In-beam gamma spectroscopy on unstable nuclei with fast radioactive ion beams

H. Sakurai Univ. of Tokyo

Exploration of the Limit of Existence

New frameworks for the new region of nuclear chart from stable nuclei to neutron-rich nuclei

neùtron-skin

neutron-hald

In-flight and ISOL methods to produce radioactive ions In-Flight Method

不安定核研究を推進している研究所

赤色:入射核破砕反応による不安定核生成

RIKEN Facility

In-flight RI beam production

<u>RIPS (Riken Projectile Fragment Separator)</u>

RIKEN Ring Cyclotron

RI beam E/A~30-90 MeV

Primary beam E/A~64-135 Me

Progress of Research Opportunities with RI Beams

Construction of a dedicated facility for RI beam production via the projectile fragmentation

KIBL

<u>**RI**</u> Beam <u>Factory</u> : the 3^{rd} generation facility

Investigation on Nuclear Structure via In-beam γ Spectroscopy

- "Magicity Loss" and Collective Motion -

→ Present Facility RIPS
 → 1. Magicity loss at N~20
 2. ¹⁶C
 The New Facility RIBF
 3. Future

Magicity Loss at N~20 Island-of-Inversion region Z~11 and N~20

upto 1995

<u>Stability</u>

Extra-enhancement of binding energies around ³¹Na mass measurement at CERN-ISOLDE, LANL-TOFI and GANIL-SPEG

Low lying excited states $E(2^+)$ Anomalous energy of $E(2^+)$ of ${}^{32}Mg$ β - γ -spectroscopy at CERN-ISOLDE

<u>B(E2)</u>

Large B(E2) ³²Mg In-beam γ-spectroscopy at RIKEN Coulomb excitation at intermediate energies

the neutron-rich F and Ne isotopes

Search for new neutron-rich nuclei at RIKEN-RIPS from 1996 to 2002

³¹Ne, ³⁷Mg
³¹F, ²⁸O, ...
³⁴Ne, ³⁷Na, ⁴³Si, ...

H.Sakurai et al., Phys. Rev. C 54, R2802 (1996) H.Sakurai et al., Phys. Lett. B 448, 180 (1999) M.Notani et al., Phys. Lett. B 542, 49 (2002)

Island-of-Inversion region Z~11 and N~20

Stability

Extra-enhancement of binding energies around ³¹Na mass measurement particle stability ^{31,34}Ne, ³¹F...

Low lying excited states $E(2^+)$ Anomalous energy of $E(2^+)$ of ³²Mg β-γ-spectroscopy at CERN-ISOLDE

→ <u>B(E2)</u>

Large B(E2) ³²Mg In-beam γ-spectroscopy at RIKEN Coulomb excitation at intermediate energies

Nuclear Collective Motion

Magic number, $E(2^+)$ and B(E2)

proton number

Magicity loss at N=8 and 20

proton number

γ-ray spectroscopy on nuclei for particle-bound states

 $\beta - \gamma$ spectroscopy to observe de-excitation γ -rays in beta decay process

in-beam γ spectroscopy

to observe de-exitation γ -rays from excited states produced by reactions

isomer spectroscopy

delayed coincidence measurements through isomeric states....

Large B(E2) observed for ³²Mg

Ζ

The dawn of in-beam γ spectroscopy with fast RI beams T.Motobayashi, et al., PLB 346, 9 (1995)

Intermediate energy Coulomb excitation

 $E \sim 50A \text{ MeV} >> \text{Coulomb barrier} \sim 5A \text{ MeV}$

inelastic scattering on heavy target such as Pb

E2 excitation: Coulomb dominant if Z>10 fast interaction -> single step excitation

Experimental setup for in-beam gamma spectroscopy with fast RI beams

e B

1000

2000

γ−RAY ENERGY (keV)

inverse reaction high energy beam -> thick target kinematical focusing -> high efficiency

