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The two “most elusive” numbers in
nuclear physics

• What are these numbers?
• In what sense are they elusive?
• What is the history?
• Three-body forces? Relativity? Give up?
• What has been learned from (e,e´p)?
• What really decides the saturation density?
• Nuclear Matter with SRC? No LRC?
• Conclusions
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Empirical Mass Formula
 Global representation of nuclear masses (Bohr & Mottelson)

• Volume term bvol  = 15.56 MeV
• Surface term bsurf = 17.23 MeV
• Symmetry energy bsym = 46.57 MeV
• Coulomb energy Rc   = 1.24 A1/3 fm
• Pairing term must also be considered
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B = bvol A − bsurf A
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Empirical Mass Formula

Plotted: most stable nucleus for a given A
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Central density of nuclei
Multiply charge density at the origin by A/Z
⇒  Empirical density = 0.16 nucleons / fm3

⇒  Equivalent to kF = 1.33 fm-1

Nuclear MatterNuclear Matter
N = Z
No Coulomb

A ⇒∞, V ⇒∞ but A/V = ρ  fixed  

“Two most important numbers”
bvol  = 15.56 MeV and kF = 1.33 fm-1
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Historical Perspective

• First attempt using scattering in the medium Brueckner 1954

• Formal development (linked cluster expansion) Goldstone 1956

• Low-density expansion Galitskii 1958

• Reorganized perturbation expansion (60s) Bethe & students
involving ordering in the number of hole lines BBG-expansion

• Variational Theory vs. Lowest Order BBG (70s) Clark, Pandharipande
• Variational results & next hole-line terms (80s) Day, Wiringa
• Three-body forces? Relativity? (80s) Urbana, CUNY
• Confirmation of three hole-line results (90s) Baldo et al.
• New insights from experiment  NIKHEFNIKHEF Amsterdam Amsterdam

about what nucleons are up to in the nucleus (90s & 00s) JLabJLab
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Old pain and suffering!

Figure adapted from Marcello Baldo (Catania)
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Lowest-order Brueckner theory (two hole lines)
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M. van Batenburg (thesis, 2001) & L. Lapikás from 208Pb (e,e´p) 207Tl 

Up to 100 MeV
missing energy
and
270 MeV/c
missing momentum

Covers the whole
mean-field domain
for the FIRST time!!

Occupation of deeply-bound proton levels from EXPERIMENT

Confirmation of theory

SRC
LRC

Not a Fermi gas!Not a Fermi gasNot a Fermi gas!!
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Where are the last
protons? Answer is coming!

Jlab data
PRL93,182501 (2004)
Rohe et al.

Location of high-
momentum components

 integrated
strength OK!

12C

There are high-momentum components

in the nuclear ground state!

There are high-momentum componentsThere are high-momentum components

in the nuclear ground state!in the nuclear ground state!
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Energy Sum Rule (Energy Sum Rule (MigdalMigdal, , GalitskiiGalitskii, , Koltun Koltun ...)...)

Finite nucleiFinite nuclei
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Nuclear matterNuclear matter

•  Presumes only two-body interactions!

•  Correct description of experimental spectral function should yield good E/A!!

••  Presumes only two-body interactions!  Presumes only two-body interactions!

••  Correct description of experimental spectral function should yield good   Correct description of experimental spectral function should yield good E/AE/A!!!!

  

€ 

E
A

=
1
2
4
ρ

d3k
2π( )3

dE
−∞

ε F

∫ h2k 2

2m
+ E

 

 
 

 

 
 ∫ Sh (k;E)

 
 
 

  

 
 
 

  



Green’s function V 12

Where does binding come from (really)?
16O PRC51,3040(1995)

Quasiholes contribute 37% to the total energy
High-momentum nucleons (continuum) contribute 63%
but represent only about 10% of the particles!! 
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Saturation density and SRCSaturation density and SRC
• Saturation density related to nuclear charge density at the origin. Data for

208Pb ⇒ A/Z *ρch(0) = 0.16 fm-3

• Charge at the origin determined by protons in s states
• Occupation of 0s and 1s totally dominated by SRC as can be concluded from

recent analysis of 208Pb(e,e´p) data and theoretical calculations of occupation
numbers in nuclei and nuclear matter.

