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Bl Nuclear Reactions in the Fast Energy Range

® The Hauser-Feshbach statistical theory has been widely used for nuclear reaction
data applications,

® nuclear reaction rates for astrophysics (nucleo-synthesis)
® nuclear data libraries for energy applications (mainly for neutron)

® however, questions still persist regarding:

@ applicability in the domain of off-stability
® global inputs

level densities, optical potentials,

~-ray strength function
® nuclear deformation effect

@ width fluctuation correction

<|_a|_b> " (Fa)(p)
AN (r)
@® inclusive / exclusive observables

partial v-rays, coincidence, etc.

Monte Carlo approach to the HF needed
@ interaction on the excited state (isomer)
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| Nuclear Data for Astrophysical Applications

Nuclear Reaction Rate in Astrophysics

Nuclear Reaction Chain ® Nuclear reactions in astrophysical environments
— s and r-processes
s Proton Emteion zaf ) zaf @ targets are often neutron-rich and unstable
ey e @ neutron capture process is mostly important
L s N @ (-delayed neutron emission and fission
"""""""""""" ® Model prediction is crucial for
i, 21_"’21_’ ® reaction cross section
— — Hauser-Feshbach theory
gl g ® nuclear structure, including mass
2o 22z [ — macro/microscopic model, Hartree-Fock

Understanding of the neutron capture process is important to study nucleo-synthesis,
which includes models for ~-ray strength function, GDR (Giant Dipole Resonance), nu-

clear level densities, and spectroscopic factors.
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Bl Nucleon Radiative Capture
CN and DSD Processes

Compound Reaction Hauser-Feshbach + DSD ——
@ Anincident neutron and a target form
a compound nucleus, and it decays.
® Hauser-Feshbach statistical theory,
with width fluctuation.
® Cross section decreases rapidly
when neutron inelastic channels open.
Direct/Semidirect Capture
@ Direct transition to one of the
unoccupied single-particle state. i | |
@ Giant Dipole Resonance (GDR) 01 . 10
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DSD becomes important when (1) incident particle energy is high, or (2) compound
capture cross section is small (few resonance, neutron-rich, doubly-closed shell nuclei.)
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B Photo Emission / Absorption

Inverse process of ~-ray emission

Gamma-ray

I-' Emission
/ Capture
‘@—@

Compound Nucleus
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(Inverse) Photo Reaction
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Bl Photo Reaction

Neutron capture calculations for s and p-process
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® Total reaction cross section is deter-
mined by the optical model.
® The decay width — the sum of trans-
mission probabilities for all decay pro-
cesses.
® The ~-ray radiation width is cal-
culated from the ~-ray absorption
probability (the inverse process)
and the final state density.
® Brink’s hypothesis is used.
® Important to understand ~-ray
transmission Tg1(E), and the level
density p(E), off-stability.
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Bl -Ray Strength Function and Transmission

@ Standard Lorentzian

EATo

fE1(Ey) = Coglg

(2~ E3)° + B33

® Generalized Lorentzian, finite value at low energies, energy dependent width

E T (Ey,T)

fe1(Ey) = Coglg {

where C = 8.68 x 1078 mb~1MeV~2, or can be
obtained by normalization to an experimental value
if available.

The ~-ray transmission coefficient is given by

Te1(Ey) = 2nE3 fe1(E,)

Strength Function, f(E)

(E2 — E§)? + E2T2(Ey, T)
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Bl Normalization of 4-Ray Strength Function

An absolute capture cross section is still hard to predict, however, it can be estimated
from average resonance properties.

Bn
<l|;—z> X /O TEl(Ev)P(ECU)dEiU

where

® Dg is the average s-wave resonance spacing near the neutron binding energy:

® (r.) is the average ~ decay width

Compound Nucleus Do (Iy)
keV meV

>Fe 25.4 920

917y 6.0 130

239y 0.0208 23.6

or we just re-normalize the calculated capture cross section to experimental data ava-
iable by adjusting (I"~)/Do.
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Level Density Parameter Systematics

Washing-out of Shell Effects
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® Shell correction (§W) and pairing ener-
gies (A) taken from KTUYO05 mass for-
mula

a=a*{1+57w<1—6_7(])}

o =0.114A4 + 7.65 x 107242

@ At low excitation energies, the constant
temperature model is used with

T =48.1A"988,/1T —0.16W
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a0 ® obtained from discrete level data of
more than 1000 nuclei.

TK, S. Chiba, H. Koura, J. Nucl. Sci. Technol., 43, 1 (2006)
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| Hauser-Feshbach on Deformed Nuclei

Incorporate Coupled-Channels (CC) method into the HF formula

® Scattering matrix is no longer diagonal.
® Inverse channel problem

® What is the appropriate transmission coefficient for the excited states ?
® Replaced by the one for the ground state (historical)
® Solve the CC equation for the excited state (detailed balance)

® Width fluctuation correction when off-diagonal elements exist
® Moldauer

® Engelbrecht-Weidenmiiller transformation
® Kawai-Kerman-McVoy (TK, L.Bonneau, A.Kerman, Nice conf. 2007)

Our preliminary results showed that KKM gives almost identical results as
Moldauer.
@ Nishioka-Weidenmdiller-Yoshida, GOE for coupled-channels
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Modification to the Global CC Potential of Soukhovitskii, et al.

@ E. Sh. SoukhovitskiT, et al., J. Phys. G: Nucl. Part. Phys. 30, 905 (2004).
® Adjust the imaginary potential to match the energy averaged S-matrix elements
from resonance parameters (TK, F.H. Frohner, NSE, 127, 130 (1997)).

