

Tadaaki Isobe (RIKEN)

# 実験と観測で解き明かす中性子星の核物質

 The study of neutron star matter is elected as "Grant-in-Aid for Scientific Research on Innovative Areas" five year project.



#### **Primary Physics Goal:**

Constrain the Nuclear Asymmetry Energy

$$E(\rho, T = 0, \delta) = \varepsilon(\rho, \delta = 0) + S(\rho)\delta^{2}$$

Nuclear equation of state

Well known through experiments

Asymmetry energy

- δ=(N-Z)/A
- <u>3</u> important motivation to study asymmetry energy
- Nuclear structure
  - Sustain neutron rich matter of heavy ions/super heavy ions.
  - Information for beyond the super heavy elements?
- Supernovae process
  - In terms of understanding of supernovae explosion dynamics, EoS, neutrino interaction, and electron capture process are important.
- Neutron star structure
  - <u>Sustained by asymmetry energy</u> → <u>neutron star radius depends on</u> <u>asymmetry energy</u>
- Gravitational wave

#### 2D neutrino-driven explosion (Garching):

K. Kotake **NuSYM** 

accretion rate@shock| [M<sub>3</sub>/s

500

600



✓ only for a softer EOS. (Accurate nuc

Density dependent  $S(\rho)$  for Z/A: 0.3~0.34

#### Largest uncertainty: Density dependence of the asymmetry energy



5

#### Surprising observations of Neutron Stars



#### Neutron star



## Probing high dense region with HIC

Heavy Ion Collision is unique method to make dense matter in lab..



#### Au+Au PRC87 (2013) 067601

#### $HIC \rightarrow Dynamics \rightarrow EOS$

- Necessary to understand heavy ion collision dynamics to extract the information related to the EOS.
- BUU and QMD is major transport model for the description of HIC.
  - Still controversial.
  - Numerical results on flow are consistent among the models.
  - Large difference shown in time evolution of density.

#### Heavy Ion Collision experiment at RIBF for EoS study



Change both asymmetry and density.

At the energy of RIBF,  $\rho \sim 2\rho_0$  is

expected to be achieved.

Esym at N>Z,  $\rho > \rho_0$ 



#### Heavy Ion Collision experiment at RIBF for EoS study

- Esym at N>Z,  $\rho > \rho_0$ 
  - Change both asymmetry and density.
  - At the energy of RIBF,  $\rho \sim 2\rho_0$  is expected to be achieved.
- <u>Systematic study of nuclear effect</u> in HIC by changing Z and N.
  - Useful to control coulomb effect.



AV14+UVII ; Wiringa, Fiks, & Fabrocini , Phys. Rev. C 38, 1010 (1988)



Goal is to decrease the factor of 2 uncertainty in symmetry pressure at  $\rho \approx 2\rho_0$ .

## Heavy RI collision experiment at RIBF

Isospin diffusion experiment

- <sup>107</sup>In + <sup>124</sup>Sn, E/A=50MeV

- Higher energy HRIC at RIBF
  - To study  $\rho^2 \rho_0$  region.
  - Approved, under preparation

|                                                                                                                                                | <sup>107</sup> In |
|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 1245                                                                                                                                           |                   |
| ( <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                   |
|                                                                                                                                                |                   |

| Primary           | Beam              | Target            | E <sub>beam</sub> /A | $\delta_{\text{sys}}$ | Goal                                                     | Days |
|-------------------|-------------------|-------------------|----------------------|-----------------------|----------------------------------------------------------|------|
| <sup>238</sup> U  | <sup>132</sup> Sn | <sup>124</sup> Sn | 300                  | 0.22                  | Probe maximum $\delta$                                   | 3    |
|                   | <sup>124</sup> Sn | <sup>112</sup> Sn | 300                  | 0.15                  | Probe intermed. $\delta$ , $\sigma_{nn}$ , $\sigma_{np}$ | 3    |
| <sup>124</sup> Xe | <sup>108</sup> Sn | <sup>112</sup> Sn | 300                  | 0.09                  | Probe minimum $\delta$                                   | 3    |
|                   | <sup>108</sup> Sn | <sup>124</sup> Sn | 300                  | 0.15                  | Probe intermed. $\delta$ , $\sigma_{nn}$ , $\sigma_{np}$ | 3    |



