Study of high-spin states by using stable and unstable

nuclear beams

Eiji Ideguchi CNS, the University of Tokyo

Contents

Introduction of high-spin studies Stable nuclear beam experiments Study of superdeformation and beyond = Limit of high-spin, deformation Gamma-ray spectroscopy near ¹⁰⁰Sn = Limit of proton-rich study Unstable nuclear beam experiments In-beam gamma-ray spectroscopy Future prospects

Introduction

Nuclei at the limits

- Limit of angular momentum
 - The question of the maximal angular momentum that a nucleus is able to sustain against rotation is an old and still unsolved problem
- Limit of deformation
 superdeformation, hyperdeformation
 Limit of isospin (proton-rich)

Behavior of nucleus at high-spin

http://nucalf.physics.fsu.edu/~riley/gamma/

Limits of angular momentum and band termination

- Nuclear angular momentum is generated by the finite number of constituent nucleons
- Maximum number of angular momentum for a given nucleus with specific configuration
- This is seen as termination of a rotational band in nuclei when the nuclear angular momentum is generated entirely from constituent of nucleons rather than collective excitation

Yrast band of ¹⁵⁸Er

High-spin of deformed nucleus

Yrast: lowest energy at given angular momentum

High-spin isomer (oblate shape)

High-spin states of spherical nucleus

How to study high-spin states

Fusion-evaporation reaction

- Coulomb excitation
- Transfer reaction (¹⁸O, ¹⁶O)
- Fragmentation
- Fission Spontaneous: ²³⁸U,^{244,246,248}Cm, ^{250,252}Cf,²⁵³Es,^{254,256}Fm n-induced: ²³⁵U(n,f)
- β decay

 $\begin{aligned} \mathbf{l} &= \mathbf{b} \times \mathbf{p} \\ \mathbf{d} \, \boldsymbol{\sigma}_{\mathrm{fus}}(\mathbf{l}) \, \boldsymbol{\infty} \, \mathbf{l} \end{aligned}$

Fusion-evaporation reaction

Fusion evaporation and gamma decay

Measure Gamma decay To investigate High-spin excited states

High-spin limit

- For small deformed nucleus, configurations will terminate into a non-collective oblate state where the spin is given by the sum of angular momenta of single particle configuration: I_{max}
- For large deformation (superdeformation), spin above I_{max} can be generated
- With increasing angular momentum, large deformed states (superdeformation, hyperdeformation) become yrast, and finally will decay by fission

Superdeformed shell gaps

Realistic H.O. Potential Energy in units of $\hbar\omega_0$ $140 \Leftrightarrow \sim 146$ fission isomer 110 \Leftrightarrow 112 A=190 (N) 80 ⇔ 80 ~82 A=190 (Z) $60 \Leftrightarrow \sim 64$ A=150 (Z) 40 ⇔ 42 A=80 28 ⇔ 30 A=60 16 ⇔ 16 S

K.Matsuyanagi, RIKEN winter school 2002

Superdeformation

Limit of deformation

R.M.Clark et al., Phys. Rev. Lett. 87, 202502 (2001)

SD band in ¹⁰⁸Cd

R.M.Clark et al., Phys. Rev. Lett. 87, 202502 (2001)

i_{13/2} intruder orbital

C-T. Lee et al., PRC 65, 041301 (2002)

Highest spin observed

Superdeformed band in ¹³²Ce E.S.Paul et al., Phys. Rev. C71, 054309 (2005) Imax = (68+)

 (68^{+}) (66 2418 2303 (60⁺) ¹³²Ce 2216 <u>(58+</u>) 2123 2027 ____(54+) 1931 1815 ____(50⁻, 1736 (48⁻) 665 (46⁻) 1744 612 1569 541 1488 1337 SD3 SD2 SD1

Excitation energy

- Excitation energy Relative to a rigid Rotor reference
- Comparison with Cranked Nilsson Strutinsky calculation
- Similar behavior with smooth band termination in A≈110

Limit of high-spin

High-spin nuclei studied by using stable nuclear beams

High-spin studies in proton-rich nuclei

- Nuclei produced by fusion-evaporation reaction are in proton rich side relative to the line of β -stability
- By using most proton rich stable beam and target, we can access to the proton rich region
- Proton rich nuclei close to proton drip line often decay by α decay or proton decay
 → using tagging technique to access proton rich limit (Jyväskylä, ANL)
- Many proton rich nuclei can also be studied (¹⁰⁷In)

Recoil decay tagging

Correlated radioactive decay - apparatus

http://www.phys.jyu.fi/

Study of 107 In (Z=49, N=58)

Reaction : ${}^{52}Cr(187MeV) + {}^{58}Ni(580+640 \,\mu \text{ g/cm}^2)$

PRC70, 064314(2004)

