IV International Summer School 2005 Center for Nuclear Study, University of Tokyo August 18 – 23, 2005

Nucleosynthesis in Supernovae and the Big-Bang (I)

Taka Kajino

National Astronomical Observatory Department of Astronomy, University of Tokyo

1

Solar System Abundance

Newest CMB Results

Spergel et al. 2003, ApJS, 148, 175.

WMAP determined all cosmological parameters?

Model dependent !

 $t_0 = 13.7 + -0.2 \text{ Gyr}$

 $\Omega_b h^2 = 0.0224 \pm 0.0009$

- $\Omega_m h^2 = 0.135^{+0.008}_{-0.009}$
- $\Omega_{tot} = 1.02 \pm 0.02$

 $w_{\Lambda} < -0.78$

Only 4.4% baryons are known. What is $\Omega_{\rm m}$ or Ω_{Λ} ?

OUTLINE

Universe is likely flat and accelerating! $\Omega_{\rm B} + \Omega_{\rm CDM} + \Omega_{\Lambda} = 1$

Is BARYON, $\Omega_{\rm B}$ = 0.04, consistent with Big-Bang Cosmology and Nucleosynthesis ?

CANDLE of dark side of the Universe !!

What is the nature of CDM, $\Omega_{CDM} = 0.26$?

Disappearing CDM Model in Brane World Cosmology ! Ichiki, Garnavich, Kajino, Mathews & Yahiro, PRD 68 (2003) 083518

What is DARK ENERGY, $\Omega_{\Lambda} = 0.7$?

Growing CDM Model in Brane World Cosmology ! Umezu, Ichiki, Kajino, Mathews Nakamura & Yahiro,(2005) (astro-ph/0507227)

Six (eleven)

Parameters !

COSMIC AGE (13.7 +- 0.2 Gy), strongly model-dependent ? Supernova R-Process & Origin of ²³²Th, ^{235,238}U ! --- model-independent !?

We detected v's, then NEUTRON STAR once formed !

SN1987A

Can core-collapse supernova produce R-PROCESS elements like ²³²Th($\tau_{1/2}$ =14.05Gy) which is an celestial cosmic clock ?

Subaru Telescope OBSEVES Extremely Metal-Deficient Stars

Discovery of Most Metal-Deficient Star HE1327-2326 using SUBARU Telescope

Frebel, Aoki, Kajino + SUBARU/HDS Collaboration NATURE 434 (2005), 871

SUBARU Telescope HDS

UNIVERSAL SCALING OF R-PROCESS ABUNDANCES

Modeling Supernova R-Process

Supernovae are the most spectacular events since the Big-Bang, yet they are still poorly understood in their dynamics.

Details are important.

QuickTime™ and a YUV420 codec decompressor are needed to see this picture.

Collapse of the Core

Prompt core bounce

E(iron core) ~ GM²/r ~ 10^{51} erg E(neutron star) ~ $GM^2/r \sim 10^{53}$ erg E(neutron star) - E(iron core) ~ 10^{53} erg 99% is emitted as neutrinos! E(shock) ~ 10^{51} erg 1% is kinetic energy! Usually the shock is absorbed by dissociating the iron core.

Neutrino-heated explosion DELAYED SUPERNOVA

Steps to a Core Collapse Supernova

- Stars with M ~ 10 40 M_{\odot} build up an Fe/Ni core. Maximum core size M_{ch} = 5 Y_e² M_{\odot} ~ 1.3 M_{\odot} (Electron Capture).
- Collapse Separates, inner homologous (v ∞r) core = 1.1 M_☉. outer slowly collapsing core = 0.2 M_☉.
 The central density increases and reaches nuclear matter density,
 - $\rho_{\text{nucl}} \sim 2 \times 10^{14} \text{ g cm}^{-3}$ (Nuclear EOS).

Gamow-Teller (β-decay) Strength Distribution of ⁵⁸Ni

Monte Carlo Shell Model Cal.: Honma-Otsuka (2005) Experiment: Rapaport (1983), NP A410, 371.

