Collective modes investigated by inelastic scattering and charge-exchange reactions with magnetic spectrometers

Muhsin N. Harakeh Kernfysisch Versneller Instituut

4th CNS International Summer School (CISS05)

Outline

Introduction on Giant Resonances (GRs) What are GRs? Why study GRs? **Isoscalar giant resonances; compression modes** Inelastic α -scattering \Rightarrow ISGMR, ISGDR **Isovector charge-exchange modes** (³He,t) & (d,²He) charge-exchange reactions ⇒ GTR, IVSGMR, IVSGDR; GT⁺ Strength **Outlook**

S800@NSCL (t,³He) 115 MeV/u

 TRIUMF (n,p) (π-CEX)

 IUCF (p,n) (³He,t)
 K600

 iThemba (p,p)
 K600

 Texas A&M

Grand Raiden@ RCNP (³He,t) 140 MeV/u Also done (p,n) (n,p) 300 MeV

> S KVI

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

...etc

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Giant resonances: fundamental highfrequency modes of nuclear excitation

- Interesting to study on own merit: E_x, Γ, %EWSR;
 Microscopic structure ⇒ compare to theory: HF+RPA; RMFT, RRPA, etc.
- Effective interactions, medium effects (meson-coupling constants); IVSGDR 0⁻ strength (pion quantum numbers)
 Moreover,
- Equation of state (EOS)
 ISGMR, ISGDR ⇒ Incompressibility, symmetry energy

 $K_A = K_{vol} + K_{surf} A^{-1/3} + K_{sym} ((N-Z)/A)^2 + K_{Coul} Z^2 A^{-4/3}$

- IVGDR, IVSGDR, IVGMR ⇒ n-skin thickness; isospin mixing
- Collective-flow in H.I. collisions
- Astrophysics: Input for supernova explosions, neutron stars
- Microscopic picture: GRs are coherent (1p-1h) excitations induced by single-particle operators.
- Excitation energy depends on i) multipole L (Lħω, except for isoscalar monopole and isoscalar dipole GRs, 2ħω & 3ħω, respectively), ii) strength of effective interaction and iii) collectivity.
- Exhaust appreciable % of EWSR and/or NEWSR
- Acquire a width due to coupling to continuum and to underlying 2p-2h configurations.

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Isoscalar Excitation Modes of Nuclei

Giant Resonance: Coherent vibration of nucleons in a nucleus.

Compression modes : ISGMR, ISGDR

$$E_{ISGMR} = \hbar \sqrt{\frac{K_A}{m \langle r^2 \rangle}}$$

$$E_{ISGDR} = \hbar \sqrt{\frac{\frac{7}{25} \frac{K_A + \frac{27}{25} \varepsilon_F}{m \langle r^2 \rangle}}$$

The nucleus incompressibility:

$$K_A = \left[r^2 (d^2 (E/A)/dr^2) \right]_{r=R_0}$$

8

In HF+RPA calculations,

$$K_{nm} = \left[9\rho^2 \frac{d^2(E/A)}{d\rho^2}\right]_{\rho=\rho}$$

Nuclear matter

E/A: binding energy per nucleon ρ : nuclear density energy

K_A: incompressibity ε_F: Fermi

O_a: nuclear density at saturation

K_A is obtained from excitation energy of ISGMR & ISGDR

 $K_A = 0.64 K_{nm} - 3.5$

J.P. Blaizot, NPA591 (1995) 435

9

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

HF+RPA; ISGDR in ²⁰⁸Pb

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

ISGQR, ISGMR, ISGDR

E_α=240 MeV

Large instrumental background!

