Energy Levels of Light Nuclei $A=11$

F. Ajzenberg-Selove
University of Pennsylvania, Philadelphia, Pennsylvania 19104-6396

Abstract

An evaluation of $A=11-12$ was published in Nuclear Physics A506 (1990), p. 1. This version of $A=11$ differs from the published version in that we have corrected some errors discovered after the article went to press. Figures and introductory tables have been omitted from this manuscript. Also, reference key numbers have been changed to the NNDC/TUNL format.

(References closed June 1, 1989)

The original work of Fay Ajzenberg-Selove was supported by the US Department of Energy [DE-FG0286ER40279]. Later modification by the TUNL Data Evaluation group was supported by the US Department of Energy, Office of High Energy and Nuclear Physics, under: Contract No. DEFG05-88-ER40441 (North Carolina State University); Contract No. DEFG05-91-ER40619 (Duke University).

Table 11.1: Energy Levels of ${ }^{11} \mathrm{Li}^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV})$	$J^{\pi} ; T$	$\tau_{1 / 2}(\mathrm{~ms})$	Decay	Reaction
g.s.	$\frac{3}{2}^{-}, \frac{5}{2}$	8.5 ± 0.2	β^{-}	1

\quad a Excited states are calculated at $E_{\mathrm{x}}=2.68,3.13$ and 3.62 MeV , with $J^{\pi}=\frac{5}{2}^{+}$,
$\frac{3}{2}^{+}$and $\frac{9}{2}$
$\frac{3}{2}^{-}$and $\frac{5}{2}^{-}[(0+1) \hbar \omega$ model space $]$ and at $4.58,21.69$ and 23.22 MeV , with $J^{\pi}=\frac{1}{2}^{-}$,
${ }^{11} \mathrm{He}$
(not illustrated)
${ }^{11} \mathrm{He}$ has not been reported: see (80AJ01). The ground state of ${ }^{11} \mathrm{He}$ is predicted to have $J^{\pi}=\frac{5}{2}^{+}(85 \mathrm{PO} 10)$.

$$
\begin{gathered}
{ }^{11} \mathrm{Li} \\
\text { (Figs. } 1 \text { and } 4 \text {) }
\end{gathered}
$$

GENERAL (See also (85AJ01).)
The mass excess is $40.94 \pm 0.08 \mathrm{MeV}$ (75TH08), $40.78 \pm 0.12 \mathrm{MeV}$ (88WO09). A.H. Wapstra suggests (private communication) $40.85 \pm 0.08 \mathrm{MeV}$ and we adopt this value. ${ }^{11} \mathrm{Li}$ is then bound with respect to ${ }^{9} \mathrm{Li}+2 \mathrm{n}$ by $247 \pm 80 \mathrm{keV}$ and with respect to ${ }^{10} \mathrm{Li}+\mathrm{n}$ by $1050 \pm 260 \mathrm{keV}$ [see (88AJ01) for the masses of ${ }^{9} \mathrm{Li}$ and $\left.{ }^{10} \mathrm{Li}\right]$.

The magnetic moment of ${ }^{11} \mathrm{Li}$ is $\mu=3.6673 \pm 0.0025 \mathrm{~nm}$ (87AR22). This value requires $J=\frac{3}{2}$ (87AR22). Negative parity is certain from systematics.

The interaction nuclear radius of ${ }^{11} \mathrm{Li}$ is $3.16 \pm 0.11 \mathrm{fm}$ (88TA10, 85TA18), $E=790$ MeV / A; [see also for derived nuclear matter, charge and neutron matter r.m.s. radii]. ${ }^{11} \mathrm{Li}$ has a much larger radius than other neighboring nuclei suggesting either a large deformation and/or a long tail in the matter distribution in ${ }^{11} \mathrm{Li}$ (85TA18). See (88SA2P) and (87MI1A, 87TA1F, 89TA1K). Charge radius and matter radius calculations in the $0 \hbar \omega$ and $(0+2) \hbar \omega$ model spaces predict a gradual increase in matter radii with increasing A and do not support the idea of a neutron halo in ${ }^{11} \mathrm{Li}$ (88PO1E; prelim.). See, however, (88TA1A).

Fragmentation cross sections of ${ }^{11} \mathrm{Li}$ into ${ }^{9} \mathrm{Li},{ }^{8} \mathrm{Li},{ }^{8} \mathrm{He},{ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}$ and ${ }^{6} \mathrm{He}$ have been studied by (88KO10) [see for a discussion of neutron halos]. See also (88TA1A, 89KO1P).

See also (86DU11, 88ST06), (86AN07, 88HA1Q, 88TA1C, 89AJ1A) and (85SA32, 86EL1A, 86SA30, 87HA30, 87SH1K, 88BE09, 88BE1O, 88JO1C, 88LO1C, 88UC03, 89BA1T, 89BE03; theor.).

