宇核連研究会「宇宙核物理実験の現状と将来」 2014年8月7日、8日 阪大RCNP

地上極低バックグラウンド測定による宇宙核物理

大阪大学 核物理研究センター 嶋 達志

- 1. ニュートリノ元素合成; Ba
- ニュートリノ原子核反応率をどうやって求めるか
 直接測定 vs 間接測定 -
- 3. 同位体標的のミュオン捕獲測定
- 4. 地上での極低バックグラウンド測定の可能性
- 5. まとめ

Barium in solar-system abundance is mainly from s-process, but is expected to be dominated by r-process in metal-poor stars.

I.U. Roederer, 2012 [2]

$$f_{odd} = \frac{N\left({}^{135}Ba\right) + N\left({}^{137}Ba\right)}{N\left(Ba\right)}$$

 $= 0.11 \pm 0.01$ for s-only

0.46±0.06 for r-only

0.17 in solar system (Anders & Grevesse 1989 [1])

0.18±0.08 Gallagher, Aoki, Honda et al. 2012

0.15 ± 0.12

Collet, Asplund, Nissen 2009

Another aspect of $\beta\beta$ nuclei

Parent of $\beta\beta$ decay = pure r-nuclei Daughter of $\beta\beta$ decay = pure s-nuclei

Neutrino-induced double-beta decay of ^{134,136}Xe may play crucial roles in production of ^{134,136}Ba in r-process.

How to determine σ_{vA} experimentally ?

- Direct measurement
 Neutrino beam, muon-capture (inverse reaction)
- Indirect measurement --- analogous interactions Neutral current --- photo- & Coulomb break up, (p,p'), etc.
 Charged current --- (p,n), (³He,t), etc.

Muon-capture experiment at J-PARC/MLF/MUSE

Method;

- prompt X-rays from muonic atoms
- prompt γ -rays from (μ -, ν_{μ} xn) reactions
- β -delayed γ -rays from daughter nuclei were measured with HP-Ge detectors

Target; ¹⁰⁰Mo (94.5% enriched, 80mg/cm²) ^{nat}Nb (⁹³Nb 100%, 20mg/cm²) ^{nat}Ta (¹⁸¹Ta 99.99%, 167mg/cm²)

Muon-capture experiment at J-PARC/MLF/MUSE

Muon-target station

Net γ -ray spectra (¹⁰⁰Mo target, 80mg/cm²)

 $\Phi_{\mu} \sim 10^6$ /s, exposure time = 7 hrs

¹⁰⁰Mo target

Net γ -ray spectra (^{nat}Nb target, 20mg/cm²)

 $\Phi_{\mu} \sim 10^6$ /s, exposure time = 50 min.

MUSIC High-intensity muon source at RCNP, Osaka

Stopped μ^{-} rate ~5×10⁷ /s@400W (~10⁵ /cm²/s)

不安定核標的実験の可能性

ミュオン原子生成率:

$$R_{Z\mu} \cong \left(\frac{Z \cdot N_Z}{10^{18}}\right) \cdot \Phi_{\mu} \cong \left(\frac{Z \cdot \Phi_Z \cdot t}{10^{18}}\right) \cdot \Phi_{\mu}$$

 $\Phi_{\!\scriptscriptstyle \rm L}$: incident muon intensity

Z : atomic number of unstable nuclei, Φ_{z} : flux of unstable nuclei

t : accumulation time

不安定核ビーム 10⁵ 個/cm²/s (Z~40, t~10⁵ s) 負ミュオン 10⁵ /cm²/s

⇒ 生成レート: O(0.01) /s、崩壊レート: O(0.01) /s
例: ¹³³Xe(T_{1/2}=5.24d) (μ⁻,ν_µ)¹³³I(T_{1/2}=20.8h)

How deep can we go ?

ELEGANT-III BG rate

N. Kamikubota et al., NIM A245, 379 (1986)

Kamioka (1000m underground, 2700m.w.e.)

B: not shielded S: shielded (15cm OFHC+15cm Pb) G: shielded, with Rn rejection A: anti-coincidence with Nal C: coincidence with Nal for 76 Se 2⁺ \rightarrow 0⁺ (559keV)

まとめ

■ ミュオン捕獲 --- ニュートリノ原子核反応に対する直接的な 情報を与える

- 二次粒子ビーム (n, γ, μ, ν)×極低バックグラウンド放射化測定
 ⇒希少安定同位体、不安定核標的の (n,γ), (γ,n), μ-capture, etc.
 が測定可能に!
- ■ただし二次粒子ビーム源(≒加速器施設)で極限の低BG性能が 実現すれば。

