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Quasiparticle density functional theory
QPDFT

Van Neck et al. Phys. Rev. A74, 042501(2006)

• Kohn-Sham implementation of density functional theory “as simple” as
Hartree-Fock but includes correlations beyond HF while still only
solving sp equations (self-consistently)
• DFT not good for near degenerate systems characterized by small
particle-hole gaps
• Wave functions not easily interpreted
• Quasiparticles (QPs) are missing from KS-DFT
• Near the Fermi energy QPs describe the physics (Landau)
Motivation ⇒
• Develop sp equations whose solutions correspond to QP orbitals and
energies, including the total energy and density matrix of the system
(QPDFT) Dimitri Van Neck, U of Ghent
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New framework to do self-consistent sp theory
Quasiparticle density functional theory ⇒ QP-DFT

D. Van Neck et al., Phys. Rev. A74, 042501 (2006)

Ground-state energy and one-body density matrix from
self-consistent sp equations that extend the Kohn-Sham scheme. 
Based on separating the propagator into a quasiparticle part and a
background, expressing only the latter as a functional of the density matrix.
⇒ in addition yields qp energies and overlap functions
Reminder:  DFT does not yield removal energies of atoms
Relative deviation [%] DFT HF

He atom 1s 37.4 1.5
Ne atom 2p 38.7 6.8
Ar atom 3p 36.1 2.0

While ground-state energies are closer to exp in DFT than in HF

Can be developed for nuclei from DOM input!
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Description of the nuclear many-body
problem
Ingredients:    Nucleons interacting by “realistic interactions”

          Nonrelativistic many-body problem
Method:            Green’s functions (Propagators)

            amplitudes instead of wave functions
           keep track of all nucleons, including the high-momentum ones

Book: 
Dimitri Van Neck & W.D.

Review:             W.D. & C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)
Lecture notes:  http://www.nscl.msu.edu/~brown/theory-group/lecture-notes.html
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Single-particle propagator in the medium
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Fourier transform of G (Lehmann representation)
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Numerator contains information about “wave functions”

Note
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Density and Removal Energy Matrices

One-body density matrix
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Removal energy matrix
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Eigenvalue problem in finite systems

Dyson equation reads

€ 

G(E)[ ]−1 = G0(E)[ ]−1 − Σ(E)[ ]

includes noninteracting propagator and self-energy.
Self-energy acts as an energy-dependent sp potential.
For discrete poles of the propagator
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Dyson equation and vertex function
Fourier transform of equation of motion for G yields again the
Dyson equation with the self-energy
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Spectral function

Single-particle spectral function
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Split integration
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Evaluating (anti)commutators (previous slide) sum rule
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Quasiparticles
Simple-minded form is modification of noninteracting propagator
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with widths > 0 and corresponding qp orbits and energies.
First term corresponds to excitations in the (N-1)-particle system
with QP energies < the Fermi energy.
Corresponding spectral function 
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QP properties
• Set of QP orbitals is complete and linearly independent but in 
general not orthogonal.
• QP ≠ HF because terms beyond lowest order are included
• Energy-dependent part of self-energy reduces spectroscopic
strength
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• Interpretation “clear” in atoms and nuclei near the Fermi energy

QP contribution to sum rules
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QP width does not contribute to 0th and 1st moment! Forget about it!
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General statements

Given arbitrary Hermitian matrices and
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* and ** by solving the generalized eigenvalue problem

€ 

MQ[ ]u j = λ j NQ[ ]u j

u j
† NQ[ ]uk = δ j ,k

where 

€ 

NQ[ ] plays the role of a metric matrix.

So QP energies and orbitals are given by
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 Use only εQ & zQ, since widths extend strength beyond εF 
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QP contribution to density and removal energy matrices
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QP equations

QP contribution to spectral function dominant so isolate it

€ 

S(E)[ ] = SQ (E)[ ] + SB (E)[ ]
defining the background contribution.
Full energy dependence of SB not needed, since
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Where total energy integrals can be split into removal and addition part
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Left sides known!!
(see earlier slide)
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Main result

Remarkable conclusion: modeling background contributions
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Procedure

Then eigenvalue problem can be solved yielding
QP energies
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Comments

• Formalism generates total energy, density matrix, and individual
QP energies and orbits (with correct spectroscopic factors)
starting from a model for the background contributions [MB

(±)] and
[NB

(±)] as a functional of the density matrix.
• MB plays different role in nuclear systems as compared to
electronic systems (responsible for attraction that binds system)
• Recent work on modeling the complete nucleon self-energy
(Charity et al.) provides information to generate functionals near
and at intermediate energies from the Fermi energy
• Self-energy from nuclear matter provides this information for
energies far away, including the effect of short-range correlations
• Intermediate implementations are possible ⇒ adapt Skyrme
functional approach
• Formalism includes HF and KS-DFT (see Van Neck paper)
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Time to stop!

Thanks for listening