 \Leftarrow ²⁰⁸Pb(α,α') at E_α=120 MeV

ISGQR, HEOR 100 % EWSR

At E_x= 14.5 MeV

KVI

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Uchida et al., RCNP

 (α, α') spectra at 386 MeV

¹¹⁶Sn

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Multipole decomposition analysis (MDA)

$$\left(\frac{d^{2}\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)^{ex.} = \sum_{L} a_{L}(E) \left(\frac{d^{2}\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)_{L}^{calc}$$

 $\left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)^{ex.}$: Exprimenta 1 cross section

 $\left(\frac{d^2\sigma}{d\Omega dE}(\vartheta_{c.m.}, E)\right)_{L}^{calc}$: DWBA cross section (unit cross section)

 $a_{I}(E)$: EWSR fraction

ISGR (L<15)+ IVGDR (through Coulomb excitation) a. DWBA formalism; single folding \Rightarrow transition potential b. $\delta U(r,E) = \int d\vec{r}' \delta \rho_L(\vec{r}',E) [V(|\vec{r}-\vec{r}'|,\rho_0(r')) + \rho_0(r') \frac{\partial V(|r-r'|,\rho(r'))}{\partial \rho_0(r')}$ $U(r) = \int \vec{dr'} V(|\vec{r} - \vec{r'}|, \rho_0(r')) \rho_0(r')$

Transition density

ISGMR Satchler, Nucl, Phys, A472 (1987) 215

$$\delta \rho_0(r, E) = -\alpha_0 [3 + r \frac{d}{dr}] \rho_0(r)$$
$$\alpha_0^2 = \frac{2\pi}{mA < r^2} \frac{\hbar^2}{E}$$

ISGDR Harakeh & Dieperink, Phys. Rev. C23 (1981) 2329

$$\begin{split} &\delta\rho_1(r,E) = -\frac{\beta_1}{R\sqrt{3}} [3r^2 + \frac{d}{dr} + 10r - \frac{5}{3} < r^2 > \frac{d}{dr} + \varepsilon (r\frac{d^2}{dr^2} + 4\frac{d}{dr})]\rho_0(r) \\ &\beta_1^2 = \frac{6\pi\hbar}{mAE} \frac{\hbar^2}{(11 < r^4 > -(25/3) < r^2 >^2 - 10\varepsilon < r^2 >)} \end{split}$$

• Other modes Bohr-Mottelson (BM) model

$$\delta \rho_{L}(r, E) = -\delta_{L} \frac{d}{dr} \rho_{0}(r)$$

$$\delta_{L}^{2} = (\beta_{L}c)^{2} = \frac{l(2l+1)^{2}}{(l+2)^{2}} \frac{2\pi}{mAE} \frac{\hbar^{2}}{c} < r^{2l-2} > \frac{r^{2l-2}}{r^{l-2}} > \frac{2\pi}{mAE}$$

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Results of ISGMR/ISGDR

	E _{GMR}	Г	EWSR	E _{LEGDR}	Γ	EWSR	E _{HEGDR}	Г	EWSR
	(MeV)	(MeV)	(%)	(MeV)	(MeV)	(%)	(MeV)	(MeV)	(%)
⁹⁰ Zr	16.6	4.9	101	17.8	3.7	7.9	26.9	12.0	67
	(0.1)	(0.2)	(3)	(0.5)	(1.2)	(2.9)	(0.7)	(1.5)	(8)
¹¹⁶ Sn	15.4	5.5	95	15.6	2.3	4.9	25.4	15.7	68
	(0.1)	(0.3)	(4)	(0.5)	(1.)	(2.2)	(0.5)	(2.3)	(9)
¹⁴⁴ Sm	15.3	3.71	84	14.2	4.8	23	25.0	19.9	91
	(0.1)	(0.12)	(4,-25)	(0.2)	(0.8)	(4,-10)	(1.7)	(1.4)	(25,-17)
²⁰⁸ Pb	13.5	4.0	104	13.0	1.1	7.0	22.8	11.9	111
	(0.2)	(0.4)	(9)	(0.1)	(0.4)	(0.4)	(0.3)	(0.4)	(6)

ΔE is about 0.1 MeV

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

L=0

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

ISGMR energy E_{ISGMR}

²⁰⁸Pb

	E _{isgdr}	(MeV)	E _{ISGMR} (MeV)	K _{nm} (MeV)
	HE	LE		
Uchida et al. (Breit-Wigner)	22.8 (0.3)	13.0 (0.2)	13.5 (0.2)	
Morsch et al.	21.3 (0.8)		13.8	
Djalali et al.	21.5 (0.2)		13.9	
Adams et al.	22.6 (0.2)			
Davis et al.	22.4(0.5)			
Clark et al.	19.9(0.8)	12.2(0.6)	14.17(0.28)	
Hamamoto et al.	23.4	~14	14.1	217
Colo et al.	23.9(22.9 *)	10.9	14.1	215
Piekarewicz et al.	24.4	~8	13.1	224
Vretenar et al.	26.01	10.4	14.1	271
Shlomo and Sanzhur	~25.0	~15	14.48	230
Gorelik and Urin	22.7	11.1	14.3	