Doppler-shift corrected spectrum

3000

40.00

E_{te}≃49.2 MeV/u

beam

B(E2) and $E(2^{+})$ measurements via the Coulomb excitation From 1995 to 1999

Further investigation for the island-of-inversion region How is the region extended ? lower Z and larger N

 ³⁴Mg E(2+), B(E2) Coulomb excitation
 ³⁴Mg beam + Pb target intensity ~3/sec
 ³⁰Ne E(2+) proton inelastic-scattering
 ³⁰Ne beam+ hydrogen target intensity ~0.3/sec

> ³⁴Mg E(2⁺), E(4⁺) for E(4⁺)/E(2⁺) RI beam fragmentation method projectile fragmentation reaction ³⁶Si beam + Be target intensity ~10⁴/sec

Gamma-ray spectroscopy of ³⁺Mg via the Coulomb excitation Iwasaki et al., Phys.Lett. B 522, 227(2001) B(E2) of ³⁴Mg larger than that of ³²Mg 34_{Mg} 60 800 B(E2) for 700 50 [e²fm⁴ Mg isotopes Utsuno et al. 660 keV 600 40 Counts/40keV I~3/sec 500 $\rightarrow \mathcal{Z}^+$ 400 30 32_{Mg} 300 $B(\mathbb{E}2;0^+,$ 20 Т 200 present data previous data 10 100 MCSM $0\hbar\omega$ shell model 0 0 16 18 20 22 24 N _ 500 1500 2000 1000 $\beta_2 = 0.58(6)$ Energy [keV] $B(E2) = 631 \pm 126 e^{2} fm^{4}$ c.f. I ~ 300/sec for ^{32}Mg Utsuno et al., $E(2^+) = 890 \text{ keV}$ Phys. Rev. C 60(1999)054315

 \mathbf{r}

Further investigation for the island-of-inversion region How is the region extended ? lower Z and larger N

 $\begin{array}{rrrr} {}^{32}\text{Mg} & E(2^+) & \text{ISOLDE} \\ & B(E2) & \text{RIKEN} \\ & E(4^+)/E(2^+) & \text{GANIL} \end{array}$

³⁴Mg E(2+), B(E2) Coulomb excitation ³⁴Mg beam + Pb target intensity ~3/sec
.30Ne E(2+) proton inelastic-scattering ³⁰Ne beam+ hydrogen target intensity ~0.3/sec

³⁴Mg E(2⁺), E(4⁺) for E(4⁺)/E(2⁺) RI beam fragmentation method projectile fragmentation reaction ³⁶Si beam + Be target intensity ~10⁴/sec

$E(2^+)$ measurement for ³⁰Ne via (p,p')

Yanagisawa et al., Phys. Lett. B566,84 (2003)

Nuclear Collective Motion

projectile-fragmetation

 32 Mg E(2⁺) and E(4⁺)?

Fig. 4: Gamma energy spectra of ^{32}Mg in the BaF₂ (left) and in the germanium (right)

Further investigation for the island-of-inversion region How is the region extended ? lower Z and larger N

³⁴Mg E(2+), B(E2) Coulomb excitation

³⁴Mg beam + Pb target
intensity ~3/sec

³⁰Ne E(2+)

proton inelastic-scattering
³⁰Ne beam+ hydrogen target
intensity ~0.3/sec

 $\begin{array}{rrrr} {}^{32}\text{Mg} & E(2^+) & \text{ISOLDE} \\ & B(E2) & \text{RIKEN} \\ & E(4^+)/E(2^+) & \text{GANIL} \end{array}$

³⁴Mg E(2⁺), E(4⁺) for E(4⁺)/E(2⁺) RI beam fragmentation method projectile fragmentation reaction

> ³⁶Si beam + Be target intensity $\sim 10^{4}/\text{sec}$

RI beam fragmentation method

RI beam fragmentation method

Yoneda et al., PLB499, 233(2001)

→ Further investigation is necessary

Investigation on Nuclear Structure via In-beam γ Spectroscopy

- "Magicity Loss" and Collective Motion -

Present Facility RIPS 1. Magicity loss at N~20 2. ¹⁶C The New Facility RIBF 3. Future

Nuclear Collective Motion

New type of collective motion?

