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Some questions ...
What does a nucleon do in the nucleus?
Is this a legitimate question?
Speculations ...
How strong is the dependence on N and 2?

Energy scales: As high as a realistic V, will take you
A-isobars, pions

As low as the first excited state

= ALL OF THEMI HOW?
= Time-dependent formulation not surprising



Description of the nuclear many-body problem

Ingredients: Nucleons interacting by "realistic interactions”
Nonrelativistic many-body problem

Method: Green's functions (Propagators)
= amplitudes instead of wave functions
keep track of all nucleons, including the high-momentum ones

Book: ® Dimitri Van Neck & W.D.

Why: Physical insight and useful for all many-body systems
Link between experiment and theory clear
Can include all energy scales
> Efficient: generates amplitudes not wave functions
Many-Body Theory Exposed!

guantem mechanics i

Review: W.D. & C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)
Lecture notes: http://www.nscl.msu.edu/~brown/theory-group/lecture-notes.html



Good stuff ...
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< Physics of this picture requires different approach
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Outline

What is a propagator

Propagator in the many-body problem
Information contained in propagator
Spectral functions

Relation with experimental data
Experimental results

Outline of perturbation theory



What is a propagator or Green's function?

Time evolution is governed by the Hamiltonian H. For a single
particle the state

.>=e
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~LH(t-1y)

a,t,)
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sb0o
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sb0>

. d
is indeed a solution of lhg

Relation between wave function at tand 1, can then be written as
i‘H(t—to)

()= (Flatyr)=(Fle V= [ (7l N )

sboo
= ihff G(r,r t =t )Y(r',t,)

with the propagator or Green's function defined by

[ —éH(t—m

P Recall Huygens' principlel




Alternative expressions

-iE'(r-tO)

dE'e " d e
Using 9(t—t0)=—f2m Fm and -0 = 1,) = 8(t = 1;)

the Fourier transform of the propagator can be written as
GG FE) = [dt-1)er GGt - 1,)

_ E (Ola; |n){n|a:|0)
B E-¢ +in

n

*|0) with  H|n)=g,

n)

Also  {0laz|n)=({F|n)=u,(r)

So numerator yields information on wave functions
and denominator on eigenvalues of H.



How is & calculated?

"Simple” for the case of one particle. Can proceed by splitting
H=H,+V and using the operator identity RS N 1
A-B A A A-B

for the operator 4 _ 1 with A=E-H,+in

E-H+in
and B=V  to obtain 6in terms of 6© and V:

G=G"+G"VG
— G(O) + G(())VG(O) + G(O)VG(O)VG(O) .-

or in a particular basis
G(a.B:E) = GV(a.B:E) + Y G (a.y:E)(yV|8)G(S.6:E)

70
1
<OC‘E—H+i
n

1
E—H0+in‘/3>

with G(a.B:E) B) and GO(a.B:E)={q|



lagrams
D 9 m A\ E GO (a, B E)
Lowest order L,
FA

. sAANe Y GO,y E) (7| V16) GO0, B; E)
First order | |9

FA
o3
o G
] ¢ i
Ga = GOy + SN\ N8V
All orders summed by I | A
e




Single-particle propagator in the medium

Definition Gla,pst - 1) = —%<‘I’5V Ta., (), (O]%')

with : qré\’> = Eév‘wév> for the exact ground state
Ly oy

and ., (f) =e" ae’ (Heisenberg picture)

while T orders the operators with larger time on the left including
a sign change

G(a, Bt 1) {9 t—1e - t)<1PN - )a; v particle
- H(t t)e%EO . t)<‘I’(§V a*e_%ﬁ(ﬂ_t)aa Wév>} hole




Fourier transform of & (Lehmann representation)

<‘Pév a, ¥ ><II{;V+1 a;
E - (EN”—E(])V)Hn

5 U [ )0 a,
2 (Egv -E)")-in

0 > < Particle part

G(a.B;E) = E

0 > < Hole part

Numerator contains information about "wave functions”
(W a9 and (" fap )
while denominator identifies eigenvalues of H for the N=1 states

2 le¢1> _ ENil qjN¢1>

Note

n

has been used for exact N =1 states of H



Spectral functions

Probability density for the removal of a particle with quantum
numbers represented by o from the ground state, while leaving

N-1 N
the remaining system at an energy £, =E)-E

S,(c:E) = E‘qﬂ“ ‘5( -(E -E)))

N-1
for energies E =<ég,=E, - E,

Relation of “hole" spectral function to propagator
1 _

1 1 .
Sy(oE) = ;Im G(a.a;E) basedon iy T P+ i x)

)

Occupation number:  p(q) = jSh (E) dE = <‘Pév aa,




Relation with experimental data

Direct knockout reaction:

Transfer a large amount of momentum and energy to a bound N-particle system
leaving an ejected fast particle and a bound N-1 system. By observing the momentum
of the ejected particle one can reconstruct the hole spectral function.