GT centroid energy raised by two-body interaction

Monte Carlo SHELL MODEL calculation: Honma & Otsuka (2005)

Expected Effect on Core-Collapse Supernovae

Pre-Supernova Calculation: Yoshida and Kajino (2005)

Steps to a Core Collapse Supernova

- Stars with M ~ 10 40 M_{\odot} build up an Fe/Ni core. Maximum core size $M_{ch} = 5 Y_e^2 M_{\odot} \sim 1.3 M_{\odot}$ (Electron Capture).
- Collapse Separates, inner homologous (v \propto r) core = 1.1 M_{\odot}. outer slowly collapsing core = $0.2 M_{\odot}$.

The central density increases and reaches nuclear matter density, $\rho_{nucl} \sim 2 \times 10^{14} \text{ g cm}^{-3}$ (Nuclear EOS).

- An outward moving shock develops due to nuclear saturation.
- The shock dissociates the outer iron core into free nucleons.
- Neutrinos scatter off the heated material behind the shock and \mathbf{O} deposite energy into p, n, and e⁺e⁻.
- A high entropy heated region forms and begins to lift the outer layers of the star (neutrino-driven wind).

SN1987A MODEL: Where occurs r-process ?

Core-Collapse and v-Heating

 $v_e + n \longrightarrow e^- + p$

Supernova Simulations First 300 ms: A. Burrows

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.

19

300 km

Neutrino Heated Bubble forms

Neutrino Luminosity ~10⁵³ erg/s

Neutrino Heating produces a high entropy bubble.

Woosley et al. 1994, ApJ 433, 229

General Relativistic Models of v-Driven Winds

Otsuki, Tagoshi, Kajino and Wanajo 2000, ApJ 533, 424

spherically symmetric, steady state winds in Schwarzschild geometry

$$\begin{array}{l}
\dot{M} = 4\pi r^{2} \rho_{b} u = \text{const} & \text{:mass ejection rate} \\
u \frac{du}{dr} = \frac{1}{\rho_{\text{tot}} + P} \frac{dP}{dr} \left(1 + u^{2} - \frac{2M}{r} \right) - \frac{M}{r^{2}} : \text{equation of motion} \\
\dot{q} = u \left(\frac{d\varepsilon}{dr} - \frac{P}{\rho_{b}^{2}} \frac{d\rho_{b}}{dr} \right) & \text{:heating rate} \\
\dot{q} = u \left(\frac{d\varepsilon}{dr} - \frac{P}{\rho_{b}^{2}} \frac{d\rho_{b}}{dr} \right) & \text{:heating rate} \\
\psi_{e} + n \leftrightarrow p + e^{-}, \overline{v}_{e} + p \leftrightarrow n + e^{+} & \text{etails} \\
\psi_{e} + e^{\pm} + \psi^{+} e^{\pm}, \psi + \overline{v} \leftrightarrow e^{\pm} & \text{etails} \\
\psi_{e} + e^{\pm} + \psi^{+} e^{\pm}, \psi + \overline{v} \leftrightarrow e^{\pm} & \text{etails} \\
\end{array}$$

Nucleosynthesis + Diffusion Equation for Z < 100 (~3000 species)

Given T & ρ :

$$\frac{dN_A}{dt} = -\sum_{j \neq \ell} \langle \sigma v \rangle_{Aj \neq k\ell} n_A n_j \qquad \text{Nuclear} \\ + \sum_{k\ell} \langle \sigma v \rangle_{k\ell \rightarrow Aj} n_k n_\ell \qquad \text{Reactions} \\ + \langle THREEF BODY = HIGHER TERMS \rangle \\ - \frac{\ell n^2}{T_{k}(\beta)} n_A \qquad \beta \text{-decays} \\ + \langle OTHERS \rangle \\ + \overline{\nabla} D_A \overline{\nabla} n_A \qquad \text{Diffusion} \end{cases}$$

Thermonuclear Reaction Rate

$$\mathcal{T}_{i}^{-1} = P_{B} N_{A} \langle \sigma v \rangle_{ij \to k\ell} \quad \text{Boltzmann average}$$
$$= P_{B} N_{A} \sqrt{\frac{2}{\mu \pi}} \frac{1}{(kT)^{2}} \int_{E}^{\infty} \underbrace{\sigma_{ij \to k\ell}(E)}_{ij \to k\ell} \exp(-E/kT) dE$$
$$\circ \quad \text{Cross Section}$$

Neutrino-Driven Wind Model: 1D-Hydro. Steady-Flow

Nucleosynthesis in SN v - Driven Wind

SUPERNOVA R-PROCESS

Otsuki, Tagoshi, Kajino & Wanajo 2000, ApJ 533, 424 Wanajo, Kajino, Mathews & Otsuki 2001, ApJ 554, 578

t = 0 **Neutrino-driven wind forms** right after SN core collapse. $n + p + \alpha$ t = 18 ms Seeds form. Exotic neutron-rich (78Ni) t = 568 ms - 1 sHeavy r-elements synthesize.

