中性子寿命の精密測定と ビッグバン元素合成

高エネルギー加速器研究機構 物質構造科学研究所 特別准教授 三島 賢二

On behalf of J-PARC neutron lifetime collaboration

2014年08月08日(金) 大阪大学核物理研究センター宇宙核物理実験の現状と将来

中性子寿命 : T_n = 880.1 ± 1.1 (PDG2012)

中性子は880秒で陽子、電子、反ニュートリノに崩壊する。 これは最も単純な原子核のβ崩壊である。

中性子崩壊の重要性として以下の物理があげられる

- Big Bang Nucleosynthesis ←ビッグバン後の軽元素合成
- CKM unitarily
- reactor neutrino anomaly
- solar neutrino
- proton spin
- Goldberger-Treiman/Muon capture
- Bjorken sum rule
- Lattice calculation benchmark

ビッグバンと宇宙の進化

ビッグバン元素合成 Big Bang Nucleosynthesis

ビッグバン元素合成(BBN)

- ビッグバン後の10usで陽子と中性子が形成される。
 ▶ 陽子と中性子は同じ数。
- T~1MeV (1秒) > 温度が下がってくると中性子が減ってくる。 > 1秒後(T~1MeV)あたりで平衡からずれる (Freeze out) > Q(n→p+e⁻+ $\bar{\nu}$) = 1.293MeV $p_{f}^{n} = \exp\left(-\frac{Q}{T_{f}}\right) \sim 1/6$ 中性子寿命 質量数5の壁 ⁷Be
- T ~ 0.1MeV (3分)
 > p+n → D + γ (Q = 2.22 MeV)
- T < 0.1 MeV
 ³He, ⁴He, ⁷Liが合成される。

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「

 「
 <

<mark>陽子と中性子の量がわかれば反応断面積から計算できる。</mark>

³He - ⁴He

ビッグバン元素合成(BBN)

初期条件がわかればその後の元素合成が計算可能。 インプットパラメーターは > バリオン数密度(CMB測定から) > 中性子寿命 > 核反応断面積

標準BBN理論

- isotropic and homogeneous matter distribution
- general relativity
- standard theory of EM+Weak
- neutrinos are light and stable
- number of neutrino species=3

初期宇宙の観測と良い精度で比較すれば、標準BBNの検証が可能になる。

宇宙背景放射 Cosmic Microwave Background

宇宙の腫れあがりと宇宙背景放射(CMB)の測定 COBE,WMAP, and Plank

2.7K宇宙背景放射からわかること

ビッグバン元素合成 v.s. 天体観測 v.s. 背景放射

^{*}A. Coc et al, The Astrophysical Journal, 600 (2004) 544 9

Planck & He/H & Neutron Lifetime

天体観測によるHe/H比は系統的に大きくばらついている。

中性子寿命測定の現状

いろいろな中性子寿命測定

大きく分けてビーム法と蓄積法の2種類がある。

	Beam	Penning trap	Gravitational trap	Magnetic trap
中性子源	原子炉	原子炉	原子炉	原子炉
エネルギー	冷中性子	冷中性子	超冷中性子	超冷中性子
測定粒子	電子	陽子	中性子	中性子
メリット	flux monitor	low background	small correction	no wall loss
デメリット	high background	flux monitor	wall effect	depolarization
	878 ± 27 ± 14 (1989)	886.6 ± 1.2 ± 3.2 (2005)	$878.5 \pm 0.7 \pm 0.3$ (2008)	878 ± 1.9 (2009)

ビーム法 手法: 中性子fluxと崩壊の個数を測定 困難: 中性子fluxの測定

蓄積法 手法:中性子を貯蔵しなくなる時間を測定 困難:閉じ込めの完全性(壁での吸収等)

the Dead

the Survival

to vacuum pump

いろいろな中性子寿命測定

大きく分けてビーム法と蓄積法の2種類がある。

 手法	Beam	Penning trap	Gravitational trap	Magnetic trap
中性子源	原子炉	原子炉	原子炉	原子炉
エネルギー	冷中性子	冷中性子	超冷中性子	超冷中性子
測定粒子	電子	陽子	中性子	中性子
メリット	flux monitor	low background	small correction	no wall loss
デメリット	high background	flux monitor	wall effect	depolarization
結果	878 ± 27 ± 14 (1989)	886.6 ± 1.2 ± 3.2 (2005)	$\begin{array}{c} 878.5 \pm 0.7 \pm 0.3 \\ (2008) \end{array}$	878 ± 1.9 (2009)

2012年 Particle data group

ビーム法と蓄積法で有意なずれ

いろいろな中性子寿命測定

大きく分けてビーム法と蓄積法の2種類がある。

 手法	Beam	Penning trap	Gravitational trap	Magnetic trap
中性子源	原子炉	原子炉	原子炉	原子炉
エネルギー	冷中性子	冷中性子	超冷中性子	超冷中性子
測定粒子	電子	陽子	中性子	中性子
メリット	flux monitor	low background	small correction	no wall loss
デメリット	high background	flux monitor	wall effect	depolarization
結果	878 ± 27 ± 14 (1989)	886.6 ± 1.2 ± 3.2 (2005)	$\begin{array}{c} 878.5 \pm 0.7 \pm 0.3 \\ (2008) \end{array}$	878 ± 1.9 (2009)