+ N-1
a;|W, >

Initial state “Pl> = ‘lpév> Final state ‘qu> -

External probe transfers momentum ,6(21 ) = Eagaﬁ_g

—

p

Transition matrix element <q; [A)(Z])“P> <q;ri\’ l‘a# 4“PN>

(Plane Wave) Impulse Approximation = ejected particle absorbs ¢

Cross section from Fermi's
daocE\ @)W o(E+E - E,)=5 (P Epis)

— — p N N-1
p .= p—(] and E . =—-F-= E - E
WlTh miss miss 2 n




Basic idea of ¢ P
(elze) or q0) A-1 systerr
(e.e”p)

Target atom or nucleus

2
do, «|(¥, ME-E,-E,)

.

Simplest case: <Z”1Hiv_l ﬁc@‘mw =~ <\1{f‘1 \%-a\‘l’év>
= doy, o« 3 (W |ag [0 )W ay o [W) O( B, - (Eo - E)7))

Realistic case : distorted waves / more realistic
description of knocked out particle



Momentum profile

Atoms studied with the (e,2e) reaction

1
Hydrogen
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And so on for other atoms ...

Helium
in Phys. Rev. A8, 2494 (1973)

1

=23/2.7T
(pls(p) (1+ p2)2

Hydrogen 1s wave function
"seen” experimentally
Phys. Lett. 86A, 139 (1981)
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Spectroscopic factors in atoms

2
For a bound final N-1 state the spectroscopic factor is given by § = fdﬁKWéLl ‘aﬁ‘qjév >‘

For H and He the 1s electron spectroscopic factor is 1
For Ne the valence 2p electron has 5=0.92 with two additional fragments,
each carrying 0.04, at higher energy.
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(e,e’ p) cross sections for closed-shell nuclei
NIKHEF dataq, L. Lapikds, Nucl. Phys. A553, 297¢ (1993)
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Except ...



Removal
probability for
valence protons

from
NIKHEF data

Note:
We have seen mostly
data for removal of

valence protons
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and ...
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Strong fragmentation of
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Many-body perturbation theory for &

» Identify solvable problem by considering ﬁo =T+U
where U is a suitable auxiliary potential.

» Develop expansion in ﬁl =V-U

* Employs time-evolution, Heisenberg, Schrédinger, and
interaction picture of quantum mechanics.

* Once established, this expansion (expressed in Feynman diagrams)
is organized in such a way that nonperturbative results can be
obtained leading to the Dyson equation. The Dyson equation
describes sp motion in the medium under the influence of the
self-energy which is an energy-dependent complex sp potential.

* Further insight into the proper description of sp motion in the
medium is obtained by studying the relation between sp and
two-particle propagation. This allows the selection of appropriate
choices of the relevant ingredients for the system under study.



How to calculate &?
Rearrange Hamiltonian ﬁ — ]A" + ‘7 = (f+ (//\') + (‘7 — U) = Ho + ﬁl

Many-body problem with H, can be exactly solved
when U is a one-body potential like a Woods-Saxon or HO potential.

Corresponding sp propagator (replace H by H,)
) =3 Ll NP sl (o eyl
m E_(E2+1_Eq)1v)+i7] » E_(Eq)N_E:_l)_in

6(a-F) . O(F - a)

®; )

aOZ

aOZ

=5

“P\E-eg +in E-g,-in
using the sp basis associated with H,. Note that I:IOa; cl)g’> = (E(D{)V + ga)a; cI)f)V>
ﬁoaa <I>8’> = (E(DN - 3a)aa CIDf)V>

So thate.g. S(E) = lImG(O)(oc,oc;E) =6(E -¢,)0(F - a)
7T ~ like in atoms

£ (07

and ()= [ dES(E -&,)6(F - )= 6(F - a)



Perturbation expansion using 6 and H,

Use "interaction picture” Hl(t) e" He

Glawpit - 1) = _%E(%.)% [t f e, (@) [T A (1) A (1, )a, (D ()] @)

connected

Can be calculated order by order using diagrams and Wick's theorem.
Yields expressions involving 6© and matrix elements
of the two-body interaction V (and the auxiliary potential U)

Simple diagram rules in time formulation.