* Including the effect of 2p-2h coupling

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Decay of giant resonances

- Width of resonance
 - $\label{eq:generalized_states} \Gamma, \, \Gamma^{\uparrow}, \, \Gamma^{\downarrow} \; (\Gamma^{\downarrow\uparrow}, \, \Gamma^{\downarrow\downarrow})$
 - Γ^{\uparrow} : direct or escape width
 - Γ^{\downarrow} : spreading width
 - $\Gamma^{\downarrow\uparrow}$: pre-equilibrium, $\Gamma^{\downarrow\downarrow}$: compound
- Decay measurements
 - \Rightarrow Direct reflection of damping processes

Allows detailed comparison with theoretical calculations

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Decay and microscopic structure of ISGDR

Transition operator

spurious centerovertoneof mass motion

$3\hbar\omega$ excitation (overtone of c.o.m. motion)

AGOR cyclotron K = 600light and heavy ions p < 190 MeV $q/A = \frac{1}{2}$; E/A < 90 MeVoperating diagram and available beams 100 h = 410

E/A [MeV]

0.0

0.2

0.4

0.6

Q/A

0.8

1.0

23

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

1.2

Equipment

- Big momentum Bite magnetic Spectrometer (BBS)
- its associated Focal-Plane Detectors (ESN)
 various coincidence detectors
 neutrons (EDEN), protons (SiLi-ball), γ's
 (GeLi, Clover), phoswich detectors
 readout electronics
 DSP, VME, FERA

24

25

Si-ball 16 Si-detectors at 10 cm from the target total solid angle: 1 sr

26

Bari, Darmstadt, Gent, Iserlohn, KVI, Milano, Münster, TRIUMF

27

Excitation of ISGDR in ²⁰⁸Pb

- In ²⁰⁸Pb located around 22 MeV and width of 4 MeV
- L=1 angular distribution peaks close to a scattering angle of 0°
- Difficult to identify in nuclear continuum and rides on instrumental background

28

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Proton-decay detection

α-p separation using rise time of signal SiLi

31

Neutron-decay detection

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

²⁰⁸Pb(α,α ² p or n)

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

²⁰⁸Pb(α , α ') followed by **n** decay

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

²⁰⁸Pb(α , α ') followed by p decay

Decay to hole states in ²⁰⁷Tl; branching ratios predicted by Gorelik *et al*.

ĸ
Branching ratios for decay

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Branching ratios for decay

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Present Status

1 Djalali et al., 1982 2 Morsch et al., 1983 3 Adams et al., 1986 4 Davis et al., 1997 5 Clark et al., 2001 6 Uchida et al., 2003 7 Uchida et al., 2003 8 this work p 9 this work *n*

Overtone of the ISGQR? $[r^4Y_2]$

Conclusions!

- There has been much progress in understanding ISGMR & ISGDR
 Systematics: E_x, Γ, %EWSR
 ⇒ K_{nm}≈ 220 MeV
 Microscopic Structure for a few nuclei
- Observation of a new excitation that could be the quadrupole compressional mode, i.e. overtone of ISGQR

Spin-isospin excitations

43

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

paport (1989).

(³He,*t*) Reaction above 150 MeV/u

- Energy dependence of effective interactions.
- 150 MeV/A
 - V₀ part: Minimum.
 - V_{σt} part: Relatively large.
 - V_t part: Minimum.