UNIVERSAL SCALING OF R-PROCESS ABUNDANCES

C. Sneden et al. (1996 – 2005)

Universal Abundances

C. Sneden et al. (1996 - 2005)

Universality applies only for 56 < Z < 75 !

- Z < 56 : Large Dispersion
 - Two r-processes?
 - Different Conditions at early times?
 - Another process?

Z > 75 uncertain? Nuclear Physics? BH vs. NS formation?

R-Process Yields in Type-II SN v-Driven Wind Model

Sasaqui, Kajino, Mathews, Otsuki, & Nakamura 2005, ApJ, in press.

Nuclear Physics Origin of Universality

Dependence upon Nuclear Input

Otsuki, Mathews & Kajino 2003, NewA 8, 767

Different beta-decay rates

Different Mass Formulae

Abundance pattern is most sensitive to the beta-decay rate.

Reaction Sensitivity

$$Y_{2nd} = Y_{2nd}(0) \prod_{i} \left(\frac{S_i}{S_i(0)}\right)^{\sigma_i}$$
$$Y_{3rd} = Y_{3rd}(0) \prod_{i} \left(\frac{S_i}{S_i(0)}\right)^{\sigma_i}$$

$$\sigma_i = \frac{\partial \left(\log \frac{Y_j}{Y_j(0)} \right)}{\partial \left(\log \frac{S_i}{S_i(0)} \right)}.$$

Power Index Sensitivity Parameter

Solar Neutrino Flux (J. Bahcall, Rev. Mod. Phys. 1982)

$$R = 1.35SNU \times \left(\frac{S_{11}}{S_{11}(0)}\right)^{-2.5} \left(\frac{S_{33}}{S_{33}(0)}\right)^{-0.37} \left(\frac{S_{34}}{S_{34}(0)}\right)^{+0.8} \\ \times \left[1 + 3.47 \left(\frac{S_{17}}{S_{17}(0)}\right)^{+1.0} \left(\frac{\lambda_{e7}}{\lambda_{e7}(0)}\right)^{-1.0}\right] \\ \times \left(\frac{t_{age}}{4.7 \times 10^9 \text{yr}}\right)^{+1.4} \left(\frac{Z}{0.015}\right)^{+1.1}$$

R-Process Sensitivity to Individual Reaction

Factor of 2 change of α(αn,γ)⁹Be reaction rate
→ About factor 50 change in r-element yields !
(slowly expanding ν-wind model)

Relevant Reactions in R-Process & SENSITIVITY

Sasaqui, Kajino, Mathews, Otsuki & Nakamura, ApJ (2005) submitted.