ビーム法と蓄積法で有意なずれ より顕著に! 独立で高精度な測定が必要。

Neutron lifetime experiment at J-PARC

J-PARC/こおける中性子寿命実験:測定手法

中性子崩壊からの電子と³He(n,p)³H反応を比較することで

先行実験 kossakowski,1989

寿命を精度よく求める。 目標精度 ~0.1%

検出器として⁴He-CO₂ gas + 100mPa ³He を使ったTime projection Chamberを用いる。

中性子崩壊数も³He(n,p)³H反応数も1/vに 比例するので、速度には依存しない。

$$\tau_n^{-1} = \frac{N_e / \varepsilon_e}{N_p / \varepsilon_p} \rho_{{}^{3}He} \sigma_{{}^{3}He} (v_0) v_0$$

 $\begin{array}{l} \mathsf{N}_{\mathsf{e}}\,,\,\mathsf{N}_{\mathsf{p}}\,:\,\mathsf{Electron}\,\,\mathsf{and}\,\,\mathsf{proton}\,\,\mathsf{counts}\\ \varepsilon_{\mathsf{e}}\,,\,\varepsilon_{\mathsf{p}}\,:\,\mathsf{Detection}\,\,\mathsf{efficiencies}\\ \rho_{3\mathsf{He}}\quad:\,\mathsf{Atom}\,\,\mathsf{density}\,\,\mathsf{of}\,\,{}^{3}\mathsf{He}\\ \mathsf{v}_{0}\quad:\,\,\mathsf{2200}\,\,\mathsf{m/s}\\ \sigma_{3\mathsf{He}}(\mathsf{v}_{0})\,:\,\,\mathsf{Cross}\,\,\mathsf{section}\,\,\mathsf{of}\,\,{}^{3}\mathsf{He}(\mathsf{n},\mathsf{p}){}^{3}\mathsf{H}\\ \quad \mathsf{at}\,\,\mathsf{2200m/s} \end{array}$

J-PARCからのパルス中性子をバンチ化する。

パルス中性子をスピンフリップチョッパーを用いてチョップすることにより 等速度の中性子バンチを作る。中性子がTPC内に完全に入っているとき の計数を使うことにより、ビーム領域を完全に定義できる。

Beamline: J-PARC BL05

J-PARC Tokai Japan

Joint Project between KEK and JAEA

J-PARC、物質生命科学実験施設

Proton加速器 3GeV-1MW (デザイン)のパルス中性子源

陽子ビームを液体水銀ター ゲットに照射し、核破砕反応を 起こす。1陽子あたり20個程度 の中性子が発生。

核破砕によって発生した 中性子はモデレーターで 50K程度まで冷却され、 23本ある各ビームラインに 輸送される。

J-PARC、物質生命科学実験施設

MLF実験施設第一実験ホールBL05ビームライン $\Phi_n \sim 10^9$ /cm²/sec/MW (Coupled moderator)

BL05 for Fundamental physics

BL05 - the NOP beamline at J-PARC/MLF

Performance of BL05 Beam line Neutron flux at BL05 Polarization Outpolarization Outpolarization Displaced and a second and a secon

Beam flux at 1MW 3.9×10^{7} n/cm²/s (23mrad x 9mrad) 9.4×10^{7} n/cm²/s (11mrad x 9mrad) 4.3×10^{5} n/µstr/cm²/s

2008年12月より稼働。

Setup

Set up of our experiment in "NOP" beam line.

vacuum chamber

Inside of Spin Flip Chopper Lead shielding 20 cm Iron shield In a Lead Sheald Inside of Cosmic ray Veto TPC in a Vacuum chamber Gas line DAQ

Details of setup (Spin Flip Chopper)

Resonance flippers flip the neutron spin. Magnetic supermirror reflects only nonflipped neutrons.

Details of setup (Time Projection Chamber)

We developed the TPC which has a low background count rate and a high efficiency for β -rays.

Anode wire	29 of W-Au wires(+1750V)	
Field wire	28 of Be-Cu (0V)	
Cathode wire	120 of Be-Cu (0V)	
Drift length	30 cm (-9000V)	
Gas mixture	He:CO2=85kPa:15kPa	
TPC size(mm)	300,300,970	

High efficiency detection for **both of \beta-decay and ³He reaction**

PEEK frame & inner ⁶Li wall suppress BG. S/N ~ 1:1

Details of setup (Spin Flip Chopper)

Resonance flippers flip the neutron spin. Magnetic supermirror reflects only nonflipped neutrons.

chronological table

Increasing size the Spin Flip Chopper is planed at 2014/2015. Intensity will be 18 times by a designed value. We will start physics run to 1sec at 2016/2017

まとめ

- 近年のWMAP/PlanckのCMB観測からBBNの 精密測定により初期宇宙(~1sec)を探索できる 可能性が出てきた。
 - 天体観測(Y_p)の値は解析方法に大きく依存。
 - そのためには中性子寿命をしっかり決める必要がある。現在は測定手法により8.4sec(3.8σ)のずれ。
 Li問題は重要な未解決問題である。
- J-PARC/MLF/BL05で1秒の精度を目指した中 性子寿命実験を遂行中。