Total rate: 20kcps

## **SAMURAI Spectrometer**

Superconducting Analyzer for Multi particles from Radio Isotope Beams



## Experimental setup (under construction)



## SPiRIT Collaboration (2009~)

#### <u>SAMURAI</u> <u>Pion</u> <u>Reconstruction</u> and <u>Ion-Tracker</u>

**RIKEN**: T. Isobe, M. Nishimura, H. Baba, H. Otsu, K-I Yoneda, H. Sato, Y. Nakai, S. Nishimura, J. Lee, H. Sakurai, He Wang, N. Fukuda, H. Takeda, D. Kameda, H. Suzuki, N. Inabe, T. Kubo, Y. Shimizu

Kyoto Univ.: T. Murakami, N. Nakatsuka, M. Kaneko

- MSU: W. Lynch, M.B. Tsang, S. Tangwancharoen, Z. Chajecki, J. Estee, R. Shane, Jon Barney, Z. Chajecki, P. Palni
- TAMU: A. Mchintosh, S. Yennello, M. Chapman
- Liverpool/ Darsbury: M. Chartier, W. Powell, J. Sampson, R.Lemmon
- TITech: T. Nakamura, Y. Kondo, Y. Togano
- Korea Univ.: B. Hong, G. Jhang
- INFN: G. Verde, P. Russotto
- Tsinghua Univ.: Z. Xiao, R. Wang
- Lanzhou: Z. Sun
- CEA: E. Pollacco
- INP: J. Lukasik, P. Pawlowski
- ORNL: A. Galindo-Uribarri
- Tohoku Univ.: T. Kobayashi
- Rikkyo Univ.: K. leki
- GSI: T. Aumann



### <sup>132</sup>Sn+<sup>124</sup>Sn E/A=300MeV



# **Basic design of chamber**

stable operation is most important

- For the measurement of light charged particles: pions, protons and light ions. Beam passes through chamber as well.
- Based on Bevalac EOS TPC.
- Wire amplification with P10 gas (1atm).
- Target at the entrance of chamber.
- Readout with ~12000 pads.
- 2 track separation: 2.5cm
- Multiplicity: 10~100
- Readout with GET system
  - 12bit high throughput readout



#### SAMURAI TPC: Exploded View



## came to RIKEN at February 2014



# Under preparation at RIKEN towards first experiment at 2015



| Date           | Item                                                                         |
|----------------|------------------------------------------------------------------------------|
| 2014-Jul.      | TPC installation test into SAMURAI chamber<br>Test under 0.5T magnetic field |
| 2014-Sep.      | Mount all of electronics on TPC<br>Readout of cosmic events with GET         |
| 2014-Nov.      | Electronics and Trigger beam test at HIMAC                                   |
| 2014-Dec./Jan. | Start the preparation of day one experiment                                  |

#### Neutron detector: NeuLAND+NEBULA **NEBULA**



- 1scintilator: 180cm x 10cm x 10cm
- 4layer w/ 120 Neutron counters
- 12 VETO counters for every 2 layers
- Detection efficiency~40% for 1n
- Front acceptance: 3.6m (H) x 1.8m (V)

#### **NeuLAND**



Come to RIKEN at the end of 2014

- Tracking type neutron detector
- 1scintilator: 250cm x 5cm x 5cm
- Front acceptance 250cm x 250cm w/ 50 bars
- Depth: 3m with 60 layers

## What we are going to measure with SPiRIT

- To study the symmetry energy of high dense region with HIC, we need to understand the HIC dynamics.
- Need multiple observables to constrain theoretical inputs to the transport theoretical calculation.
- Charged particles
  - Charged pions, protons, and light ions.
  - Identified with dE/dX track rigidity.
  - Momentum can be reconstructed.
- Neutrons
- Event characterization
  - − Impact parameter, reaction plane  $\rightarrow$  flow
- Charged pion ratio, p/n ratio, <sup>3</sup>He/t ratio
- Symmetry energy
- Both the momentum and density dependencies of the isovector potentials ← p/n ratio, different energy.



# さいごに