No.	reaction	sensitivity(α_i)					current		
		2nd peak	3rd peak	232 Th	235 U	238 U	importance		
(1)	$\alpha(\alpha n, \gamma)^9 Be$	0.1823	-0.6546	-1.9423	-1.9819	-2.1006	0.3445	11.2222	
(2)	$lpha({ m t},\gamma)^7 { m Li}$	0.2874	-0.7474	-2.7125	-2.7857	-2.9583	0.2658	13.2353	
(3)	$^7\mathrm{Li}(\mathrm{n},\gamma)^8\mathrm{Li}$	0.0465	-0.0917	-0.4296	-0.4436	-0.4729	0.7881	1.7163	
(4)	$^{8}\mathrm{Li}(\alpha,\mathrm{n})^{11}\mathrm{B}$	0.0017	-0.0032	-0.0164	-0.0170	-0.0181	0.9882	1.0120	
(5)	${}^{9}\mathrm{Be}(\mathrm{n},\gamma){}^{10}\mathrm{Be}$	0.0042	-0.0105	-0.0337	-0.0346	-0.0365	0.9761	1.0245	
(6)	$^{11}\mathrm{B}(\mathrm{n},\gamma)^{12}\mathrm{B}$	-0.0100	0.0096	0.1119	0.1166	0.1256	1.0853	0.9214	
(7)	$^{12}\mathrm{B}(\mathrm{n},\gamma)^{13}\mathrm{B}$	0.0015	-0.0079	-0.0114	-0.0115	-0.0012	0.9944	1.0056	
(8)	$^{13}\mathrm{B}(\mathrm{n},\gamma)^{14}\mathrm{B}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0	
(9)	$^{14}\mathrm{B}(\mathrm{n},\gamma)^{15}\mathrm{B}$	0.00010	-0.0002	-0.0032	-0.0034	-0.0035	0.9977	1.0024	
(10)	$^{12}\mathrm{C(n,\gamma)^{13}C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0	
(11)	$^{13}\mathrm{C}(\mathrm{n},\gamma)^{14}\mathrm{C}$	0.0005	-0.0045	-0.0214	-0.0227	-0.0232	0.9846	1.0157	
(12)	$^{14}\mathrm{C}(\mathrm{n},\gamma)^{15}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0	
(13)	$^{15}\mathrm{C}(\mathrm{n},\gamma)^{16}\mathrm{C}$	0.0040	-0.0194	-0.0899	-0.0878	-0.0867	0.8163	1.2250	
(14)	$ m ^{16}C(n,\gamma)^{17}C$	0.0	0.0	0.0	0.0	0.0	1.0	1.0	
(15)	$^{17}\mathrm{C}(\mathrm{n},\gamma)^{18}\mathrm{C}$	0.0274	-0.0209	-0.1624	-0.1735	-0.1767	0.6747	1.4821	
(16)	$^{18}\mathrm{C}(\mathrm{n},\gamma)^{19}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0	
(17)	$^{19}\mathrm{C}(\mathrm{n},\gamma)^{20}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0	
(18)	$^{18}\mathrm{C}(\alpha,\mathrm{n})^{21}\mathrm{O}$	0.0233	-0.0017	-0.0285	-0.0288	-0.0298	0.9354	1.0691	

Identified Important Reaction Flow Paths

(1) $\alpha(\alpha n, \gamma)^9$ Be(α, n)¹²C 35%(1 σ)

Sumiyoshi, Utsunomiya, Goko, and Kajino, Nucl. Phys. A709 (2002), 467

Principle of the Detailed Balance

CPT = 1, T: Time Reversality P: Parity Conservation

$$\begin{array}{cccc} 1 & 2 & \gamma & c \\ A + p \longrightarrow \gamma + C^* \end{array}$$

Radiative-Capture Reaction

Photo-Disintegration Reaction

$$\sigma_{(p,\gamma)}^{DC}(E) = \frac{1}{E} \exp\left(\frac{-2\pi Z_1 Z_2 e^2}{\hbar v}\right) S_{(p,\gamma)}^{DC}$$
$$= \left[\frac{2(2J_c+1)}{(2J_1+1)(2J_2+1)}\right] \left(\frac{\kappa_{\gamma}}{k}\right)^2 \sigma_{(\gamma,p)}(E_{\gamma}),$$

(2)α**(t,γ)⁷Li 30%(1**σ)

(3) ⁷Li(n, γ)8Li(α ,n)¹¹B Factor 2 (1 σ)

H. Ishiyama et al. AIP Conf. Proc. 704 (2004) 453.

INHOMOGENEOUS BIG-BANG NUCLEOSYNTHESIS

Kajino and Boyd, ApJ 359 (1990) 267; Orito, Kajino, Boyd & Mathews, ApJ 488 (1997) 515.

SENSITIVITY of Relevant Reactions to R-Process

Sasaqui, Kajino, Mathews, Otsuki & Nakamura, ApJ (2005), in press.

$$\mathbf{Y}_{\mathbf{0},\mathbf{r}} + \delta \mathbf{Y}_{\mathbf{r}} = \mathbf{Y}_{\mathbf{0},\mathbf{r}} \{1 + 2\sigma\}^{\alpha}$$

(1) $\alpha(\alpha n, \gamma)^9$ Be $1\sigma = 35\% \longrightarrow (Y_0 + \delta Y)/Y_0 = 0.35 \sim 11.2$

- (2) $\alpha(t,\gamma)^7 Li$ 1 $\sigma = 30\%$ \longrightarrow 0.27 ~ 13.2
- (3)(4) ⁷Li $(n,\gamma)^{8}$ Li $(\alpha,n)^{11}$ B 1 σ = 35%, x2 \longrightarrow 0.79 ~ 1.7

Δ (Th/Eu)=0.7 $\rightarrow \Delta$ T_G = 7.2 Gy !

