Low-energy radioactive beam experiments for nuclear astrophysics T. Teranishi

Kyushu University

CNS Summer School 2005

Main subject:

Recent experimental studies using low-energy radioactive beams at CNS

Production of low-energy radioactive nuclear beams

Basic concepts on stellar reaction cross section

Experimental techniques of measuring resonance scattering to study explosive hydrogen burning

r-process (rapid neutron capture process) plays a crucial role to produce heavy elements like Uranium and Thorium in super nova explosion.

rp-process (rapid proton capture process) is important in energy generation and nucleosynthesis at high-temperature hydrogen-rich explosive conditions like nova and X-ray burst.

Unstable (neutron- or proton-rich) nuclei play important roles in explosive conditions!

Production of radioactive nuclear beams

Two major techniques for radioactive beam production

1. ISOL (Isotope Separator On-Line)

Reaction products are produced and stopped in a thick production target, which is part of an ion source. The reaction products are reionized and re-accelerated as a secondary beam

Good for low-energy experiments (for nuclear astrophysics)

Two techniques for radioactive beam production

2. In-Flight Method

Reaction products are emitted from the target into forward angles. Particles are separated "in-flight" by a separator to have a secondary beam.

Independent of chemical properties

- Target can be thick.

Application to low-energy beams is also useful.

Radioactive Nuclear Beam Facilities

Low-energy (mostly < 5 MeV/nucleon) ISOL

Leuvan-la-Neuve, TRIUMF, ORNL, SPIRAL, REX ISOLDE, TRIAC... In-flight

NotreDame, TexasA&M, CNS.....

Direct measurements of stellar reactions (at E < 1 MeV)

Indirect study of stellar reaction by various low-energy reactions

In future projects, development of high intensity beams (> 10^9 pps) and upgrade of beam energy (> 10 MeV/nucleon) are planed.

High-energy, In-flight (> ~ 100 MeV/nucleon) GANIL, GSI, RIKEN, MSU....

> Structure, decay, & excitation properties of neutron- and proton-rich nuclei Coulomb dissociation method for stellar (p, γ) reaction rates

At future facilities (RIBF, RIA, FAIR...), mass, life-time, decay branches for extremely neutron-rich nuclei will be studied for the r-process.

Low-energy beam facility at Center for Nuclear Study (CNS), U-Tokyo

CRIB (CNS low-energy Radioactive-lon Beam separator) 2000~

Low-energy in-flight method

With low-energy high-intensity heavy-ion primary beams and a large-acceptance particle separator

For example: ¹⁴O beam can be produced by

- Primary beam ¹⁴N (6+)
- p(¹⁴N,¹⁴O)n reaction

Intensity 500 pnA (3×10^{12} particles/s) Energy 8.4 MeV/nucleon

Inverse-kinematics (heavy beam + light target) Cross section ~ 8 mb

Kinematically focused into forward angles

• Hydrogen target

Methane gas CH_4 in a cell with window foils 1atm. 2 cm (0.3 mg/cm²)

Energy < 7 MeV/nucleon ¹⁴O intensity 2⁻¹⁰⁶ particles/sec (10⁷ is possible with a thicker target)

CNS Low-Energy Radioactive-Beam Line in RIKEN Facility

CNS In-Flight Radioactive-Ion Beam Separator (CRIB)

RIKEN AVF (azimuthally varying field) cyclotron

K = 70 MeV Extraction radius 0.714 m Total weight 110 ton

$$E_{\max} = K \frac{q^2}{A}$$

Modifications & improvements (flat-top cavity, maximum energy upgrade etc) are made by CNS.