E (MeV)

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Charge-exchange probes

(p,n)-type ($\Delta T_z = -1$)

(n,p)-type ($\Delta T_z = +1$)

- β--decay
- (p,n)
- (³He,t)
- heavy ion
- (π^+,π^0)

- β⁺-decay
- (n,p)
- (d,²He)
- (t,³He)
- heavy ion (7Li,7Be)
- (π⁻,π⁰)

Energy per nucleon (>100 MeV/n)
Spin-flip vs non-spin-flip
Complexity of reaction mechanism
Experimental considerations

S

Nuclear Classics: spin-flip & GT transitions

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Decay studies

Successful:

- GTR, IVSGDR in ²⁰⁸Pb(³He,t+p) at 450 MeV (Akimune et al.)
- IVGMR/IVSGMR in Pb(³He,t+p) at 177 MeV at KVI & 410 MeV at RCNP (Zegers et al.)

Unsuccessful:

 IVGMR/IVSGMR ¹²⁴Sn(³He,t+n) at 200 MeV at IUCF

Microscopic Structure of GTR and IVSGDR in ²⁰⁸Bi

- Proton decay of ²⁰⁸Bi:
 - Direct decay dominant
 - $\mathbf{E}_{\mathbf{x}} > \mathbf{E}_{\mathbf{th}}(\mathbf{n}) > \mathbf{E}_{\mathbf{th}}(\mathbf{p})$
 - High Coulomb Barrier (Z=83)
 - Statistical proton decay negligible.
- Angular correlations
 - **For IAS and GTR decay isotropic ΔL=0**
 - For IVSGDR anisotropic but not strongly
- Direct decay is influenced by:
 - Low n-decay threshold
 - High Coulomb barrier.

49

- $\Gamma_{\rm GTR}^{\uparrow}/\Gamma << \Gamma_{\rm IAS}^{\uparrow}/\Gamma \approx 0.5$
 - IAS n-decay: isospin forbidden.
 - Centroid energy shift: cut off by Coulomb barrier
- $\Gamma_{\text{IVSGDR}}^{\uparrow}/\Gamma > \Gamma_{\text{GTR}}^{\uparrow}/\Gamma$
 - Higher proton energy
- Width Γ:

$$\Gamma = \Gamma^{\uparrow} + \Gamma^{\downarrow}$$

$$\begin{split} \Gamma^{\uparrow} &= \Gamma_{p}^{\uparrow} = \sum_{i} \Gamma^{\uparrow}{}_{pi} \\ \underline{\Gamma_{pi}^{\uparrow}} \underbrace{\int} d^{2} \sigma_{pi} / (d\Omega_{t} d\Omega_{p}) d\Omega_{p} \\ \overline{\Gamma} & d\sigma / d\Omega_{t} \end{split}$$

Escape: Direct decay Spreading: Statistical Decay

Partial Escape Width

Branching ratio

50

Measurement of IVSGMR via ²⁰⁸Pb(³He,t+p)

Continuum suppression

Experiment

 RCNP facility K=400 MeV ring cyclotron Grand Raiden spectrometer
 Beam: ³ He⁺⁺, 450 MeV
 Target: ²⁰⁸Pb foil

53

Experimental Considerations

- Over-focus mode for Grand-Raiden (H. Fujita et al. NIM A469, 55) refined to get:
 - Vertical angle resolution: 0.4º FWHM
 - Horizontal angle resolution: 0.2º FWHM
 - Negligible systematic errors
 - Sieve-slit is used for calibrations

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Experiment: 410 MeV ³He-beam @ RCNP

Grand Raiden @ RCNP

•Measure both t-singles and t-p coincidences.

Set-up of the Proton Counter

- Si(Li) detectors with a thickness of 5 mm, covering a solid angle of 5.7% in total.
- 35 keV (²⁴¹Am test)

56

Spin-isospin-flip transitions in charge-exchange reactions and proton decay

(³He,t) reactions E(³He)=450 MeV

(a)

QF

(b)

SDR

GTR

430

430

4000

2000

0

4000

2000

0

420

420

Counts

A. Krasznahorkay et al., PRC 64 (2001) 067302.

- A. Krasznahorkay et al., PRL 82 (1999) 3216.
- H. Akimune et al., PRC 52 (1995) 604.
- H. Akimune et al., Phys. Lett. B 233 (1994) 107

(³He,tp) Coincidence data

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Experimental Results and Theoretical Calculations

