宇核連主催研究会「宇宙核物理実験の現状と将来」 大阪大学核物理研究センター、2014.8.7-8

Rプロセスの起源天体と 新たな物理のニーズ

COSNAP(COSmology & Nuclear AstroPhysics)グループ 国立天文台理論研究部、東大大学院理学系研究科天文学専攻

福野 叙礼、

Higgs (standard model) produces 1% of Quark Masses.

1012 10^{9} u 0^{;,,,,,} 10^{6} **()** 10³ **10**-10 Mass 10^{-3} Higgs mechanism does not apply to the generation of v-masse! Generation

Challenge of the Century

Universe is flat and expanded acceleratingly. $\Omega_{\rm B}+\Omega_{\rm CDM}+\Omega_{\Lambda}=1$

• What is CDM (Ω_{CDM} = 0.27) and DE (Ω_{Λ} = 0.68) ?

CMB & LSS including absolute v-mass

Is BARYON sector (Ω_B = 0.05) well understood ? BBN ⁷Li-Problem with DMs (Axion, SUSY ...) SUSY-DM ⇒ beyond the Standard Model ⇒ m_y≠0, unique signal

Key Physics with $m_v \neq 0$ beyond the Standard Model :

- Unification, CP & L- & B-genesis, Dirac or Majorana ?
- Dark Matter & Big Bang Nucleosynthesis ?
- Explosion Mechanism of CC-SNe & Nucleosynthesis ?

Today's Purpose

is to elucidate the significance of ASTRO-NUCLEAR PHYSICS in the studies of element genesis in the Universe.

⁶Li はビッグバン起源か? ⇒ ビッグバン宇宙論の危機?

Shima et al. Phys. Rev. C72 (2005) 044004. Kusakabe, Kajino, Yoshida, Shima, Nagai, and Kii, PRD 79 (2009), 123513. Kusakabe, Kajino, Cheoun, Kino, Mathews, ApJ Suppl. (2014), in press.

Total v-Mass, constrained from Nuclear Physics and Cosmology

 $\sum m_v < 0.36 \text{ eV} (95\% \text{C.L.})$: WMAP-7yr + HST + CMASS (Putter et al. arXiv:1201.1909)

CMB Anisotropies & Polarization including Cosmic Magnetic Field
∑ m_v < 0.2 eV (2σ, B_λ<2nG): with Magnetic Field; Ymazaki, Kajino, Mathews & Ichiki, Phys. Rep. 517 (2012), 141; Phys. Rev. D81 (2010), 103519.</p>

www.esa.int/Our_Activities/Space_Science/ Planck/Planck_reveals_an_almost_perfect_ Universe

理論予測に必要なニュートリノ・原子核反応率の理論計算

(v,v'n)

(v,v'p)

НĊ

11B

110

(e-,ve)

(α,γ)

'Be

(α,γ)

New Shell Model cal. with NEW Hamiltonian: v -12C, 4He

Suzuki, Chiba, Yoshida, Kajino & Otsuka, PR C74 (2006), 034307. Suzuki, Fujimoto & Otsuka, PR C67, 044302 (2003)

¹²C: New Hamiltonian = Spin-isospin flip int. with tensor force to explain neutron-rich exotic nuclei.

- μ-moments of p-shell nuclei

1200

1000

800

600

400

200

0

0

- GT strength for ${}^{12}C \rightarrow {}^{12}N$, ${}^{14}C \rightarrow {}^{14}N$, etc. (GT)

QRPA cal.: v -¹⁸⁰Ta, ¹³⁸La, ⁹⁸Tc, ⁹²Nb, ⁴²Ca, ¹²C, ⁴He...

Cheoun, et al., PRC81 (2010), 028501; PRC82 (2010), 035504: J. Phys. G37 (2010), 055101; PRC 83 (2011), 028801

v-BEAM は未だ実現していない量子ビーム! We can use EM- & Hadronic (CEX) PROBE!

Similarity between Electro-Magnetic & Weak Interactions

 ${}^{58}Ni({}^{3}He, t){}^{58}Cu$ E = 140 MeV/u Y Eujita et al EPLA 13

Counts

Y. Fujita et al., EPJ A 13 ('02) 411.Y. Fujita et al., PRC 75 ('07)

Weak operator in non-relativistic limit

Gamow-Tellar operator = $\vec{\sigma} \tau_+$

Spin-Multipole operator = $[\vec{\sigma} \times \mathbf{Y}^{(L)}]^J \mathbf{\tau}_{\pm}$

荷電交換反応

Double β decay – ν mass – Astro-Cosmology Connection

K. Yako et al., PRL 103 (2009) 012503.

THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 125:439–462, (1999)