 $P/q = const. \& v = const. \rightarrow m/q selection$

(Z can be separated by using degrader)

Length of electrodes 1.5 m Max E field ± 200 kV / 8 cm Max B field 3 kGauss

Dispersive focal plane

Target

Production reactions for CRIB (low-energy in-flight method)

Heavy-Ion beam + light-ion target

Proton-rich nuclei: (p,n), (p,d), (d,n), (d,t), $(^{3}He,n)$ Neutron-rich nuclei: (d,p), $(d,^{3}He)$

Radioactive Beams Produced by CRIB (A<20)

Radioactive Beams Produced by CRIB (A>20)

				Secondary Beam	Primary Beam	Reaction	Target	Intensit y	Purity
24 Si	²⁵ Si	²⁶ Si↑	Mix	²¹ Na 4.2 <i>A</i> MeV	²⁰ Ne ⁸⁺ 200 pnA	(³ He,np)	³ He gas 0.25 mg/cm ²	2.3´10⁴ pps	12 %
²³ A1	²⁴ Al	²⁵ A1	L	²² Mg 4.6 <i>A</i> MeV	²⁰ Ne ⁸⁺ 200 pnA	(³ He,n)	³ He gas 0.25 mg/cm ²	6.6´10 ³ pps	3 %
² Mg	²³ Mg	²⁴ Mg	Mix	25A∣ 4.0 <i>A</i> MeV	²⁴ Mg ⁸⁺ 125 pnA	(³ He,np)	³ He gas 0.25 mg/cm ²	1.2 [~] 10 ⁴ pps	6 %
¹ Na	²² Na	²³ Na	L	26 Si 4.0 <i>A</i> MeV	²⁴ Mg ⁸⁺ 125 pnA	(³ He,n)	³ He gas 0.25 mg/cm ²	3 ⁻ 10 ³ pps	1.5 %
ne	INE	INE		²³ Mg 4.0 <i>A</i> MeV	²⁴ Mg ⁸⁺ 125 pnA	(d,t)	D ₂ gas 0.33 mg/cm ²	3.2 ´10⁴ pps	12 %

Hydrogen burning in stars

Quiet burning in stars pp-chains, CNO cycle etc.

Explosive burning in nova or X-ray burst

Hot-CNO,..., rp-process

Important to study (p,γ) reaction rates on proton-rich nuclei to understand explosive hydrogen burning

Formalism of reaction cross section

At low energies, the cross section can be approximated by

Resonance contributions are important

Non-resonant reaction rate

Reaction rate

$$\langle \boldsymbol{s}v \rangle \propto \int_0^\infty \boldsymbol{s}(E) E \exp\left(-\frac{E}{kT}\right) dE = \int_0^\infty \exp\left(-\frac{E}{kT}\right) \exp\left(-2\boldsymbol{p}\boldsymbol{h}\right) S(E) dE$$

Resonant capture cross section

Breit-Wigner formula for an isolated resonance

$$A+p \rightarrow B^* \rightarrow B+\gamma$$

$$\sigma(E) = \pi \chi^2 \omega \frac{\Gamma_p \Gamma_{\gamma}}{(E - E_R)^2 + (\Gamma/2)^2}$$

where

$$w = (2J+1)/(2J_1+1)/(2J_2,+1)$$

 $\Gamma_p, \quad \Gamma_g$ $\Gamma = \Gamma_p + \Gamma_g + \dots$

Spin J_1, J_2, J of A, p, B*

Proton & Gamma partial widths

Total width

Maximum cross section at
$$E = E_R$$

$$\boldsymbol{S}_{\mathrm{BW}}(E_R) \propto \frac{\Gamma_p \Gamma_g}{\Gamma^2}$$

Reaction rate

$$\langle \sigma v \rangle \propto \int_0^\infty \sigma(E) E \exp\left(-\frac{E}{kT}\right) dE \propto \omega \frac{\Gamma_p \Gamma_\gamma}{\Gamma} \exp\left(-\frac{E}{kT}\right)$$

Low-lying resonances (E~0) are important!

For stellar (p, γ) reactions of interest, often $\Gamma \sim \Gamma_p \gg \Gamma_{\gamma}$

Study of resonances above proton threshold

Because of $\Gamma_p >> \Gamma_{\gamma}$, the resonance scattering is much easier to measure than the resonance capture reaction .

