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What we will learn?
• Basics

– What is Shell Model?
– Shell model basis states
– M-scheme 
– Lanczos method 
– Famous shell model codes 

• The Latest methods
– Extrapolation methods



Understanding of nuclear structure

• To solve many-body 
problem, we need 
following:
– Interaction
– Model Space
– Method to solve

H |f> = |f>E

Interaction Model Space

How to solve

In most cases, we have incomplete information and 
we can solve it  incompletely.

Two approaches in nuclear structure physics.
One is a mean-field approach. 
The other is a SM approach.



Mean field and its extended approach

• First, Method & Model 
space are fixed as  HF or 
HFB.

• Second, interaction 
parameters are determined 
under this condition to 
reproduce experimental 
data.

GCM, Projection, Multi-Slater
Determinants are introduced.

Interaction parameters must be
changed. 

Microscopic shell model approach

• First, model space & 
interaction are fixed.

• Second, we consider how to 
solve  many-body problem 
then we solve it (in a 
approximate way).

• Interaction is given 
microscopically.

• Various methods to solve 
many-body problem

• Exact solution exists.



What is Shell Model?
• Two phases

– Derivation of 
interaction

– Method for large-
scale shell model 
calculations

• We focus the latter 
issue today. 

QCD

Nuclear Force

Effective Interaction for SM

Shell Model Interaction

How to solve Shell Model? 

Microscopic shell model



Long history of shell model calculations
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Shell model space

• Inert core is assumed.
• Shell model space is 

determined by considering 
shell gap.

• Shell model space is not so 
large compared to that of 
mean-field calculations but 
we deal with all degrees of 
freedom within this space.
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Shell model configurations

• Protons and neutrons move all 
active single particle orbits with 
following restrictions.
– Isospin  conservation
– Angular momentum conservation
– Parity conservation 

• We consider such all many-body 
configurations.

• Combinatorial problem



Many-body basis

• J orbit has (2J+1) degeneracy for Jz.
• If we put Np protons  and Nn neutrons on such 

orbits, number of  possible configurations are

• unless relevant conservations are taken into 
account.

• Number of basis increases in a combinatorial 
way. 
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M-scheme basis states
• Sample of M-scheme basis
• Bit-wise representation in computer code
• Mz for proton is 3/2+1/2+1/2-3/2=2/2
• Mz for neutron is -1/2+1/2+1/2-3/2=-2/2
• Total Mz=2/2-2/2=0 
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M scheme vs. J scheme
• M scheme has an advantage for large-scale 

shell model calculations. 
• It requires less computer resource (memory).
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• M-scheme: Evaluation of matrix elements are easy and 
very fast. Then matrix elements are always calculated 
when they needed. Two vectors are in memory.

• J-scheme: Evaluation of matrix elements needs 6J and 
CFP and need a lot of CPU power  Then matrix elements 
are in FILE, which is too big. Two vectors are in memory.

• M-scheme is better than J-scheme for large-scale shell 
model calculations.

ESM MATRIX

M scheme for large-scale shell model calculations



Lanczos method
• For low-lying spectra for quantum many-body systems ie, 

Shell model, Hubbard model, FQHE, and so on, Lanczos 
method is convenient.

• H operation enhances low-lying components.

• We diagonalize the hamiltonian by these basis vectors.
• As these vectors are non-orthgonal, we orthogonalize them.
• These vectors are called Lanczos vectors.
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Lanczos method cont’d.
• Lanczos method can covert original matrix to 

tridiagonal one, which is easily diagonalized.

• Ground state energy can be obtained by L Lanczos
vectors. We consider convergence of ground state 
energy as a function of L. 
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Typical convergence patterns 
• Ground state energy is obtained 

by fewer L, which is general 
feature even for huge problem.

• Excited energies are also 
obtained by Lanczos method. 

• As H operation can keep 
symmetries, we can carry out 
Lanczos method for definite 
symmetries (spin and parity) 
even in M-scheme, by choosing 
symmetry preserving initial 
wave function.
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Lanczos shell model codes
• Large-scale shell model codes

– SM2(Strasbourg/Madrid）
– MSHELL (Tokyo, Mizusaki)
– VECSSE（Tokyo, Sebe）
– MSU code (MSU, Horoi)

• MSHELL (My shell model code)
– Code is well fitted for  pentium personal computer.

– Pentium 4  3GHz with 1 gigabyte memory

– 48Cr (2 million): 5 min for ground state

– 100 million problem is possible.

– At next domestic CNS workshop, we may offer a  course 
for this code.



Truncation scheme
• For low-lying states, important subspace is selected in various ways.
• For example, one of natural truncation for fp shell is to use shell gap for 

N=Z=28. In various papers, the number of excited nucleons across this 
shell gap is called t. The truncated space is specified by t.

• There are more elaborate truncation schemes.

shell model space

t=5



Go beyond Lanczos method
• The method to know the exact energy beyond 

truncation results 
– Extrapolation method

• The method to solve extremely huge shell 
model problem 
– MCSM /  QMCD (Quantum Monte Carlo 

Diagonalization method)
– SMMC (Shell Model Monte Carlo)
– DMRG (Density Matrix Renormalization Group 

method, Pittel et al.)
– VAMPIR



Funny short story! 

The student was terribly distressed by this endless game.

Folk tale concerning shell model

Once upon a time, at a certain room of a certain university,  there is a student.

A student: “I got a result of 2p2h shell model calculation!”
A professor: “Great! But 3p3h space may be important?”

The student revised his shell model code and worked hard…
The student: “I got a result of 3p3h shell model calculation!”
The Professor: “Great! But 4p4h space might change spectra?”

The student improved his shell model code and worked hard…
The student: “I got a result of 4p4h shell model calculation!”
The professor: “Great! But 5p5h space could bring about a considerable change ?”



Extrapolation is useful to finish such an endless game.
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Energy Variance Extrapolation 
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Example of energy variance extrapolation
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H3 energy variance extrapolation

• R is a appropriate lowest 
energy projector, which 
improves  wave function.

• We take R as 
• New energy variance 

extrapolation formula is 
derived.
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Example of H3

energy variance 
extrapolation for 

60Zn
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Energy variance extrapolation  with deformed basis

• Projected deformed basis
J
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• Variation after projection is a good 
approximation.

How to generate a series of wave functions

• Structure of VAP wave function can be varied in a following way.

( ) ( )† 0x a xay = Õ † (min) †
,( ) i i i

i
a x D x ca a= å

( ) min1xy y= =
For instance,   

xi=1 for lower orbits
xi=x for upper orbits



Test for 2 billion problem
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• 60Zn 
• fp shell
• fpd6  interaction
• 2 x 109 dimension for 

M=0 state
• Two extrapolations based 

on the spherical basis and 
deformed basis



Summary

• You learned following items.

– Basics of shell model calculations
• M-scheme & J-scheme
• Lanczos algorithm
• Truncation scheme

– The latest methods
• Energy variance extrapolation
• Other methods