Partial escape width for GTR

		Theory		This work	
channel	E _x (keV)	$\Gamma_i^{\uparrow}(\text{keV})$	branch (%)	$\Gamma_i^{\uparrow}(\text{keV})$	branch (%)
3p _{1/2}	0	48.7	1.23	58.4±19.8	1.8 ±0 .5
2f _{5/2}	570	46.2	2.12	inc. in p _{3/2}	
3p _{3/2}	898	44.7	2.5	101.5 ±3 1.3	2.7 ± 0.6
1i _{13/2}	1633	0.87	3.57	8.3±9.4	0.2±0.2
2f _{7/2}	2340	5.89	2.97	15.6±7.6	0.4±±0.2
1h _{9/2}	3413	0.24	0.63	_	_
Total		146.6	13.02	184 ±4 9	4.9±1.3

Theory: E. Moukhai, V.A. Rodin, M.H. Urin Continuum RPA

Partial escape width for IVSGDR

		Theory		This work	
channel	E _x (keV)	$\Gamma_i^{\uparrow}(\text{keV})$	branch (%)	$\Gamma_i^{\uparrow}(\text{keV})$	branch (%)
3p _{1/2}	0	103.4	1.23	83.4±24.3	0.99 <u>+</u> 0.29
2f _{5/2}	570	178.1	2.12	170.8 ±4 9.3	2.12 ± 0.61
3p _{3/2}	898	210.1	2.5	240±69.6	2.86±0.83
1i _{13/2}	1633	299.8	3.57	330.4 ± 95.7	3.74±1.08
2f7 _{/2}	2340	249.3	2.97	282.2 ± 86.8	3.36 ±0 .97
1h _{9/2}	3413	52.6	0.63	86.7 ±2 5.1	1.03 ± 0.29
Total		1209.6	14.4	1180±340	14.1±4.2

Summary: ²⁰⁸Pb(³He,tp)

- GTR: $\Gamma^{\uparrow}/\Gamma \sim 4.9\%$, $\Gamma^{\uparrow}=184\pm49$ keV
 - Small branching ratio:
 - Spreading effect is very important.
 - **Coupling to underlying 2p-2h states.**
 - Centroid energy shift caused by High Coulomb barrier.
- IVSGDR: $\Gamma^{\uparrow}/\Gamma \sim 14.1\%$, $\Gamma^{\uparrow} = 1180 \pm 340$ keV
 - Larger p-decay Γ^{\uparrow}/Γ compared to GTR.
 - **E**_p: enough higher than
 - **Coulomb barrier, centrifugal barrier.**
 - Enhancement of decay to high-spin 1n-hole states

Results t singles

R.G.T. Zegers et al., PRL 90 (2003) 202501

t-p coincidences

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Angular distribution

Use difference-of-angle method between narrow angular bins to extract angular distribution of the resonance

IVSGMR angular distribution confirmed

61

Strength exhaustion

Systematic errors:

- extrapolation of continuum: 5%
- high-lying GT strength: small
- tail of the IVSGDR: 10%
- DWBA: 10% of measured value

Summed strength: $(46 \pm 4 \pm 10) \cdot 10^3$ fm⁴ (contribution from IVGMR subtracted)

method

Normal modes

Tamm-Dancoff

Hamamoto & Sagawa PRC 62, 024319

Continuum RPA Rodin & Urin

NPA 687, 276c

HF-RPA*

Auerbach & Klein PRC 30, 1032

* Different operator, includes GT

 $68 \pm 6 \pm 17$

 $103 \pm 9 \pm 25$

 $210 \pm 16 \pm 45$

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Proton decay from the IVSGMR

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Final state spectra

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

64 🖌

Final state population in ²⁰⁷Pb

Final state	Data(%)	Theory(%)*	
$3p_{1/2} 2f_{5/2} 3p_{3/2}$	< 3	11.3	
1i _{13/2}		21.4	
2f _{7/2} 1h _{9/2}	13±5	9.5	
1h _{11/2}	22±8	22.8	
$1g_{7/2} \ 1g_{9/2}$	17±8		
All	52±12	66	

*Rodin & Urin NPA 687, 276c (continuum RPA) Large discrepancies for partial branchings!!