Resonance scattering experiment is useful to study the resonance \rightarrow resonance information $E_{\rm R}$, J, $\Gamma \sim \Gamma_{\rm p}$ (However, Γ_{γ} can not be determined experimentally.)

Experiments with radioactive beams to study (p,γ) reactions

Direct measurement with radioactive beams at energies < ~ 1 MeV

¹³N(p,γ)¹⁴O Leuvain-la-Neuve ²¹Na(p,γ)²²Mg TRIUMF

beam intensity > 10^8 pps required!

Indirect studies with larger cross sections

Resonance search: (at low-energy facilities)

 $^{13}N+p \rightarrow ^{14}O^* \rightarrow ^{13}N+p$ for $^{13}N(p,\gamma)^{14}O$

Coulomb breakup: (at high-energy facilities) ${}^{14}O + Pb \rightarrow {}^{13}N + p$ for ${}^{13}N(p,\gamma){}^{14}O$ (absorption of virtual photons ${}^{14}O+\gamma \rightarrow {}^{13}N+p$)

ANC (Asymptotic Normalization Coefficient) method (low-energy) ⁷Be(d,n)⁸B can simulate direct proton capture ⁷Be(p, γ)⁸B

Experimental technique for the A+p elastic resonance scattering

A: proton-rich unstable nucleus

a low-energy beam of $E < \sim 4$ MeV/nucleon

p: proton

a target of polyethylene $(CH_2)_n$

In inverse kinematics

Thick-target method for A+p in inverse kinematics

Counts per energy-bin Target-thickness per energy-bin

Interference pattern of potential & resonance scattering

Setup for A+p

at CRIB F2 or F3

The beam stops in the target. Recoil protons come out from the target.

Reconstruction of CM Energy

$$E_{\rm CM} = \frac{1}{4\cos^2 \boldsymbol{q}_p} \frac{A+1}{A} E_p$$

A: mass number of projectile E_p : energy of proton in LAB By SSD Resolution of 100 keV (FWHM) q_p : angle of proton in LAB By PPACs & SSD (double-sided strips) Resolution of 0.5 deg (FWHM)

 $E_{\rm CM}$ is deduced from $E_p \& \boldsymbol{q}_p$ on an event-by-event basis (energy loss in the target taken into account)

 E_p resolution of 80 keV $\rightarrow E_{CM}$ resolution of 20 keV (FWHM) at $q_p = 0$

(Contribution from energy straggling of proton in the target is small.)

¹¹C+p Experiment

 J^{π} for the 3.13 & 3.56-MeV levels ?

Verifying known values of E_R , Γ ($\sim \Gamma_p$), J^{π}

For the astrophysical ¹¹C(p,g)¹²N reaction rates (Hot-PP)

Result: ¹¹C+p (¹²N^{*}) elastic resonance scattering

E & Γ are consistent width known values.

The 2⁺ level at 0.96 MeV & 2⁻ level at 1.2 MeV are important for the ${}^{11}C(p,\gamma){}^{12}N$ reaction.

$J^{\pi} = 3^{-}$ newly assigned to the 3.13-MeV level

does not contribute to the (p,g) reaction so much because of the M2 transition $3^- \rightarrow 1^+(g.s)$.

Spectra of ²³Mg+p (²⁴Al^{*})

¹³N+p experiment (preliminary)

for ¹⁴O resonances

Proton-resonance scattering is a powerful tool to study nuclear structure of light unstable nuclei! Energy resolution 20 keV (FWHM)!

Outlook

Direct measurement of stellar (α, p) or (p, α) reactions relevant to explosive hydrogen burning (rp-process) will be studied!

¹⁴O(α ,p)¹⁷F break out from the hot-CNO cycle ¹⁴O beam + thick He target

Preliminary result M. Notani et al., NPA746(2004)113c

Summary

Low-energy radioactive beams are useful to study resonance states close to the particle threshold in unstable nuclei.

Low-energy In-flight method at CNS

with intense primary beams and a large acceptance separator Technically simpler than and complementary to ISOL Many beams were developed in a short period

Experiments on proton-rich nuclei relevant to the explosive hydrogen burning