For practical calculations use energy formulation. Diagrams



Diagram rules in energy formulation

Rule 1 Draw all topologically distinct (direct) and connected
diagrams with m horizontal interaction lines for V7 (dashed)

and 2m + 1 directed (using arrows) Green’s functions G'%)
Rule 2 Label external points only with sp quantum numbers,
e.g. o and 3

Label each interaction with sp quantum numbers

*-—---o = (af

V]vd) = (af|V

v8) — (a3

Viow)

For each arrow line one writes

j

E = GO (u, v E)
i

but in such a way that energy is conserved for each V
Rule 3 Sum (integrate) over all internal sp quantum numbers and
integrate over all m internal energies

For each closed loop an independent energy integration
occurs over the contour C' 1

Rule 4 Include a factor (i/27)™ and (—1)¥ where F
is the number of closed fermion loops
Rule 5 Include a factor of % for each equivalent pair of lines




Examples of diagrams

®
E 4 = 2,5 GO, E)
v« | o |
.5----9{} B x —iY (el V108) [, GO0, e B
E 4 x G0 (4,5, E)
L Y5}
® ()
F A
YA = >,5 GO, v E)
®----- ( YE | )
€ x (=1)% Ze,(; 2on0 f(;T % (YA V' |e8) GO(B, \; E")
E 1 : | | 111 . ;
.§___§ o x GO e, GE) Y . ct L= (Vo) GO (i, &5 E)
o M x G4, 5 F)
= ,




More diagrams

. = Z,T(g GO(a,v; E) x i3, ZAC ‘ (T %
Y /
v e :E A MC x (el V' |86) G(O)(/\,E:E’)G(O)(&C: E")
. __________
= O ¢ & X e Jor T (€ ) GO (& )
« G5, 8 E)
° (3
® (X
ol = ¥ ,G9(a,; E)
LR X CDRE T o T OV Ieh)
ElhEQ E1+E2*E
'g“é ! x GO (e, (; E)GO (u,\; Ey + E; — E)
£} (8, E5) (CE|V [op)
* 3 x GO (6, 5; F)




Diagram organization

Sum of all diagrams can be written as




Introducing some self-energy diagrams

First order

I € . :
— B = i X, (el V108) [ GO0, E)

= (—1)id [ai [dla s e (YA V [ef)

x GO (e, E))GO (N By + By — E)

< GO (8,6 By) (CE V |6p)




The irreducible self-energy

The following self-energy diagram is reducible (previous two
were irreducible), i.e. can be obtained from lower order self-energy

terms by iterating with 6©

TA
-OE

E -7 = (= )2 QZECZ)\HIOT oy "}’MV‘FQ) G(O)(e \; E')
¢ & . x GO (e, E) ZWICT G Q5|I/ 1601) GO (. &; E")
f5 i

Sum of all irreducible diagrams is denoted by =".
All diagrams can then be obtained by summing

G(a.BE) =G (0, BE) + EG(O)((x,)/;E)Z*(y,é;E)G(O)((S,[J’;E) +

Y0

diagrammatically ...



Towards the Dyson equation

Can be summed by



Dyson equation ? GO
e ® 1
G 4 = 04 + @
@ o
y "
e

Looks like the propagator equation for a single particle
G(a,E) =G (a.BE) + EG(O)((x,y;E)Z*(y,é;E)G(é,/S;E)
7,0

with the irreducible self-energy acting as the in-medium
(complex) potential.



Homework

Recover the time-independent Schrodinger equation
for bound states from
G(a.B:E) =G (a.B:E) + ¥ G (a.y: EXy|V|8)G(S.8:E)
70

in momentum space for a particle without spin

|
G (a.B:E) = (| E-H +in B)  can then be written as
0

1 1

G”(p.pE)=(p| — p)=96(p-p) =)
E-Ler i E-Y +iy
Y'm 2m

Strategy: * Introduce complete set of eigenstates of Hin &

. Calculate  Mm(E- e, G=G"+G"VG]

with Hln)=g¢,

n> and €, <0