The (³He,t) reaction at 0 degree.

Cross sections at E(³He)=450 MeV, q=0 for (³He,t) reactions

$$\frac{d\sigma}{d\Omega} = \frac{\mu_i \mu_f}{(\pi\hbar^2)^2} \left(\frac{k_f}{k_i}\right) (N^D \mid J_\tau \mid^2 B(F) + N^D_{\sigma\tau} \mid J_{\sigma\tau} \mid^2 B(GT))$$

- T. N. Taddeucci et al., Nucl. Phys. A469, 125 (1987) I. Bergqvist et al., Nucl. Phys. A469, 648 (1987)
- Neutrino absorption cross sections

$$\sigma = \frac{1}{\pi \hbar^4 c^3} \Big[G_V^2 B(F) + G_A^2 B(GT) \Big] \times F(Z, E_e) p_e E_e$$

Importance of charge-exchange reactions at intermediate energies

Calibration of B(GT) to cross section for known transitions (e.g. from β-decay)

67

M. Fujiwara et al. PRL 85 (2000) 4442.

Why are Gamow-Teller transitions in *pf*-shell nuclei important ?

Role of pf-shell nuclei in supernova explosions:
 Core of supernova star is composed of *pf*-shell nuclei.

Neutrino absorption cross sections by *pf*-shell nuclei are essential in understanding of nuclear synthesis by Supernova explosions in cosmos.

- → Difficulties in shell model calculations for *pf*-shell nuclei.
- → Importance of spin-isospin responses of *pf*-shell nuclei

Beam line WS-course

Grand-Raiden

T. Wakasa et al., NIM A482 ('02) 79. **Spectrometer** Section V Target QM10U/M/D Section IV QM9S QM8U/D BM7 BM6 QM7U/D BLP2 Section III Grand-Raiden Spectrometer QM6U/D BM5 Section 11 BM4 **RCNP** Ring QM5U/D BLP1 QM4U/D **Cyclotron High-dispersive** Ring Cyclotron **WS-course** Section

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Decomposition of the isospin component of the excited state in ⁵⁸Cu.

- Isospin of ⁵⁸Ni g.s. : $T_0=1$
- In principle, comparison among (n,p), (p,p), (p,n) spectra
 →separates isospin components
 But, very difficult in practice because of high level density for T=1 and T=2 states.

CG

$$\sigma_{T=0}: \sigma_{T=1}: \sigma_{T=2} = 2:3:1$$

(T₀=1)

72
Comparison of (³He,t) and (e,e') spectra

- Comparison of (³He,t) with (e,e') spectra → Try to separate isospin components
- At $E_x = 6-10$ MeV (T=1 region)
 - Rather good correspondence
- At E_x=10-15 MeV (T=2 region)
 - No good correspondence
- Fujita et al., Phys. Lett. B 365, 29 (1996).
- Fujita et al., Eur. Phys. J A13, 411 (2002).

(p, n) spectra for Fe and Ni Isotopes

Rapaport & Sugarbaker Rev. Mod. Phys. ('94)

74

²⁶Mg(p, n)²⁶Al & ²⁶Mg(³He,t)²⁶Al spectra

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

⁵⁴Fe(p,n) & ⁵⁴Fe(³He,t)

Determination of GT⁺ Strength and its Astrophysical Implications

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

78

Nuclear processes and energy household of supernovae

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

80

KVI

82

Electron capture in *fp*-shell

- In supernova explosions, electron capture (EC) on *fp*-shell nuclei plays a dominant role during the last few days of a heavy star [presupernova stage; deleptonization ⇒ core collapse ⇒ subsequent type IIa Supernova (SN) explosion]
 Bethe *et al.* (1979)
- The rate for EC is governed by the GT⁺ strength distribution at low excitation energy; not accessible to β-decay.
 - Fuller, Fowler and Newman (FFN) (1982-1985); estimates of stellar rates in stellar environments using s.p. model.
 - Caurier *et al.*, Martínez-Pinedo & Langanke (1999), Otsuka *et al.* ⇒ Large shell-model calculations ⇒ marked deviations from FFN EC rate; generally smaller EC rates.
- Experiments and theory relied on (n,p) data (TRIUMF) which have a rather poor energy resolution

fp-shell nuclei: large scale shell model calculations

E. Caurier *et al.* NPA 653 (1999) 439

- Stellar weak reaction rates with improved reliability
- Large scale shell model (SM) calculations
- Tuned to reproduce GT⁺ strength measured in (*n*,*p*)
- (n,p) data from TRIUMF
- GT⁺ strength from SM
- Folded with energy resolution