NUCLEOSYNTHESIS IN CHANDRASEKHAR MASS MODELS FOR TYPE Ia SUPERNOVAE AND CONSTRAINTS ON PROGENITOR SYSTEMS AND BURNING-FRONT PROPAGATION

Koichi Iwamoto,^{1,2,3} Franziska Brachwitz,⁴ Ken'ichi Nomoto,^{1,2,3} Nobuhiro Kishimoto,¹ Hideyuki Umeda,^{2,3} W. Raphael Hix,^{3,5} and Friedrich-Karl Thielemann^{3,4,5}

Neutrino Oscillation and SN-Nucleosynthesis

Neutrino Hamiltonian: $H_{tot} = H_v + H_{vv}$

<u> H_{v} = Mixing and Interaction with Background Electrons</u>

MSW (Matter) Effect: Mikeheev-Smirnov-Wolfebstein (1978, 1985)

$$H_{\nu} = \frac{1}{2} \int d^3 p \left(\frac{\delta m^2}{2p} \cos 2\theta - \sqrt{2} G_F N_e \right) \left(a_x^{\dagger}(p) a_x(p) - a_e^{\dagger}(p) a_e(p) \right) \qquad \mathbf{p}_1$$
$$+ \frac{1}{2} \int d^3 p \frac{\delta m^2}{2p} \sin 2\theta \left(a_x^{\dagger}(p) a_e(p) + a_e^{\dagger}(p) a_x(p) \right),$$

<u> $H_{\nu\nu}$ = Self-Interaction</u> Self-Interaction

$$H_{\nu\nu} = \frac{G_F}{\sqrt{2}V} \int d^3p \, d^3q \, R_{pq} \left[a_\epsilon^{\dagger}(p)a_\epsilon(p)a_\epsilon^{\dagger}(q)a_\epsilon(q) + a_x^{\dagger}(p)a_x(p)a_x^{\dagger}(q)a_x(q) + a_x^{\dagger}(p)a_\epsilon(p)a_\epsilon^{\dagger}(q)a_x(q) + a_\epsilon^{\dagger}(p)a_x(p)a_x^{\dagger}(q)a_\epsilon(q) \right],$$

Quest for both EXACT & APPROXIMATE many-body SOLUTION !

"Invariants of collective neutrino oscillations"

Y. Pehlivan, A.B. Balantekin, T. Kajino & T. Yoshida, Phys. Rev. D84, 065008 (2011),

Y. Pehlivan, A.B. Balantekin, & T. Kajino, Phys. Rev. D (2014), in press.

Where is the r-process astrophysical site?

Supernovae or Binary Neutron-Star Merger ?

3D v-driven CC-Supernova (11.2 Msun) Takiwaki, Kotake, Suwa, ApJ 786 (2014), 83. Binary Neutron Star Merger (Credit-NASA)

Candidate Astrophysical Sites for R-Process in Metal-Poor Stars

	Physical Conditions			Expected	Evolution	
	S/k	Ye	$\dot{M}_r/(SN)$	Event Rat	Evaluation	
Supernovae v-Driven Wind	100	0.45	10 ⁻⁵ M _⊙ 10) ⁻² /yr/gal*	O Solar ~ Metal poor stars O Universality → Weak-r ? \triangle Explosion model Too high Y _e ?	
MHD Jet	10	0.1-0.4	10 ⁻³ M _⊙	10 ⁻⁴	 O Solar ~ Metal poor stars X Universality, broken △ Explosion model Special cond. ? 	
Gamma-ray Burst (S) Binary Neutron Star Merger	1	0.1	10 ⁻² M _⊙	10 ⁻⁵	X Universality, broken ? τ>1Gy, too late for [Fe/H]<-3? Δ Explosion model Special cond. ?	
(L) Collapsar	1-10 ⁴	0.1	10 ⁻¹ M _⊙	10 ⁻⁵	 O Solar ~ Metal poor stars X Universality, broken △ Explosion model Mechanism ? 	

*Solar-System r-abundance = $10^3 M_{\odot} \leftarrow 10^{-5}M_{\odot} \times 10^{-2} \times 10^{10} = 10^3 M_{\odot}$ Consistent with observed SN frequency Cosmic age

Fluid–Dynamical Data for Neutron Star Merger

lectron fraction (y_e)

0.1

0.05

t=7.53 ms

Ye~0.03

Binary Neutron Star Merger:

Korobkin et al., MNRAS 426 (2012), 1940, Piran et al., MNRAS 430 (2013), 2121, Rosswog et al., MNRAS 430 (2013), 2585.

