CNS Summer School, 3rd Course, 17-20, August, 2004

Evolution of Shell Structure and Spin-Isospin Interaction

Takaharu OtsukaUniversity of Tokyo

Single-particle (or shell) structure is the basis of many nuclear properties such as (sub)magic number, deformation, and even the existence of the nucleus.

The single-particle levels in exotic nuclei can be different from those of stable nuclei due to the following aspects:

Loose bindingWoods-Saxon potentialNeutron skinMean-Field modelsNN interaction, particularly, spin-isospin interactions
(also in nuclei not very close to drip lines)

Major subject :

Such shell evolution due to

tensor and 2-body LS interactions

Something simple enough that everyone can remember

- **1. Shell evolution due to Tensor interaction**
- 2. Tensor effect in shell-model effective interaction
- 3. Tensor-implemented mean field model
- 4. Shell evolution due to 2-body LS interaction
- 5. Example : (partial) origin of carbon mystery
- 6. Summary
- 7. Exercise

Effective single particle energy

Monopole part of the NN interaction

$$V_{ab}^{T} = \frac{\sum_{J} (2J+1) V_{abab}^{JT}}{\sum_{J} (2J+1)}$$

Angular averaged interaction

➡ spherical single particle energies

Effective single-particle energy (ESPE)

Shift of single-particle energies due to interaction with other valence nucleons

Major origin of shell evolution due to spin-isospin *NN* interaction :

tensor interaction

 π meson : dominant source

ρ meson (~ π + π) : minor cancellation for smaller *r*

Important for binding *e.g.* B.S. Pudliner et al., Phys. Rev. C56, 1720 (1997)

Has never shown up directly (or in the first order) in nuclear spectroscopy (e.g. levels, etc)

second-order effect on spin-orbit splitting

T. Terasawa, Prog. Theor. Phys. 23, 87 (1960);

A. Arima and T. Terasawa, Prog. Theor. Phys. 23, 87 (1960)

Major features Opposite signs \implies **spin-orbit splitting varied** T=0: T=1 = 3:1 (same sign) **Only exchange terms** neutron, j'_{\sim} proton, $j_>$ tensor proton, neutron, j' <

Proton effective single-particle levels (relative to $d_{3/2}$)

Systematic variation of proton effective single-particle energies due to the tensor interaction (π + ρ meson) *calculation only*

Systematic variation of neutron effective single-particle energies due to the tensor interaction (π + ρ meson)

Exp. data from J.P. Schiffer et al., Phys. Rev. Lett. 92, 162501 (2004) Also, C. Baktash, Paestum talk.

How the tensor interaction is included in effective shell model interaction ?

1. pf shell GXPF1

(2. sd shell SDPF-M (USD+corr))

3. p shell SFO (CK+corr)

pf shell

GXPF1 interaction M. Honma et al., PRC65 (2002) 061301(R)

G-matrix + polarization correction | + | empirical refinement

Modify realistic G interaction

M. Hjorth-Jensen, et al., Phys. Repts. 261 (1995) 125

- Bonn-C potential *Tensor is here*
- 3rd order Q-box + folded diagram
- Vary 70 well-determined LC's of 195 TBME and 4 SPE
- Fit to 699 experimental energy data of 87 nuclei
- $V(A) = V(A = 42) \times \left(\frac{A}{42}\right)^{-0.3}$ Mass dependence ۲
- Data selection to avoid intruder: $47 \le A$, $Z \le 32$
- Energy evaluation by $FDA^* \longrightarrow 168 \text{keV}$ rms error

G-matrix vs. GXPF1

two-body matrix element <ab; JT / V / cd; JT > $7=f_{7/2}, 3=p_{3/2}, 5=f_{5/2}, 1=p_{1/2}$

- T=0 ... attractive
- T=1 ... repulsive
- Relatively large modifications in V(abab; J0) with large J V(aabb; J1) pairing

Monopole part of various interactions

Monopole interaction after subtraction of tensor part

GXPF1 - Tensor between same *l*

Monopole interaction in p-shell

Tensor interaction is the primary origin of the p-n $j_>-j_<$ coupling also within a major shell (of a fixed parity).

Otsuka et al. Phys. Rev. Lett. 87, 082502 (2001)

Tensor interaction is the primary origin of the σσττ effective interaction within a major shell (of a fixed parity).

> This can be explained analytically at the long-range limit of of the tensor interaction. (A good exercise of Racah algebra)

Tensor interaction is included in G-matrix-type calculations.

Implementation of tensor interaction into mean field calculations

Gogny interaction

 $\begin{array}{ll} (1+\sigma\sigma+\tau\tau+\sigma\sigma\tau\tau) \left(Gauss1+Gauss2\right)+Density \ Dep.\\ finite \ range & zero \ range\\ \hline Tensor \ interaction \ is \ added \end{array}$

All parameters are readjusted

Nuclear matter properties reproduced with improvement of imcompressibility

Gogny-Tokyo interaction - 2 (GT2)

Tensor interaction actually used

Regularized for short distance

Neutron effective single-particle energies of exotic Ni isotopes

Original (D1S)

Proton effective single-particle energies of exotic Ni isotopes

Original (D1S)

GT2 (incl. tensor)

Another origin of shell evolution:

2-body LS interaction

I ntuitive Picture of 2-body LS

Orbital angular momentum of relative motion

other combinations : higher partial waves

2-body *LS* interaction is one of the origins of spin-orbit splitting

It shifts the position of *s* orbit as the inverse mechanism.

In fact, the amount of the effect is largest for *s* orbit due to ³P dominance.

A systematic shell model calculation for Carbon isotopes

Millener-Kurath + modifications

Effective single-particle energies for protons

E2 transition $0^+ \rightarrow 2^+$ in ${}^{16}C$

Exp. : *B*(E2)=3.2 (6) e² fm⁴ Imai et al., Phys. Rev. Lett. (03)

Shell model $e_p = 1.3$ $e_n = 0.5$ $B(E2) = 40 e^2 fm^4$ $e_p = 1.2$ $e_n = 0.1 - 0.2$ $B(E2) = 12 e^2 fm^4$ Sagawa and Asahi, Phys. Rev. C63, 064310 (01) **Summary**

respects

Shell evolution due to spin-isospin interactions

Tensor interaction (long range)

drives $j_{>}$ or $j_{<}$ levels in a specific way This is not necessarily a change of spin-orbit splitting.

is the dominant origin of shell evolution

produces effects of similar magnitude to *neutron skin* (weakening of *ls* splitting)

2-body LS interaction (short range)

special cases (*e.g.* between *s* and *p*)

carbon-oxygen $d_{5/2}$ - $s_{1/2}$ inversion (same mechanism as ||s splitting)

Structure of exotic nuclei in many

Exercise:

Find a combination of three orbits and a way to see the variation of their energies.

Collaborators

T. Suzuki	Nihon U.
R. Fujimoto	U. Tokyo
T. Matsuo	U. Tokyo
H. Grawe	GSI
Y. Akaishi	KEK

CNS SUMMER SCHOOL 04 End