"classical" picture

ONE quantum liquid drop

one-body nuclear matter

proton- and neutron matter's contributions to collective motion are same.

"exotic" picture

matter's contributions to collective motion are **not necessarily** same. Degree of collectivity for proton- and neutron matters

searched for,

but $|\beta_n|/|\beta_p| \sim 1$ for stable and unstable nuclei observed so far .

B(E2) measurement for the light mass region

No data for the neutron-rich Be and C isotopes

How to measure B(E2)?

Intermediate energy Coulomb excitation for unstable nuclei inelastic scattering on heavy target such as Pb E2 excitation: Coulomb dominant if Z>10

Z<8 Coulomb Ex. ≤ Nuclear Ex.

Lifetime measurement of 2+ state

for stable nuclei or nuclei close to stability line $_{2^+}$

(p,p' γ), (t, p γ), and etc... + Doppler Shift Attenuation

1970's

σ

Density distributions for the C isotopes

AMD calculation by Kanada-En'yo and Horiuchi

x{1(m)

B(E2) measurement for ¹⁰C via a new techniques

New method appropriate for <u>fast RI beam</u> should be developed

"Recoil-Shadow-Method"

Recoil-shadow-method

• Inelastic Scattering of RI beams R1, R2 gamma detectors

R1/R2 ratio has mean life dependence

Energy spectrum of γ ray

Doppler uncorrected Spectrum of R1

Level scheme of ¹⁶C

R1/R2 vs τ curve

GEANT code

Geometry

energy dependence (¹³⁷Cs, ²²Na,⁶⁰Co) position dependence (²²Na z=0.0-2.0cm)

Beam profile

experimentally obtained parameters for emittance and scattering angles

Angular distribution of γ rays

ECIS79 with optical potential sets for ¹²C+¹²C @35AMeV and ¹⁶O+¹²C@38AMeV

Mean lifetime of ${}^{16}C(2^+)$

Systematic error: 25%

target position (20%) + optical pot. (5%)

$\tau = 77 \pm 14(\text{stat}) \pm 19(\text{syst}) \text{ [ps]}$

N. Imai et al, Phys.Rev.Lett. 92,062501('04)

Anomalously hindered B(E2) of ¹⁶C

B(E2: $2^+ \rightarrow 0^+$) 0.63 $e^2 \text{fm}^4$ 0.26 [W.u.] $|\beta_p| \sim 0.14$ ONE quantum liquid drop model S. Raman et.al.,PRC37, 805 ('88). B(E2)sys=6.47Z²A^{-0.69}E(2⁺)⁻¹

B(E2) / B(E2) sys = 0.03

How about β_n / β_p for ¹⁶C?

• Inelastic scattering on proton

Absolute value of $d\sigma/d\Omega$

 \Rightarrow $|\beta_n| \sim 4 |\beta_p|$

H.J. Ong et al., to be submitted

• Inelastic scattering on Pb

Interference between nucl. and Coul. Excitation

Angular distribution of $d\sigma/d\Omega$

 $\Rightarrow |\beta_n|/|\beta_p|=4.6 + /-1$

Absolute value of $d\sigma/d\Omega$

 $\Rightarrow \beta_p \quad B(E2\downarrow)=0.28(6)e^2fm^4$

Elekes et al., Phys.Lett.B 586, 34 (2004)

New type of collective motion?

"classical" picture

ONE quantum liquid drop

one-body nuclear matter

proton- and neutronmatter's contributions to collective motion are same.

"exotic" picture for ¹⁶C case

Investigation on Nuclear Structure via In-beam γ Spectroscopy

- "Magicity Loss" and Collective Motion -

Present Facility RIPS 1. Magicity loss at N~20 2. ¹⁶C The New Facility RIBF → 3. Future

Exploration towards heavier and more proton-rich /neutron-rich region

to produce a lot of data for "unified pictures"

Nuclear Structure and Collectivity?