No.	reaction	sensitivity (α_i)					current	
1107	rouomon	2nd peak	3rd peak	²³² Th	²³⁵ U	$^{238}\mathrm{U}$	importance	
(1)	$\alpha(\alpha n, \gamma)^9 Be$	0.1823	-0.6546	-1.9423	-1.9819	-2.1006	0.3445	11.2222
(2)	$lpha({ m t},\gamma)^7 { m Li}$	0.2874	-0.7474	-2.7125	-2.7857	-2.9583	0.2658	13.2353
(3)	$^{7}\mathrm{Li}(\mathrm{n},\gamma)^{8}\mathrm{Li}$	0.0465	-0.0917	-0.4296	-0.4436	-0.4729	0.7881	1.7163
(4)	$^{8}\mathrm{Li}(\alpha,\mathrm{n})^{11}\mathrm{B}$	0.0017	-0.0032	-0.0164	-0.0170	-0.0181	0.9882	1.0120

Relevant Reactions in R-Process & SENSITIVITY

Sasaqui, Kajino, Mathews, Otsuki & Nakamura, ApJ (2005) submitted.

No.	reaction	sensitivity(α_i)					current	
		2nd peak	3rd peak	232 Th	$^{235}\mathrm{U}$	$^{238}\mathrm{U}$	importance	
(1)	$\alpha(\alpha n, \gamma)^9 Be$	0.1823	-0.6546	-1.9423	-1.9819	-2.1006	0.3445	11.2222
(2)	$lpha({ m t},\gamma)^7{ m Li}$	0.2874	-0.7474	-2.7125	-2.7857	-2.9583	0.2658	13.2353
(3)	$^{7}\mathrm{Li}(\mathrm{n},\gamma)^{8}\mathrm{Li}$	0.0465	-0.0917	-0.4296	-0.4436	-0.4729	0.7881	1.7163
(4)	$^{8}\mathrm{Li}(\alpha,\mathrm{n})^{11}\mathrm{B}$	0.0017	-0.0032	-0.0164	-0.0170	-0.0181	0.9882	1.0120
(5)	${}^{9}\mathrm{Be}(\mathrm{n},\gamma){}^{10}\mathrm{Be}$	0.0042	-0.0105	-0.0337	-0.0346	-0.0365	0.9761	1.0245
(6)	$^{11}\mathrm{B}(\mathrm{n},\gamma)^{12}\mathrm{B}$	-0.0100	0.0096	0.1119	0.1166	0.1256	1.0853	0.9214
(7)	$^{12}\mathrm{B}(\mathrm{n},\gamma)^{13}\mathrm{B}$	0.0015	-0.0079	-0.0114	-0.0115	-0.0012	0.9944	1.0056
(8)	$^{13}\mathrm{B}(\mathrm{n},\gamma)^{14}\mathrm{B}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0
(9)	$^{14}\mathrm{B}(\mathrm{n},\gamma)^{15}\mathrm{B}$	0.00010	-0.0002	-0.0032	-0.0034	-0.0035	0.9977	1.0024
(10)	$^{12}\mathrm{C}(\mathrm{n},\gamma)^{13}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0
(11)	$^{13}\mathrm{C}(\mathrm{n},\gamma)^{14}\mathrm{C}$	0.0005	-0.0045	-0.0214	-0.0227	-0.0232	0.9846	1.0157
(12)	$^{14}\mathrm{C}(\mathrm{n},\gamma)^{15}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0
(13)	$^{15}\mathrm{C(n,\gamma)^{16}C}$	0.0040	-0.0194	-0.0899	-0.0878	-0.0867	0.8163	1.2250
(14)	$^{16}\mathrm{C}(\mathrm{n},\gamma)^{17}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0
(15)	$^{17}\mathrm{C}(\mathrm{n},\gamma)^{18}\mathrm{C}$	0.0274	-0.0209	-0.1624	-0.1735	-0.1767	0.6747	1.4821
(16)	$^{18}\mathrm{C}(\mathrm{n},\gamma)^{19}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0
(17)	$^{19}\mathrm{C}(\mathrm{n},\gamma)^{20}\mathrm{C}$	0.0	0.0	0.0	0.0	0.0	1.0	1.0
(18)	$^{18}\mathrm{C}(\alpha,\mathrm{n})^{21}\mathrm{O}$	0.0233	-0.0017	-0.0285	-0.0288	-0.0298	0.9354	1.0691

New Waiting Points in Light-Mass Nuclei

Neutron-Capture Cross Section $\sigma(^{18}C(n,\gamma)^{19}C)$ [µb]

Abundance Evolution of Carbon Isotopes

Sasaqui et al. (2005)

Abundance Y_A

SENSITIVITY of ²³²Th & ^{235,238}U to ¹⁸C(α,n)²¹O

Sasaqui, Kajino, Mathews, Otsuki & Nakamura, ApJ (2005) in press.