• Depletion of 2s proton also dominated by SRC:
      15% of the total depletion of 25%  (n2s = 0.75)

• Conclusion: Nuclear saturation dominated by SRC
             and therefore high-momentum components
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ElasticElastic
electronelectron

scatteringscattering
from from 208208PbPb

B. Frois et al.
Phys. Rev. Lett. 38, 152 (1977)

Mean fieldMean field

ExperimenExperimentt
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Self-consistent
treatment of

SRC
in nuclear matter

Interaction

Self-energy

Dyson equation
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Results fromResults from
Nuclear MatterNuclear Matter
2nd generation (2000)2nd generation (2000)

•• Spectral functions forSpectral functions for
          k k = 0, 1.36, & 2.1 fm= 0, 1.36, & 2.1 fm-1-1

•• Common tails on bothCommon tails on both
sides of sides of εεFF

Momentum distribution :

 only minor changes

occupation in nuclei

depleted similarly!?!
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Self-consistent spectral functionsSelf-consistent spectral functions

k = 2.1 fm-1

E - εF (MeV)

S(
k,

E)
 (M

eV
-1
)
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Saturation with self-consistent spectral functionsSaturation with self-consistent spectral functions
in nuclear matter in nuclear matter ⇒⇒  reasonable saturation propertiesreasonable saturation properties

Contribution to the energy per particle before integration over theContribution to the energy per particle before integration over the
single-particle momentum at high momentum for two densitiessingle-particle momentum at high momentum for two densities
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Saturation of Nuclear MatterSaturation of Nuclear Matter
Ladders and self-consistency for Nuclear MatterLadders and self-consistency for Nuclear Matter

•• Ghent groupGhent group
DewulfDewulf, Van Neck &, Van Neck &
WaroquierWaroquier

•• St. LouisSt. Louis
Stoddard, WDStoddard, WD

Phys. Rev. Phys. Rev. LettLett. . 9090, 152501 (2003), 152501 (2003)
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Self-consistent spectral functions

• Distribution below  εF broadens for high momenta and
develops a common tail at high missing energy

• Slight increase in occupation k < kF to 85% at kF = 1.36 fm-1

compared to Phys. Rev. C44, R1265 (1991) & Nucl. Phys.
A555, 1 (1993)

• Self-consistent treatment of Pauli principle
• Interaction between dressed particles weaker (reduced

cross sections for both pn and nn)
• Pairing instabilities disappear in all channels
• Saturation with lower density than before and reasonable

binding
•• Contribution of long-range correlations excludedContribution of long-range correlations excluded
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Self-consistent Green’s functions
and the energy of the ground state of the electron gas

Electron gas : -XC energies (Hartrees) 

Method   rs = 1   rs=2   rs=4   rs=5   rs=10   rs=20 Reference

QMC 0.5180 0.2742 0.1464 0.1197 0.0644 0.0344 CA80
0.5144 0.2729 0.1474 0.1199 0.0641 0.0344 OB94;OHB99

GW 0.5160 0.2727 0.1450 0.1185 0.0620 0.032 GG01
0.2741 0.1465 HB98

RPA 0.5370 0.2909 0.1613 0.1340 0.0764 0.0543

GW approximation
G self-consistent sp propagator
W screened Coulomb interaction

⇒ RPA with dressed sp propagators
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What about long-range correlations
in nuclear matter?