E(2⁺) keV

proton number

Large Room for B(E2)

B(E2)⁻¹ [1/W.u]

proton number

RIBF

proton number

Exploration of the limits of nuclear existence - towards the drip-lines -

3rd generation of RI beam facility "Fission fragment of U"
SRC high energy and intense heavy ion beams upto U
Big-RIPS high acceptance for fission fragments

prediction)

neutron number

Fission ²³⁸U 350A MeV neutron-rich side 20<Z<60 wide dynamic range

Layout of the RI Beam Factory (RIBF)

A Flag-ship Region on the Nuclear Chart - ⁷⁸Ni and vicinity -

RIBF

Nuclear Structure limit of production stable nuclei double magicity ? astable nuclei observed so far Magic number Nuclear Matter neutron-skin? r-process path Nuclear Collectivity eutron drip-line exotic modes? (prediction) **RIBF Nuclear Astrophysics** tron number r-process path crust of neutron star ⁷⁸Ni >0.1 particles/sec \langle 350A MeV ²³⁸U >10pnA challenges to observe exotic phenomena beyond N=50 $T_{1/2}$, $E(2_1^+)$ and others, mass, ... β-spectroscopy $E(2_1^+), E(4_1^+), B(E2), \beta^{M_2}, ...$ in-beam γ spectroscopy transmission radii

Reactions for in-beam γ spectroscopy with fast RI beam

Experiment at RIBF

Zero-degree Forward Spectrometer at RIBF

1.Achromatic large acceptance mode

2.Achromatic high resolution mode $(x,p)/(x,x) \sim 2100$ 3.Dispersive spectrometer mode $(x,p)/(x,x) \sim 4500$

total flight path length ~ 36m

angular acceptance $\Delta \theta = +/-45$ mrad, $\Delta \phi = +/-30$ mrad cf. 250A MeV neutron-rich RI beams grazing angle ~ 20 mrad for Pb targets momentum acceptance $\Delta p/p = +/-3\%$ momentum resolution (x,p)/(x,x) = 1240maximum magnetic rigidity 7.3 Tm **5 sigma separation in A at A=200**

Layout of the RI Beam Factory (RIBF)

Put your favorite variable on nuclear chart and Draw your "picture" inside the box

Excited states of nuclei

Magic numbers and Binding energies

Tz connection for one neutron separation energy S_{1n}

Intermediate-energy Coulomb excitation

high energy beams -> thick target kinematical focusing -> high efficiency high velocity -> single step excitation

Bernstein's prescription

PLB103, 255('81)

$$\delta^{F} = \frac{4\pi}{3eR_{0}} \frac{\boldsymbol{b}_{p}^{F}\boldsymbol{M}_{p} + \boldsymbol{b}_{n}^{F}\boldsymbol{M}_{n}}{\boldsymbol{b}_{p}^{F}\boldsymbol{Z} + \boldsymbol{b}_{n}^{F}\boldsymbol{N}}$$

Eg.1) F: electromagnetic

$$b_{p}=1.0 \ b_{n}=0$$

$$\delta^{em} = \frac{4\pi}{3eR_{0}} \frac{M_{p}}{Z} = \frac{4\pi}{3eR_{0}} \frac{1}{Z} \sqrt{B(E2)}$$
Eg.2) F: proton
$$b_{p}=0.3 \ b_{n}=0.7$$

$$\delta^{p,p'} = \frac{4\pi}{3eR_{0}} \frac{0.3M_{p}+0.7M_{n}}{0.3Z+0.7N}$$

New frameworks for the new region of nuclear chart from stable nuclei to neutron-rich nuclei

Nuclear Structure

"magicity loss" N=8, 20, ... "new magic numbers" N=6, 16, ... large changes of shell structures

Nuclear Matter

isospin dependence of nuclear radii $r = r_0 \ge A^{1/3}$ ($r_0=1.2$ fm) ? new forms of nuclear matters neutron-skin nuclei neutron-halo nuclei

Nuclear Collectivity

Two quantum liquid drops ?

r - process path one of processes for nucleosynthesis beyond iron