⁵⁸Ni(⁵²Cr, 3p)¹⁰⁷In

Experimental Setup

JUROGAM 43 Ge+BGO + RITU Gas filled Ion Sep. +GREAT spectrometer

tv of Jvväskvlä

GREAT: Double sided Si strip Si PIN photodiode array Double sided planar Ge Segmented Clover Ge

¹⁰⁷In level scheme

Gamma-ray spectrum

A rotational band in ¹⁰⁷In

₉₇₃₎ (1972)

(65/2)

(61/2) 10875

DCO ratio analysis (Directional Correlation from Oriented nuclei)

 $W(\theta_1,\theta_2,\phi) = N \sum B_{\lambda_1}(I_1) A_{\lambda}^{\lambda_2 \lambda_1}(X_1) A_{\lambda_2}(X_2) H_{\lambda_1 \lambda \lambda_2}(\theta_1,\theta_2,\phi)$

DCO Ratio

Linking transition

Total Routhian Surface (TRS) Calculation

Deformed minima with $\beta_2 \sim 0.2 - 0.3$

J⁽¹⁾, J⁽²⁾ moment of inertia Exp. and TRS calc.

J⁽¹⁾ and J⁽²⁾ moment of inertia

Smooth band termination in A~110 region

 $\pi[g_{9/2}^{-2}(g_{7/2}h_{11/2})] \otimes \nu[(d_{5/2}g_{7/2})^{6}h_{11/2}^{2}]$ terminate@39⁻

 $\pi[g_{9/2}^{-2}(g_{7/2}d_{5/2})h_{11/2}] \otimes \nu[(d_{5/2}g_{7/2})^{6}h_{11/2}^{2}]$ terminate@83/2⁻

Excitation energy relative to rigid rotor reference

High-spin study in neutron rich nuclei

Fusion reaction:
Stable isotope beam + Stable isotope target
→ High-spin states in proton-rich nuclei
High-spin study induced by RI beam
Fusion reaction:
RI beam + Stable isotope target

→ High-spin states in Stable | Neutron-rich nuclei

Study of ⁴⁹⁻⁵²Ti (Z=22,N=27-30)

High-spin study of most neutron-rich stable nuclei. $\rightarrow {}^{48}$ Ca and neighbors deformed states at high spin $\frac{5}{30}$

⁵⁰Ti (Z=22, N=28)

→ Deformed collective band at high-spin

Setup around 2ndary target

Secondary target : ⁹Be 10 μ m (1.8mg/cm²) thick, 10cm ϕ **Doppler correction:**

- 2 PPACs before 2ndary target
- \rightarrow Beam Image, incident angle on target F2 Plastic - F3PPAC TOF
 - \rightarrow Beam Energy

GRAPE(CNS Ge Array, position sensitive)

GRAPE

GRAPE

(Gamma-Ray detector Array with Position and Energy sensitivity)

18 segmented Ge detectors
ε ~ 4% for 1MeV
~ 5mm position sensitivity
for depth direction

2cm

Figure 1: Illustration of a Ge detector.

type	d	$\rho~({\rm cm^{-3}})$
p ⁺ (segmented)	$0.2 \ \mu m$	10^{14}
р	2.0 cm	$0.8 imes10^{10}$
n ⁺ (high voltaged)	$300 \ \mu m$	10^{14}

Gamma-ray spectra in ⁹Be(⁴⁶Ar, xn)^{55-x}Ti reaction

Excitation function measurements

Excitation function

New transition in ⁴⁹Ti

 \rightarrow 2370 keV transition above (19/2)⁻ state

New transition in ⁵¹Ti

Future prospects

At present facility with RI-beam

• Fusion reaction of RI beams for high-spin study

⁴⁴S beam \rightarrow ⁹Be(⁴⁴S, xn) ^{53-x}Ca ⁴⁵Cl beam \rightarrow ⁹Be(⁴⁵Cl, xn) ^{54-x}Sc ⁶⁷Co beam \rightarrow ⁹Be(⁶⁷Co, xn) ^{76-x}Ga

• Multiple Coulomb excitation of low-energy RI beam

Neutron-rich deformed nuclei

High-spin study using stable isotope beams

RI Beam Factory

Layout of the RI Beam Factory (RIBF)

Reactions for in-beam γ-ray spectroscopy at RIBF

- Intermediate energy RI-beams (~250MeV/A)
 - → Coulomb excitation,
 Proton inelastic scattering,
 Fragmentation
 Knock-out reaction
- Deceleration with materials (5 ~ 30 MeV/A)
 → Transfer reactions
 Deep inelastic reactions
 Multiple Coulomb excitation
 Fusion reaction