Case study: ⁵⁸Ni

85

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Exclusive excitations $\Delta S = \Delta T = 1$: (*d*, ²He)

 ${}^{3}S_{1}$ deuteron $\Rightarrow {}^{1}S_{0}$ di-proton (2 He) ${}^{1}S_{0}$ dominates if (relative) proton kinetic energy $\varepsilon < 1$ MeV (*n,p*)-type probe with exclusive $\Delta S=1$ character (GT⁺ transitions) But near 0°: tremendous background from *d*-breakup

86

87

Setup: ESN detector

Bari, Darmstadt, Gent, Iserlohn, KVI, Milano, Münster, TRIUMF

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Exclusive measurement of $\Delta S = \Delta T = 1$ strength: ${}^{12}C(d, {}^{2}He){}^{12}B$

 $E_0 = 171 \text{ MeV}, \theta = 0^{\circ}$

- shell model calculations 4 ħω & 6 ħω (G. Martinez-Pinedo)
- B (GT⁺) (S. Rakers)

S KVI

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

(p,n) vs $(d,^{2}\text{He})$: calibration

91

Experimental cross section and GT strength

GT Strength in ¹² B and ²⁴ Na from (d, ² He) reaction							
Target	Referen	ice data			Present data		
	Ex	B(GT_)	Ex	$d\sigma/d\Omega(q=0)$	σ(L =0)/ σ(τοτ)	B(GT ₊)	
	[MeV]		[MeV]	[mb/sr]	(q=0)	(C=0.267)	
¹² B	0.00	0.998	0.00	2.580±0.138	0.988	0.930±0.050	
			5.00	0.138±0.010	0.976	0.050±0.004	
²⁴ Na	0.44	0.050	0.47	0.138±0.012	0.821	0.049±0.004	
	1.07	0.613	1.35	1.563±0.085	0.948	0.654±0.035	
	1.58	0.020	1.89	0.087±0.026	0.649	0.025±0.008	
	2.98	0.362	3.41	0.667±0.039	0.980	0.290±0.016	
			3.59	0.266±0.018	0.806	0.095±0.006	
	3.33	0.059	3.92	0.193±0.058	0.809	0.070 ± 0.022	
	4.69	0.015	5.06	0.093±0.027	0.561	0.024±0.007	
			6.24	0.086±0.026	0.818	0.031 ± 0.010	
	6.46	0.068	6.70	0.161±0.012	0.972	0.071±0.005	
	6.87	0.029	7.20	0.173±0.013	0.642	0.050±0.004	

$(d,^{2}\text{He})$ as GT⁺ probe in *fp* shell nuclei

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

ĸ

GT Strength in ⁵⁸Co from (d,²He) reaction							
$\mathbf{E}_{\mathbf{x}}$	dσ/dσ(0.5°)	σ(L=0)/σ(τοτ)	B(GT+)				
[MeV]	[mb/sr]						
1.050	0.159±0.009	0.88	0.15±0.01				
1.435	$0.078 {\pm} 0.006$	1.00	0.09±0.01				
1.729	0.148 ± 0.014	1.00	0.16 ± 0.02				
1.868	0.648±0.020	1.00	0.72±0.05				
2.249	0.047±0.004	1.00	0.05±0.01				
2.660	0.057±0.005	0.96	0.06±0.01				
2.860	0.145±0.009	0.99	0.17±0.01				
3.100	0.126±0.008	0.99	0.15±0.01				
3.410	0.065±0.007	0.96	0.07±0.01				
3.520	0.080±0.009	0.95	0.09±0.01				
3.625	0.067±0.007	0.87	0.07±0.01				
3.900	0.062±0.006	0.97	0.07±0.01				
4.030	0.155±0.010	1.00	0.19±0.01				
4.05-5.00	0.381±0.061		0.49±0.09				