• Collective excitations in nuclei very different 
  from those in nuclear matter

• Long-range correlations normally associated with small q

• Contribution to the energy like dq q2 ⇒ very small (except for e-gas)

• Contributions of collective excitations to the binding energy of
  nuclear matter dominated by pion-exchange induced excitations?!?
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Inclusion of Inclusion of ΔΔ-isobars as-isobars as
““3N-3N-”” and  and ““4N-force4N-force””

Nucl. Phys. A389, 492 (1982)Nucl. Phys. A389, 492 (1982)

kF [fm-1]   1.0   1.2   1.4   1.6
third order
a) -0.303 -1.269 -3.019 -5.384
b) -0.654 -1.506 -2.932 -5.038
c) -0.047 -0.164 -0.484 -1.175
d)  0.033   0.095  0.220   0.447
e) -0.104 -0.264 -0.589   -1.187
f)  0.041   0.137   0.385   0.962

Sum -1.034 -2.971 -6.419 -11.375
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Inclusion of Inclusion of ΔΔ-isobars as 3N- and 4N-force-isobars as 3N- and 4N-force

2N,3N, and 4N from
B.D.Day, PRC24,1203(81)

2N,3N, and 4N from
B.D.Day, PRC24,1203(81)

Nucl. Phys. A389, 492 (1982)Nucl. Phys. A389, 492 (1982)

PPNPhys 12, 529 (1983)PPNPhys 12, 529 (1983)

⇒⇒  No sensible convergence with No sensible convergence with ΔΔ-isobars-isobars

Rings with Rings with ΔΔ-isobars :-isobars : 
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Nuclear Saturation without Nuclear Saturation without ππ-collectivity-collectivity

•• Variational Variational calculations treat LRC (on average) and SRCcalculations treat LRC (on average) and SRC
simultaneously (Parquet equivalence) so simultaneously (Parquet equivalence) so difficultdifficult to separate to separate
LRC and SRCLRC and SRC

•• Remove 3-body ring diagram from Remove 3-body ring diagram from Catania Catania hole-line expansionhole-line expansion
calculation calculation ⇒⇒ about the correct saturation density about the correct saturation density

•• Hole-line expansion doesnHole-line expansion doesn’’t treat t treat Pauli Pauli principle very wellprinciple very well
•• Present results improve treatment of Present results improve treatment of Pauli Pauli principle by self-principle by self-

consistency of spectral functions => more reasonableconsistency of spectral functions => more reasonable
saturation density and binding energy acceptablesaturation density and binding energy acceptable

•• Neutron matter: Neutron matter: pionic pionic contributions must be included (contributions must be included (ΔΔ))
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Pion Pion collectivity: nuclei vs. nuclear mattercollectivity: nuclei vs. nuclear matter

Vπ (q) = −
fπ
2

mπ
2

q2

mπ
2 + q2

• Pion Pion collectivity leads to collectivity leads to pion pion condensation at higher density incondensation at higher density in

   nuclear matter (including    nuclear matter (including ΔΔ-isobars) => -isobars) => Migdal Migdal ......

•• No such collectivity observed in nuclei  No such collectivity observed in nuclei ⇒⇒ LAMPF / Osaka data LAMPF / Osaka data

•• Momentum conservation in nuclear Momentum conservation in nuclear

  matter dramatically favors amplification  matter dramatically favors amplification

  of   of ππ--exhange exhange interaction at fixed interaction at fixed qq

•• In nuclei the same interaction is sampled In nuclei the same interaction is sampled

  over all   over all momenta  momenta  Phys. Phys. LettLett. . B146B146, 1(1984), 1(1984)
Needs further studyNeeds further study

⇒  Exclude collective pionic contributions to nuclear matter binding energy⇒  Exclude collective pionic contributions to nuclear matter binding energy
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Two Nuclear Matter ProblemsTwo Nuclear Matter Problems

• With π-collectivity and only
nucleons

• Variational + CBF and
     three hole-line results

presumed OK (for E/A) but
not directly relevant for
comparison with nuclei!

• NOT OK if Δ-isobars are
included

• Relevant for neutron matter

• Without π-collectivity
• Treat only SRC
• But at a sophisticated level

by using self-consistency
• Confirmation from Ghent

results ⇒ Phys. Rev. Lett.
90, 152501 (2003)

• 3N-forces difficult ⇒ π ...
• Relativity?