We detected v's, then NEUTRON STAR once formed !

Can core-collapse supernova produce R-PROCESS elements like ²³²Th($\tau_{1/2}$ =14.05Gy) which is an celestial cosmic clock ?

Why hasn't PULSAR yet been observed in this SN-remnant for more than 18 years? Did BLACK HOLE form after v-emission ?

v-CUTOFF EFFECT ON ACTINOID

ABUNDANCE

Neutrino Effects on Black Hole vs. Neutron Star Formation

Sasaqui, Kajino & Balantekin 2005, ApJ, in press. (astro-ph/0506100)

The important neutrino reactions during the nucleosynthesis are

Pauli Blocking

$$\begin{array}{c}
\nu_{e} + {}^{Z}_{N}A \rightarrow {}^{Z+1}_{N-1}A + e^{-}, \\
\bar{\nu}_{e} + {}^{Z}_{N}A \rightarrow {}^{Z-1}_{N+1}A + e^{+}, \\
\nu_{x}(\bar{\nu}_{x}) + {}^{Z}_{N}A \rightarrow \left[{}^{Z-1}_{N}A + p \\
{}^{Z-1}_{N-1}A + n \end{array} \right] + \nu'_{x}(\bar{\nu'_{x}}), \\
\end{array} \begin{array}{c}
\text{important !} (1) \\
\text{umimportant !} (2) \\
\text{umimportant !} (3)
\end{array}$$

where $x = \mu$, and τ are the neutrino flavors, and ${}^{Z}_{N}A$ is the nucleus with proton number Z and neutron number N. In particular the charged-current reactions that determine the initial

Early v - cutoff

- :- makes them impotent !
- :- keeps neutron-rich !

neutron-to-proton ratio are

$$\nu_e + n \rightarrow p + e^-,$$
 important ! (4)
 $\bar{\nu_e} + p \rightarrow n + e^+.$ (5)

The neutron to proton ratio in the weak equilibrium satisfies (Qian & Woosley 1996),

$$Y_e = \frac{\mathbf{p}}{\mathbf{n} + \mathbf{p}} \approx \left(1 + \frac{L_{\bar{\nu_e}}}{L_{\nu_e}} \times \frac{\epsilon_{\bar{\nu_e}} - 2\Delta + 1.2\Delta^2/\epsilon_{\bar{\nu_e}}}{\epsilon_{\nu_e} + 2\Delta + 1.2\Delta^2/\epsilon_{\nu_e}}\right), < 0.5$$

R-elements in Black-Hole vs. Neutron Star Formation

Different Supernova-Flow (τ_{dyn}) Models

SUBARU Telescope HDS

Honda et al. 2004, ApJ 607, 474

Conclusions

Core-collapse supernovae are the viable astrophysical sites for the r-process nucleosynthesis.

We still needs more precise nuclear physics data for light-to-Intermediate as well as heavy mass neutron-rich nuclei:

Some new key reactions: $\alpha(\alpha n, \gamma)^9$ Be, $\alpha(t, \gamma)^7$ Li, ⁷Li($n, \gamma)^8$ Li, ⁸Li(α, n)¹¹B

Key data: S_n , β -lives, v-induced n-emission and fission rates.

New concept of SEMI-WAITING: (n, γ) and (α , n) reactions are fast enough to wait for β -decay on ⁸Li, ¹⁵B, ^{16, 18}C, ²⁴O, ...

We studied the neutrino cutoff effect due to the Black-Hole formation in core-collapse supernovae.

The r-process drastically changes if $\tau_{dyn} < t_{CUT}$, making maximal effect on the ²³²Th and ^{235,238}U.

Detection of this effect in SN1987A ejecta is highly desirable to find a signature for the Black Hole formation.