光核反応研究の現状と将来

宇都宮弘章(甲南大、東大CNS客員)

内容 1. ガンマ線を使った研究の現状 a. 施設 b. 研究動向

- 2. ガンマ線を使った研究の将来
 a. 日本
 b. ELI-NP
- 3. まとめ

AIST Electron Accelerator Facility

AIST : National Institute for Advanced Industrial Science and Technology TERAS (Tsukuba Electron Ring for Acceleration and Storage) closed in April 2012

NewSUBARU (Japan)

0.55 – 1.5 GeV storage ring

 $E_{\gamma} = 0.5 - 76 \text{ MeV}$ $I_{\gamma} = 10^{6} - 10^{7} \text{ s}^{-1}$ (3 - 6 mm dia.) $\Delta E/E > 2\%$

Experimental Hutch GACKO (Gamma Collaboration Hutch of Konan University)

Table-top Lasers

その他の施設

private communications with H. Ohgaki and T. Hayakawa

- SAGA-LS(佐賀県鳥栖市)でCO2レーザーでのLCSライン(リング室内)。
- 関西原研(奈良県木津市)マイクロトロンでLCS発生(400 keV)。
- 今年UVSOR(分子科学研究所極端紫外光研究施設、愛知県岡崎)においてファイバーレーザーで、最終的にはFELでのLCSを行う予定(大垣)。
- 原研-KEK ERLでの低エネルギーLCS発生(10 keV) 2015年3月(早川)
 将来 ERLでの大強度LCS源開発を狙う。
- 制動放射は京大(熊取)、大阪府立大(堺市)等数ヶ所。

研究の動向 反応による分類と関連する物理

1. (γ, abs)反応

<u>透過法</u>原田(JAEA)、<u>ラジオグラフィー&CT</u>豊川(電総研一産総研)

2. (γ,γ')反応

<u>NRF(核共鳴蛍光法)</u>大垣(電総研一産総研、京大)、静間、早川 E1/M1分離、 ピグミー、 非破壊検査、核セキュリティ

<u>散乱、屈折</u> 宮本(兵庫県大)、早川 磁気コンプトン散乱、ガンマ線分光器

3. (γ,n)反応

<u>重い核の断面積測定</u>

宇都宮(甲南大)、北谷(JAEA) ガンマ線強度関数、元素合成、核データ

E1/M1分離

<u>軽い核の断面積測定</u>

宇都宮、嶋、藤原(阪大RCNP)、山県(甲南大) 元素合成、パリティー非保存、クラスター <u>放射化法</u>静間、早川(JAEA), 江尻 アイソマー、RI生成、非破壊微量分析

4. (γ,p), (γ,α), (γ,³He) 反応

軽い核の断面積測定

嶋(阪大RCNP)、川畑(京大)、秋宗(甲南大) 元素合成、少数核子、クラスター、 5. γ <mark>照射</mark>

青木(神大)、Bernard (LLR, France) 観測装置、検出器開発 6. (γ,e⁺)

堀(大阪府大) e⁺非破壊検査

Photon Energy (MeV)

• ref.:R.D.Heil et. al, Nucl. Phys. 506(1990)p223.

M1 distribution in ²⁰⁶Pb

Courtesy of T. Shizuma

測定データ(²⁰⁸Pb)

散乱ガンマ線スペクトル

(γ,γ')

ガンマ線ビームの偏光面に対する 散乱ガンマ線の非対称度

q=0.85 for the present detection system

T.Shizuma et al., PRC78,061303(R),2008 T.Shizuma et al., PRC87,024301,2013

核セキュリティのための アクチノイドの核共鳴蛍光散乱実験

H. Toyokawa et al, IEEE Trans. on NS, vol.49, 182-187 (2001).

(γ, abs)

Courtesy of H. Ohgaki LCS-Radiograph

(γ, abs)

超高分解能光核反応断面積測定手法の開発

新手法の有効性をシミュレーションで確認

High Energy Resolution Measurement Method of Photonuclear Reaction Cross Section H. Harada and Y.Sigetome, *J. Nucl. Sci. Technol.*, 32, 1189-1191 (1995).

(γ, abs)

15 keV

Super High Resolution Measurement of Fine Structure in the Total Photonuclear Cross Section of ¹³C H. Harada, K. Furutaka, Y. Shigetome, H. Ohgaki, and H. Toyokawa, *J. Nucl. Sci. Technol.*, 35, 733-735 (1998).

(γ, charged part.)Time Projection Chamber as active target

(γ, charged part.)

(Solid curves --- best fit for our data including energy distribution of LCS- γ .)