The usual oneThe usual oneThe usual one The relevant one?!The relevant one?!The relevant one?!
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CommentsComments

• Saturation depends on NNσ-
coupling in medium but
underlying correlated two-
pion exchange behaves
differently in medium

• m*  0 with increasing ρ
opposite in liquid 3He

     appears unphysical
• Dirac sea under control?
• sp strength overestimated

too many nucleons for k<kF

•• Microscopic models yield onlyMicroscopic models yield only
attraction in matter and more soattraction in matter and more so
with increasing with increasing ρρ

•• Microscopic background ofMicroscopic background of
phenomenological repulsion in 3N-phenomenological repulsion in 3N-
force (if it exists)?force (if it exists)?

•• 4N-, etc. forces yield increasing4N-, etc. forces yield increasing
attraction with attraction with ρρ

•• Needed in light nuclei andNeeded in light nuclei and
attractive!attractive!

•• Mediated by Mediated by ππ-exchange-exchange
•• Argonne group canArgonne group can’’t get nucleart get nuclear

matter right with new 3N-forcematter right with new 3N-force

RelativityRelativityRelativity Three-body forcesThree-body forcesThree-body forces
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Conclusions

• Good understanding of role of short-range correlations
• Depletion of Fermi sea: nuclear matter OK for nuclei

• Confirmed by experiment
• High-momentum components

• # of protons experimentally confirmed
• Long-range correlations crucial for distribution of sp strength

• Energy per particle from self-consistent Green’s functions

• Better understanding of nuclear matter saturation
      ⇒ SRC dominate (don’t treat LRC from pions)

• We know what protons are up to in nuclei!!
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Some pairing issues in infinite matter

• Gap size in nuclear matter & neutron matter

• Density & temperature range of superfluidity

• Resolution of 3S1-3D1 puzzle (size of pn pairing gap)

• Influence of short-range correlations (SRC)

• Influence of polarization contributions

• Relation of infinite matter results & finite nuclei

Review: e.g. Dean & Hjorth-Jensen, RMP75, 607 (2003)
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Puzzle related to gap size in 3S1-3D1 channel

Mean-field particles

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990)
Vonderfecht et al. PLB253,1 (1991)
Baldo et al. PLB283, 8 (1992)

Dressing nucleons is expected to
reduce pairing strength as suggested 
by in-medium scattering
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Results from Nuclear Matter (N=Z)Results from Nuclear Matter (N=Z)
2nd generation (2000)2nd generation (2000)

Momentum distribution: only minor changes
when self-consistency is included

Occupation in nuclei: Depleted similarly!

Thesis Libby Roth Stoddard (2000)
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Green´s function and Γ-matrix approach (ladders)
Single-particle Green´s function
Dyson equation:

Self-energy                     , Γ-matrix

€ 

G(k, t1,t2) = −i T ck (t1)ck
+(t2)

= + Σ

Σ

€ 

G(k,ω) =
1

ω − k 2 /2m − Σ(k,ω)
⇒ S(k,ω) = − 2ImG(k,ω)

= Γ Γ= +Γ

• Pairing instability possible

• Finite temperature calculation can avoid this

€ 

G(k,ω) =G(0)(k,ω) +G(0)(k,ω)Σ(k,ω)G(k,ω)
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Self-energy

€ 

G(k,ω) =
1

ω − k 2 /2m − Σ(k,ω)
⇒ S(k,ω) = − 2ImG(k,ω)

Real and imaginary part of
the retarded self-energy

• kF = 1.35 fm-1

• T = 5 MeV

• k = 1.14 fm-1

Note differences due
to NN interaction
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Spectral functions

•Strength above and below the
Fermi energy as in BCS

• But broad distribution in energy

• BCS not just a cartoon of SCGF
but both features must be
considered in a consistent way

• CDBonn interaction at “T=0“



Green’s function V 36

BCS: a reminder
NN correlations on top of Hartree-Fock:
Bogoliubov transformation
with

Gap equation                             Spectral function S(k,ω)

+
kk c,ε

kkkkk cvcua += ++

€ 

uk
2

vk
2 =

1
2
1±

εk −µ

(εk −µ)2 + Δ(k)2
 

 
 
 

 

 
 
