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Quasiparticle density functional theory

QPDFT
Van Neck et al. Phys. Rev. A74, 042501(2006)

* Kohn-Sham implementation of density functional theory “as simple” as
Hartree-Fock but includes correlations beyond HF while still only
solving sp equations (self-consistently)

 DFT not good for near degenerate systems characterized by small
particle-hole gaps

- Wave functions not easily interpreted

» Quasiparticles (QPs) are missing from KS-DFT

* Near the Fermi energy QPs describe the physics (Landau)
Motivation =

* Develop sp equations whose solutions correspond to QP orbitals and
energies, including the total energy and density matrix of the system
(QPDFT) Dimitri Van Neck, U of Ghent



New framework to do self-consistent sp theory

Quasiparticle density functional theory = QP-DFT
D. Van Neck et al., Phys. Rev. A74, 042501 (2006)

Ground-state energy and one-body density matrix from

self-consistent sp equations that extend the Kohn-Sham scheme.

Based on separating the propagator into a quasiparticle part and a
background, expressing only the latter as a functional of the density matrix.
= in addition yields gp energies and overlap functions

Reminder: DFT does not yield removal energies of atoms

Relative deviation [%] DFT HF
He atom 1s 374 15
Ne atom 2p 38.7 6.8
Ar atom 3p 36.1 2.0

While ground-state energies are closer to exp in DFT than in HF

Can be developed for nuclei from DOM input!



Description of the nuclear many-body
problem

Ingredients: Nucleons interacting by "realistic interactions”
Nonrelativistic many-body problem
Method: Green's functions (Propagators)
= amplitudes instead of wave functions
keep track of all nucleons, including the high-momentum ones
Book: _. =
- Dimitri Van Neck & W.D.

Many-Body Theary Exposed!

——

Review: W.D. & C. Barbieri, Prog. Part. Nucl. Phys. 52, 377 (2004)
Lecture notes: http://www.nscl.msu.edu/~brown/theory-group/lecture-notes.html



Single-particle propagator in the medium

Definition G(a,Bst 1) = h(le 1|a,, (t)a}, ()]%)

with | ‘Pév> = Eév“l'év> for the exact ground state
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Fourier transform of & (Lehmann representation)
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Finite systems particle-hole gap
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Density and Removal Energy Matrices

One-body density matrix

= [ e alapE)= B () (2), = (W fga.

Removal energy matrix

f—e "E G(a,BE) = Esi_)(zi_))a(zi_)); = <‘Pév ‘a}; [aa,lfl]

Removal part of propagator yields any one-body observable plus
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Ey = %T”([Ho][N(_)] + [M(_)]) the total energy (Migdal-Galitskii)



Eigenvalue problem in finite systems

Dyson equation reads [G(E)]_1 = [GO(E)]_1 - [Z(E)]

includes noninteracting propagator and self-energy.
Self-energy acts as an energy-dependent sp potential.
For discrete poles of the propagator

CARESY

acts in single-particle space



Dyson equation and vertex function

Fourier transform of equation of motion for & yields again the
Dyson equation with the self-energy
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In diagram form

= Fxact result




Spectral function

Single-particle spectral function

[S(E)) = 5 sign(e - E)[G(EY]-[G)] )
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Sum rules
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Integrations over the entire energy axis

o = JdE S(@.p.E)= (%) [a}.a,}



Split integration
N,z = jdE S(a,B;E) + +jsdE S(o,B5E) =fo'}3 + Nf;;,
and similarly for

M, = jdE E S(a.BE) + de E S(a.B;E) = fo';j + Mf;[z,

Evaluating (anti)commutators (previous slide) sum rule
can be written in closed form
Na,[a’ = 6(1,[5 or [N] = [I]

and Ma,ﬁ=<a\H0\ﬁ>+Ea<ayM/36>N§;> or [M]=[H,]+|Vy]



Quasiparticles

Simple-minded form is modification of noninteracting propagator

G, (B E) i ZQz)a( ) i (zQ,.) (ZQJ'),;
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Qj j=N+1 Qj

with widths > O and corresponding gp orbits and energies.

First ferm corresponds to excitations in the (N-1)-particle system
with QP energies < the Fermi energy.

Corresponding spectral function
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QP properties

- Set of QP orbitals is complete and linearly independent but in
general not orthogonal.

- QP 2 HF because terms beyond lowest order are included

- Energy-dependent part of self-energy reduces spectroscopic
strength

T
Zi%g; =1

* Interpretation “"clear” in atoms and nuclei near the Fermi energy

QP contribution to sum rules _NQ] = EZQ].Z;,. *
j=1
i _ t
_MQ] = EEQJ'ZQJ'ZQJ * %

j=1

QP width does not contribute to O™ and 1s* moment! Forget about it!



General statements

Given arbitrary Hermitian matrices [NQ] and [MQ] with
[NQ] positive definite, one can obtain a unique decomposition of

* and ** by solving the generalized eigenvalue problem

[MQ]MJ. = )\.J-[NQ]MJ-
5N Jue =8,

where [NQ] plays the role of a metric matrix.

So QP energies and orbitals are givenby £, = A;

o) =[NQ]”J'

Use only ¢4 & z,, since widths extend strength beyond



QP contribution to density and removal energy matrices

and similarly for



QP equations

QP contribution to spectral function dominant so isolate it

[S(E)] =[S, (B)]+[S,5(E)]

defining the background contribution.
Full energy dependence of S; not needed, since

:N] B [NQ] * [NB] Left sides knownll
:M]=[MQ:|+[MB] (see earlier slide)

Where total energy integrals can be split into removal and addition part

Ny ] =[Ng ]+ [ V5]
My =[M |+ M)]




Main result

Remarkable conclusion: modeling background contributions

as a functional of the density matrix [N(‘)]

is sufficient to generate a self-consistent set of sp equations.
Rewriting eigenvalue problem generates

([Ho ]+ [VurA N} - [MoAN ], = 2, ([1]- [N N,

Initial estimate for [N(_)] allows construction of [NB]and [MB]

~

but also [VHF]



Procedure

([Ho ]+ [VurA N} - [ Mo AN, = 2, ([1]- [N N,

Then eigenvalue problem can be solved yielding

QP energies _
Ey =M,

i (-)
and QP orbits 7, = ([1]- [N, {N}]Ju,
N lowest energy solutions belong in N-1 and can be used to

update the density matrix N
[N,(;v)v] = EZQ/'Z;J + [N](?{N(—)}]

closing the self-consistency loop! '~
Total energy follows from

Y 73 N S 8 (R ) N



Comments

* Formalism generates total energy, density matrix, and individual
QP energies and orbits (with correct spectroscopic factors)
starting from a model for the background contributions [Mz*] and
[N;®] as a functional of the density matrix.

* Mg plays different role in nuclear systems as compared to
electronic systems (responsible for attraction that binds system)
- Recent work on modeling the complete nucleon self-energy
(Charity et al.) provides information to generate functionals near
and at intermediate energies from the Fermi energy

- Self-energy from nuclear matter provides this information for
energies far away, including the effect of short-range correlations
* Intermediate implementations are possible = adapt Skyrme
functional approach

* Formalism includes HF and KS-DFT (see Van Neck paper)



Time to stop!

Thanks for listening