® When the S-matrix elements (resonance and optical model) are obtained, total and

reaction cross sections are automatically reproduced.
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Real

Ws =2.59 MeV for E,, < 1.13 MeV

R’ =9.606 fm (9.6% 0.1 in Atlas, Mughabghab)
So=1.13 x10~% ((1.294+ 0.13) x10~4, ibid)
S1=2.07 x10™% ((2.17£ 0.19) x10~4, ibid)
Original SoukhovitskiiPotential (in the paper)
R’ =9.57 fm

So =0.95 x10~4

S1=1.80 x10~4
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Bl U-238 Total Cross Section
With Modified Soukhovitskii Potential
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@ With the modified Soukhovitskii Potential, the energy averaged total cross section
in the resonance range is well-reproduced.
® Above 1.13 MeV, the parameters are the same as the original ones.

» Los Alamos



Bl Transmission for Inverse Reactions

Transmission Coefficients for the Inverse Channels
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In a usual case, the ground-state transmission is used for all the calculation. However,
this might underestimate the (n,n’) cross-section to the 2+ and 4 states, because the

true fransmission to the 27 and 471 are larger.
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Bl Capture Cross Section Calculations

Model Parameters

® Optical Potential

® Modified Soukhovitskil

® CC calculations are made for the G.S. band

® 0T-2T-41T-67-87 coupling

@ Spherical potential for the uncoupled states
® Level density

® [gnatyuk level density formula
® *=34.69 MeV~1! for 239U (reproduce Dg=20.3 eV)
® Shell correction and pairing energies from KTUY

mass formula
@ Spin-cut off parameter,

o2 = 3.47 x 1073,/U/aA>/3

® Average ~-ray width .
® (I'y)=23.36 meV from resonance analysis
® or, to be adjusted if needed
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Bl U-238 Results

Comparison with ENDF/B-VII (a part of standards evaluation)
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Bl Partial Wave Contribution

Decomposition into Each Partial-Wave Contribution
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Bl Comparisons with DANCE Data
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When the calculated capture cross section for 241Am is averaged over the Jezebel
spectrum, it gives a 5% higher value than that for ENDF/B-VII.
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B Direct/Semidirect Nucleon Capture Model
Direct Capture

® Electric dipole radiation transition from optical
potential to single-particle state

¢ @ Amplitude

Tg = Cy{Rylr|RL.g)

Semidirect (Collective) Capture

® Excite GDR, and decay into single-particle state
® Vibration-particle coupling, Vyh(r)
® Amplitude

Ts = Cs{Ry|V1h(r)|RLg)

y |MapRl?
Ey— Egpr+ il GDR/2

» Los Alamos



Bl DSD with Hartree-Fock BCS Theory

L. Bonneau, T.K., T. Watanabe, S. Chiba, Phys. Rev. C 75, 054618 (2007)
Model Improvements

spectroscopic factor .5 i

® previous studies

® experimental data (often not available for astrophysical calculations)
® DSD/HF-BCS

® single-particle occupation probabilities
® no experimental data needed

single-particle wave-function, 2, i (1)

® previous studies

® spherical Woods-Saxon, Nilsson model, coupled-channels model to bound states
® DSD/HF-BCS

® HF-BCS calculation and decomposition into spherical HO basis
® consistent treatment for all nuclei from spherical to deformed nuclei
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Bl Calculated Results

DSD Cross Sections for Spherical and Deformed Cases
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Bl Neuiron Capture Off-Stability — Sn-122,132
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® Since global Hartree-Fock-BCS calculations for all nuclides are feasible, this tech-
nique will be a powerful tool to estimate the neutron capture rates in the r-process.

® HF calculation problems for the odd nuclei still exist.

® Proton capture calculations underway.
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Bl Future Challenge and Works in Progress at LANL

Applications of the Hauser-Feshbach Model to Different Areas

Combining with nuclear structure calculations

® (B-decay and electron capture produce highly excited states of nuclei, and the exci-
tation energies can be larger than the neutron separation energy.

® Nuclear structure models, such as QRPA, predict final states of 3-decay and EC.

® Compound decay from a daughter nucleus at given E, J7.

Monte Carlo approach to the Hauser-Feshbach

® HF gives an integrated cross-section for all possible intermediate transitions.

® However, recent experiments are sometimes conducted by measuring partial ~-
rays, coincidence with a particular v-ray transition, selected events such as a fixed
~v-ray multiplicity.

@ Correlation information is needed.
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Bl Application of HF to Delayed Neutron Emission

QRPA and Hauser-Feshbach model for Beta-Delayed Neutron
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We assume that the excited state after 3-decay is a compound state, having a fixed J
value, |[I — 1| < J < I+ 1, where [ is the spin of precursor.
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Bl Sequential Neutron Emissions

Electron Capture State
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Electron capture produces a highly ex-
cited state, which subsequently decays
by emitting several neutrons (very fast
process).
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Application of Monte Carlo to Hauser-Feshbach Model at LANL
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A preliminary result of the ~-ray spectra from

proton capture for the multiplicity 3 case (2 ~-

rays and the 27 — 07 transition). Data taken

from the proc. of Yosemite conference, 2008
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Bl Concluding Remarks

Nuclear Reaction Modeling: Recent Development for Astrophysics
Compound Nuclear Reaction

® Improved Hauser-Feshbach model for capture reaction, including nuclear deforma-
tion effect, which supports experimental data at LANSCE with DANCE.

Direct/Semidirect Nucleon Capture

® The Hartree-Fock BCS theory for the DSD process has a potential to predict neu-
tron capture cross-sections near the neutron drip-line.

Extension of the Hauser-Feshbach Model Applications

® Beta-delayed and EC neutron emission
® Prompt fission neutron spectra
® Monte Carlo approach : correlations of particle emissions
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