 
, E(k) = (εk −µ)2 + Δ(k)2

)(2

)'(
','||,)( 2

kE

k
kkVkkkdkk

−

Δ
><′′=Δ ∫

 −Ε       ε    µ              Ε           ω



Green’s function V 37

Solution of the gap equation
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K
Eigenvalue problem for a pair
of nucleons at ω=0

Steps of the calculation:

Assume Δ(k) and determine E(k)

Solve eigenvalue equation and evaluate new Δ(k)

•If lowest eigenvalue ω<0 enhance Δ(k) (resp. δ(k))

•If lowest eigenvalue ω>0 reduce Δ(k)

Repeat until convergence
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Gaps from BCS for realistic interactions

Nuclear matter
3S1-3D1

Neutron matter
1S0

• momentum dependence Δ(k)

• different NN interactions

• very similar to pairing gaps in
finite nuclei for like particles...!?

• for np pairing no strong empirical
evidence...?!

Early nineties: BCS gaps ~ 10 MeV

Alm et al. Z.Phys.A337,355 (1990)
Vonderfecht et al. PLB253,1 (1991)
Baldo et al. PLB283, 8 (1992)

T = 0
Mean-field particles
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Beyond BCS in the framework of SCGF
Generalized Green‘s functions:      Extend

Anomalous propagators
€ 

G(k, t1,t2) = −i T ck (t1)ck
+(t2)
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Generalized Dyson equation:    Gorkov equations
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ω − tk − Σ(k,ω) −Δ(k,ω)
−Δ+(k,ω) ω + tk + Σ(k,ω)
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Leads to e.g.
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Gpair     =    G         -       G         Δ        F

= Δ

G includes all normal
self-energy terms
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Anomalous self-energy: Δ & generalized Gap equation

Fermi function

If we replace S(k,ω) by “HF“ approx. and Spair(k,ω) by BCS:        
  Usual Gap equationUsual Gap equation

If we take Spair(k,ω) =S(k,ω) :
 Corresponds Corresponds to to the homogeneous the homogeneous solution of solution of ΓΓ-matrix -matrix eqeq..

With Spair (k,ω) :
  The above and self-consistency

Δ = = Δ

€ 

Δ(k) = ′ k 2∫ d ′ k k V ′ k dω∫ d ′ ω 
1− f ω( ) − f ′ ω ( )

−ω − ′ ω 
S( ′ k ,ω)Spair( ′ k , ′ ω )∫ Δ( ′ k )

€ 

f (ω) =
1

eβω +1
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Consistency of Gap equation (anomalous
self-energy) and Ladder diagrams

Iteration of Gorkov equations for anomalous

propagator generates 

… and all other ladder diagrams at 
total momentum and energy zero (w.r.t. 2µ) 
plus anomalous self-energy terms in normal part of propagator

So truly consistent with inclusion of ladder diagrams at other total
momenta and energies

+ …
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Features of generalized gap equation

€ 

Δ(k) = ′ k 2∫ d ′ k k V ′ k dω∫ d ′ ω 
1− f ω( ) − f ′ ω ( )

−ω − ′ ω 
S( ′ k ,ω)Spair( ′ k , ′ ω )∫ Δ( ′ k )

€ 

−
1

2 ˜ χ k '

Dashed:
Spectral strength only at 1 energy
Dashed-dot:
Effect of temperature (5 MeV)
Solid:
Includes complete strength 
distribution due to SRC

Related studies by 
Baldo, Lombardo, Schuck et al.
use BHF self-energy 

€ 

˜ χ k
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CDBonn yieldsstronger pairing thanArV18
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Proton-neutron pairing in symmetric nuclear matter

Using CDBonn

Dashed lines:
quasiparticle poles

Solid lines:
dressed nucleons

No pairing at saturation
density!
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Pairing and spectral functions
Spectral functions

S(k,ω)  dashed = A(k,ω)

Spair(k,ω) solid = AS(k, ω)

ρ = 0.08 fm-3

T = 0.5 MeV

k = 193 MeV/c    0.9 kF

Expected effect
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Pairing in neutron matter

Dressing effects weaker,
but non-negligibleCDBonn



Comparison for neutron matter
with CBF & Monte Carlo PRL95,192501(2005)

⇒ SCGF