GT⁺ strength: comparison (n,p), $(d,^{2}\text{He})$ & theory

Up to 4 MeV excitation:

13 GT transitions measured $(d,^{2}\text{He})$

Strength rebinned in 1 MeV bins

Significant differences

Updated shell model calculations by Pinedo/Langanke

96

Electron capture rate

$$\lambda_{ec} \approx \sum_{i} \frac{B_{i}(GT)}{\sum_{\omega_{l}}^{\infty} \omega p(Q_{i} + \omega)} F(Z, \omega) S_{e}(\omega, T) d\omega$$

With

- $B_i(GT)$ Gamow-Teller strength distribution
- *and p* energy and momentum electrons
- $S_e(\omega, T)$ Fermi-Dirac distribution electron gas at temperature T

e⁻-capture rates using experimental strengths (Pinedo, Langanke)

Strength deviations at low excitation: rates deviation at low T

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

⁵⁸Ni: comparison of e-capture rates theory/experiment

99

⁵¹V(*d*,²He)⁵¹Ti: B(GT⁺) for proton-odd fp-shell nucleus

⁵¹V g.s. (J^π=7/2[−], T=5/2) \Rightarrow ⁵¹Ti (J^π=5/2[−], 7/2[−], 9/2[−], T=7/2) Independent single-particle model (FFN): E_x(GTR)=3.83 MeV

C. Bäumer et al., PRC 68, 031303(R) (2003)

Solution with the second secon

⁵¹V(d,²He): Angular distributions of $d\sigma/d\Omega$

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

⁵¹V(*d*,²He): Comparison with shell-model calculations

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

⁵⁰V(*d*,²He): GT⁺ transitions from odd-odd nucleus

⁵⁶Fe(*d*,²He): Comparison with shell-model calculations

Spectrum of the ⁵⁷Fe(d,²He)⁵⁷Mn-Reaction

⁶¹Ni(*d*,²He)⁶¹Co: GT⁺ distribution

KVI

108

⁶⁷Zn(d,²He)⁶⁷Cu: GT⁺ distribution

No shell-model calculations yet

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

109

GT⁺ centroid comparison

1		FFN	SM	Exp.	
even-even	Fe-56 Ni-58	3.8 3.8	2.2 3.6	1.9 4 3.4	
odd-A odd-p	V-51	3.8	4.7	4.1	
odd-A odd-n	Fe-57 Ni-61 Zn-67	5.3 3.5 4.4	4.1 4.6	2.9 4.2 3.4	
odd-odd	V-50	9.7	8.5	8.8	

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

110

Conclusions

- Presupernova models depend sensitively on EC rates.
- GT⁺ transitions in *fp*-shell nuclei play a decisive role in determining EC rates and thus provide input into modeling of explosion dynamics of massive stars.
- Large shell-model calculations are needed especially as function of T. (Caurier *et al.*; Martínez-Pinedo & Langanke [KB3G]; Otsuka *et al.* [GXPF]) ⇒ smaller EC rates for A=45-60 than FFN ⇒ Larger Y_e (electron to baryon ratio) and smaller iron core mass (Heger *et al.*)
- New high resolution (*d*,²He) experiments provide essential tests for shell model calculations at 0 T.

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

Outlook

- Radioactive ion beams will be available at energies where it will be possible to study GRs (RIKEN, SPIRAL2, NSCL, FAIR, RIA, EURISOL)
- Multipole strength functions in unstable n-rich nuclei soft modes, pygmy resonances, low-lying non-collective strength, modification of effective NN interaction but also various Giant mulitpole resonances
- ISGMR in a long chain of isotopes determine K_{sym}
- Determine GT strength in unstable sd & fp shell nuclei
- Use GRs as tools to determine n-skin [IV(S)GDR]
- Exotic excitations such as Double GT

Exothermal Charge Exchange Reactions

S

113

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

small Q-value

CISS05, 18-23 August 2005; Wako, Tokyo, Japan

114