 0.0294s	SC 38 0.0522s	Sc 39 0.0921s	SC 40 0.18235	Sc 41 0.5963s	Sc 42 1.028m	Sc 43 3.891h	Sc 44 2.442d	Sc 45	Sc 46 83.79d	
34 1725	Ca 35 0.0257s	Ca 36 0.1025	Ca 37 0.1811s	Ca 38 0.445	Ca 39 0.8596s	Ca 40 95.941	Ca 41	Ca 42	Ca 43 0.135	Ca 44	Ca 45	
33 31s	K 34 0.067s	K 35 0.195	K 36 0.342s	K 37 1.226s	K 38 7.636m	K 39 93.2581	K 40 0.0117	K 41 6.7302	N 42 12.36h	K 43 22.3h	K 44 22.13m	
32 985	Ar 33 0.1735	Ar 34 0.8445s	Ar 35 1.775s	Ar 36 973365	Ar 37 34.95d	Ar 38 0.0632	Ar 39 2699	AL 40 99.6003	Ar 41 1.822h	Ar 42 32.99	Ar 43 5.37m	
31 15s	Cl 32 0.298s	Cl 33 2.511s	C1 34 32m	C1 35 75.78	Cl 36 3.01e+05y	C1 37 24.22	C1 38 37.24m	C1 39 55.6m	Cl 40 1.35m	Cl 41 38.4s	Cl 42 6.8s	
30 785	S 31 2.572s	S 32 94.93	S 33 0,76	S 34 4.29	S 35 87.51d	S 36 0.02	S 37 5.05m	S 38 2.838h	S 39 11.5s	S 40 8.85	S 41 2.65	
29 14s	P 30	P 31	P 32	P 33	P 34	P 35	P 36	P 37	P 38	P 39	P 40	
	· N											

Comparison of two β -decay results

Comparison with ⁴¹K(³He,t)⁴¹Ca (I)

Comparison with ⁴¹K(³He,t)⁴¹Ca (II)

Comparison: ⁴¹K(³He,t)⁴¹Ca & Shell Model

Reversed Strength in $T_z = +-1/2$

(p, n) spectra for A>90 Nuclei

Discrete States and GT GR in ⁹⁰Nb (II)

Fragmented low-lying states in ⁹⁰Nb

Sp=5.08 MeV

Strengths: Exp. & Perturbation Th.

High resolution (³He,t) spectrum

H. Fujita PhD thesis

Isospin symmetry structure & $\sigma\tau$ operator

High resolution ⁵⁸Ni(³He,t)⁵⁸Cu spectrum

A=58, T=1 symmetry : Structures & Transitions

Supernova Cycle

Life Cycle of a Red Supergiant Massive Star

Ne bula

Black Hole

Neutron Star

Supernova

Recycling

(p, n) spectra for Fe and Ni Isotopes

GT & Fermi : unit cross sections in (*p*,*n*)

Unit σ and \mathbb{R}^2 $\sigma_{GT}(0^\circ) = KN_{\sigma\tau} |J_{\sigma\tau}(0^\circ)|^2 B(GT)$ $\sigma_F(0^\circ) = KN_{\tau} |J_{\tau}(0^\circ)|^2 B(F)$

define

 $R^{2} = unit \sigma_{GT}(0^{\circ}) / unit \sigma_{F}(0^{\circ}),$ where $unit \sigma_{GT}(0^{\circ}) = \sigma_{GT}(0^{\circ}) / B(GT)$

unit $\sigma_F(0^\circ) = \sigma_F(0^\circ) = N-Z$ trick

> Fermi strength concentrates in the IAS B(F) = N - Z

Systematics of R² value ?

 R^2 (= unit σ_{GT} /unit σ_F)

Perspective

Accelerator : underway for improvement smaller beam emitance, better beam energy resolution As a Result: smaller beam size → samller backbround \rightarrow good chance for (p, p') at 0° \rightarrow M1 and E1 response better energy resolution -> even better spectrum resolution → smaller beam spot size angular distribution measurement

High-Resolution Collaborations

TU Darmstadt (Germany) : (e, e'), $(^{3}\text{He}, t)$, (p, p') Gent (Belgium) : (³He, t), (d, ²He), (γ , γ ') GSI, Darmstadt (Germany) : inverse kinematics **ISOLDE**, **CERN** (Switzerland) : β decay iThemba LABS. (South Africa) : (p, p'), (³He, t) Jyvaskyla (Finland) : β decay Koeln (Germany) : γ decay, (³He, t) KVI, Groningen (The Netherlands) : (d, ²He) LTH, Lund (Sweden) Valencia (Spain) : β decay Michigan State University (USA) : (t, ³He) Muenster (Germany) : $(d, {}^{2}He)$ Rossendorf (Germany) : (γ, γ')

Summary Words

High Resolution

In Charge Exchange and Inelastic Reactions

--at Intermediate Incident Energies--

(³He,t) reaction : one order better resolution than in a (p,n) reaction (p, p') reaction : spectrum as low as $E_x=5$ MeV

Active Operators, Isospin Symmetry

Similarity of Active Operators for Analog Transitions

Gamow-Teller operator in β decay (weak interaction) Spin-isospin interaction in reactions (strong interaction)

Spin-Isospin Responses In Various Nuclei with High Resolution