Experimental Set-up

Experimental results, and comparison with theoretical models

Goko et al. Phys. Rev. Lett. 96, 192501 (2006)

Systematic uncertainties 10~26%

Combinatorial NLD model
 Statistical NLD model

HF model calculations by S.Goriely (ULB)

PDR in ^{207,208}Pb above neutron threshold

9587 mg, 98.5%, 208Pb 3482 mg, 99.1%, 207Pb

Polyethylene **(a)** $\phi = 0$ ³He tube /Cd sheet l = 0, 1 1- 1+ $\frac{3\pi}{2}$ π $\overline{2}$ 1/2-²⁰⁷Pb E1 M1 $W^{s}(\theta,\phi) = \frac{1}{4\pi}$ x 0^+ ²⁰⁸Pb $W_{pol}^{p}(\theta,\phi) = \frac{3}{8\pi} [\sin^2 \theta (1 + \cos 2\phi)]$ π $\overset{\otimes}{z}$

(b)

T. Kondo *et al.*, Phy. Rev. C 86, 014316 (2012)

Borated polyethylene

Neutron anisotropy detector for E1 & M1 (γ ,n) cross section measurements

E1 cross sections for ^{208,207}Pb

γ-ray Strength Function Method

H. Utsunomiya et al., Phys. Rev. C 80, 055806 (2009)

Indirect determination of (n, γ) cross sections for unstable nuclei based on a unified understanding of (γ, n) and (n, γ) reactions through the γ -ray strength function

The best understanding of the γ SF with PDR and M1 resonance is obtained by integrating

- (γ, n) data
- (γ, γ') NRF data
- Particle-γ coin. data , Oslo Method
- Existing (n, γ) data

H.U. et al., PRC88 (2013)

In collaboration with Univ. Oslo etc.

In collaboration with ELI-NP etc.

Mo isotopes

(γ**, n) data** H. Utsunomiya et al., PRC 88 (2013)

Oslo data (3He, αγ), (3He, 3He'γ) M. Guttormsen et al., PRC71 (2005)

(γ,γ') data G. Rusev et al., PRC77 (2008)

Nucleosynthesis of light nuclei

Reciprocity Theorem $A + a \rightarrow B + b + Q$ $B + b \rightarrow A + a - Q$ Q value

$$\frac{\sigma(b \to a)}{(2I_A + 1)(2i_a + 1)p_a^2} = \frac{\sigma(a \to b)}{(2I_B + 1)(2i_b + 1)p_b^2}$$

Neutron Channel

 $a=n, b=\gamma$ $p_{\gamma} = \hbar k = \frac{E_{\gamma}}{c}$ $p_n^2 = 2\mu E_n \quad 2j_b + 1 \rightarrow 2$

Equivalency between (n,γ) and (γ,n)

Applications

Big Bang Nucleosynthesis $p(n,\gamma)D$ vs $D(\gamma,n)p$

K.Y. Hara et al., PRD 68, 072001 (2003)

Supernova Nucleosynthesis $\alpha \alpha \rightleftharpoons {}^{8}Be(n,\gamma) {}^{9}Be vs {}^{9}Be(\gamma,n) {}^{8}Be(\gamma,n)$

H. Utsunomiya *et al.* PRC 63, 018801 (2001)
K. Sumiyoshi *et al.* NPA709, 467 (2002)

次世代大強度単色ガンマ線発生技術の原理実証

OJAEA/KEK共同プロジェクト KEKの次世代の放射光エネルギー回収型リニアックに LCS ガンマ線 LCSガンマ線源一式を追加 実験室

ELI-NP (Europe)

(Extreme Light Infrastructure- Nuclear Physics)

Magurele-Bucharest. Romania

Approved by the European Commission in 2012 First Experiments in 2018

4 Working Groups for Physics at ELI-NP

- 1. Nuclear Resonance Fluorescence and Applications
- 2. Gammas Above Neutron Threshold
- 3. Photofission
- 4. Charged Particles, ${}^{16}O(\gamma,\alpha){}^{12}C$

International Collaboration K.O.B.e⁻ NewSUBARU-GACKO January & July, 2013

(γ,n) CS 15 nuclei Sm-154 Sm-152 Sm-150 Sm-149 Sm-148 Sm-147 Sm-144 Nd-148 Nd-146 Nd-145 Nd-144 Nd-143 Dy-162 Dy-163 Ge-74

まとめ

(ɣ,ɣ'), (ɣ,xn), (ɣ,fission), (ɣ,charged particles)は主要な研究分野を形成する。

- EUの研究インフラELI-NPが建設されている。新たな光核反応研究の幕開けが期待される。
- <u>日本の現状</u>
- ガンマ線利用のコミュニティが小さい。
- 日本のガンマ線ビーム施設は分散型で、専用の大型施設はない。 将来の方向
- 日本の研究施設と研究スタイル:分散型か集中型か。
- ELI-NP型のレーザーとガンマ線を利用する物理分野の形成が可能か。