SPH simulation:

Newtonian gravity Neutrino Leakage scheme

Apply to R-Process Nucleosynthesis

0.35

Nuclear Models sensitive to Fission -

One of the Best Models !

Nuclear Mass Model : KTUY Model Fission Barrier, Q_β, (n,γ)

Koura, Tachibana, Uno, Yamada, PTP 113, 305 (2005).

$\frac{Reaction Rates:}{\alpha \text{-decay}, \beta \text{-decay}, fission}$

H. Koura, AIP Conf. Proc. 704, 60, (2004).

M. Ohta et al., Proc. Int. Conf. on Nucl. Data for Science and Technology, Nice, France, (2007).

Abundance Evolution of Neutron Star Merger (MOVIE)

Contribution from Neutron Star Merger

Contribution from Supernova (MHD Jet)

<u>Contribution from v-driven Winds (Weak-r)</u>

S. Wanajo, ApJL, L22 (2013)

v-Driven Wind Weak R-Process

Recipe to reproduce solar r-elements

Recipe to reproduce solar r-elements

R-Process in the collapsar jet ?

Nakamura, Kajino, Mathews, Sato & Harikae, Int. J. Mod. Phys. 22 (2013), 1330022.

Final abundances: Sum of 1208 ejected tracer particles

A New Method to constrain EOS from Relic SN-v

G.J. Mathews, J. Hidaka, T. Kajino & J. Suzuki, ApJ (2014), in press.

THE ASTROPHYSICAL JOURNAL, 738:154 (16pp), 2011 September 10

THE COSMIC CORE-COLLAPSE SUPERNOVA RATE DOES NOT MATCH THE MASSIVE-STAR FORMATION RATE

SHUNSAKU HORIUCHI^{1,2}, JOHN F. BEACOM^{1,2,3}, CHRISTOPHER S. KOCHANEK^{2,3}, JOSE L. PRIETO^{4,5}, K. Z. STANEK^{2,3}, AND TODD A. THOMPSON^{2,3,6}

v-driven	wind weak-r	MHD-Jet SI	Ne N	IEW	Long GRB
Electron-c (Faint	Pair-v heated SNe (BH + Acc. Disk)				
detail	ONeMg SN	CC-SN	fSN(SH EOS)	fSN(LS EOS)	GRB
$\max(M_{\odot})$	$(8 \sim 10)$	$8 \sim 25(10 \sim 25)$	$25 \sim 125 \ (99.96\%)$	$25 \sim 125 \ (99.96\%)$	$25 \sim 125 \ (0.04\%)$
Phenomenon	Supernova	Supernova	Failed Supernova	Failed Supernova	Gamma-Bay Burst
T_{ν_c} (MeV)	3.0	3.2	5.5	7.9	3.2
$T_{\bar{\nu_e}}(MeV)$	3.6	5.0	5.6	8.0	5.3
T_{ν_x} (MeV)	3.6	6.0	6.5	11.3	4.4
$E_{\nu_a}^{total}(erg)$	3.3×10^{52}	5.0×10^{52}	5.5×10^{52}	8.4×10^{52}	1.7×10^{53}
$\mathbf{E}_{\bar{\nu_e}}^{total}(\mathrm{erg})$	2.7×10^{52}	5.0×10^{52}	4.7×10^{52}	7.5×10^{52}	3.2×10^{53}
$\mathbf{E}_{\nu_{\pi}}^{total}(\mathrm{erg})$	1.1×10^{53}	5.0×10^{52}	2.3×10^{52}	2.7×10^{52}	1.9×10^{52}
Δt	few s	few s	$\sim 0.5 s$	$\sim 0.5 s$	$\sim 10s$

CC-SNe:Yoshida, et al., ApJ **686** (2008), 448;

Suzuki & Kajino, J. Phys. G40 (2013) 83101.

fSN (failed SNe): Sumiyoshi, et al., ApJ **688** (2008) 1176.

* **<u>Shen-EOS</u>**: Shen et al. Nucl. Phys. **A637** (1998) 435.

* **LS-EOS:** Lattimer & Swesty, Nucl. Phys. **A535** (1991) 331.

ONeMg SNe: Hudepohl, et al., PRL 104 (2010).

GRBs: Nakamura, Kajino, Mathews, Sato & Harikae, Int. J. Mod. Phys. E22 (2013) 1330022; Kajino, Mathews & Hayakawa, J. Phys. G41 (2014) 044007.

Spectrum of Relic Supernova Neutrinos (RSNs)

for Hyper-Kamiokande (Mega-ton): Water Cherenkov $\bar{\nu_e} + p \rightarrow e^+ + n$