1. ${ }^{11} \mathrm{Li}\left(\beta^{-}\right){ }^{11} \mathrm{Be}$
$Q_{\mathrm{m}}=20.68$

Reported half-life measurements are $8.5 \pm 0.2 \mathrm{~ms}$ (74RO31), $8.83 \pm 0.12 \mathrm{~ms}$ (81BJ01), $7.7 \pm 0.6 \mathrm{~ms}$ (86CU01). We adopt $8.5 \pm 0.2 \mathrm{~ms}$. The β-decay is complex and the evidence is not unambiguous. It involves delayed n, t and α emission. Most of the decay ($\approx 97 \%$) takes place to low-lying states in ${ }^{11} \mathrm{Be}$ [but it is not clear which are involved]. All but ${ }^{11} \mathrm{Be}^{*}(0$, 0.32) are unstable with respect to neutron emission: see (85AJ01). A 2.9% branch is reported to ${ }^{11} \mathrm{Be}^{*}(10.59)$ which then decays by neutron emission (possibly to ${ }^{10} \mathrm{Be}^{*}(9.4)$) and then delayed α-particles $[(0.90 \pm 0.05) \%]$ are reported to ${ }^{6} \mathrm{He}$ or the decay is via $2 \mathrm{n}+2 \alpha[(2.0 \pm 0.6) \%]$ (81LA11). A $(0.30 \pm 0.05) \%$ branch is reported to a state in ${ }^{11} \mathrm{Be}$ at $\approx 18.5 \mathrm{MeV}(\Gamma \approx 0.5$ $\mathrm{MeV})$ which has three modes of decay: triton emission to ${ }^{8} \mathrm{Li}^{*}(0,0.98)$ [(0.010 $\left.\pm 0.004\right) \%$], $(\alpha+\mathrm{n})$-emission to ${ }^{6} \mathrm{He}[(0.10 \pm 0.03) \%]$ and 3 n emission $\left[(0.20 \pm 0.05 \%]\right.$ involving ${ }^{10} \mathrm{Be}^{*}(11.76)$ (81LA11, 84LA27). [Comment: In view of the importance of understanding very neutron rich light nuclei it is necessary to determine the parameters (and the location) of the excited states of ${ }^{11} \mathrm{Be}$ with $E_{\mathrm{x}} \lesssim 12 \mathrm{MeV}$. One could then hope to unravel the β^{-}decay evidence.] See also ${ }^{6} \mathrm{He},{ }^{8} \mathrm{Li}$ and ${ }^{10} \mathrm{Be}$ in (AJ88), Table 11.2 in (85AJ01), (85HA1T, 85HA1K) and (84LI1N, $88 \mathrm{JO1C}$; theor.).

$$
{ }^{11} \mathrm{Be}
$$

(Figs. 1 and 4)
GENERAL: See also (85AJ01).
Model calculations: (84MI1H, 84VA06, 86WI04).
Electromagnetic transitions: (84MI1H, 84VA06, 87HO1L).
Complex reactions involving ${ }^{11} \mathrm{Be}:(85 \mathrm{BO} 1 \mathrm{~A}, 86 \mathrm{AV} 1 \mathrm{~B}, ~ 87 \mathrm{TR} 05,87 \mathrm{WA} 09,88 \mathrm{BA} 53,88 \mathrm{RU} 01$, $88 \mathrm{TA} 1 \mathrm{~N}, 88 \mathrm{TR} 03,89 \mathrm{SA} 10)$.

Muon and neutrino capture and reactions: (84KO24).
Hypernuclei: (85IK1A, 86ME1F).
Other topics: (84MI1H, 85AN28, 86AN07).
Ground-state properties of ${ }^{11} \mathrm{Be}:(84 \mathrm{FR} 13,87 \mathrm{SA} 15,87 \mathrm{VA} 26,89 \mathrm{BE} 03)$.
The interaction matter radius of ${ }^{11} \mathrm{Be}$ is $2.86 \pm 0.04 \mathrm{fm}$ (88TA10). See also (?, 89TA1K).

1. ${ }^{11} \mathrm{Be}\left(\beta^{-}\right){ }^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=11.506$

The decay is complex: see reaction 26 in ${ }^{11} \mathrm{~B}$ and Table 11.12 . The half-life is $13.81 \pm 0.08 \mathrm{~s}$ (70AL21). See also (80AJJ01).
2. ${ }^{9} \mathrm{Be}(\mathrm{t}, \mathrm{p}){ }^{11} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.165$

Table 11.2: Energy Levels of ${ }^{11} \mathrm{Be}$

$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}(\mathrm{keV})$	Decay	
				Reactions
0	$\frac{1}{2}^{+} ; \frac{3}{2}$	$\tau_{1 / 2}=13.81 \pm 0.08 \mathrm{~s}$	β^{-}	$1,2,3,5,7$
0.32004 ± 0.1	$\frac{1}{2}^{-}$	$\mathrm{fs} \tau_{\mathrm{m}}=166 \pm 15 \mathrm{fs}$	γ	$2,3,4,5,7,8$
1.778 ± 12	$\left(\frac{5}{2}, \frac{3}{2}\right)^{+}$	$\Gamma=100 \pm 20$	(n)	$2,3,6,7$
2.69 ± 20	$\left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}^{+}\right)$	200 ± 20	(n)	2,8
3.41 ± 20	$\left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}^{+}\right)$	125 ± 20	(n)	2,7
3.887 ± 15	$\geq \frac{7}{2}^{-}$	<10	(n)	2
3.956 ± 15	$\frac{3}{2}^{-}$	15 ± 5	(n)	2,8
5.240 ± 21		45 ± 10	(n)	2
(5.86)		≈ 300	(n)	2
6.51 ± 50		120 ± 50	(n)	2
6.705 ± 21		40 ± 20	(n)	2
7.03 ± 50		300 ± 100	(n)	2
8.816 ± 32		200 ± 50	(n)	2,4
10.59 ± 50		210 ± 40	n, α	2,4
(≈ 18.5)		≈ 500	$\mathrm{n}, \mathrm{t}, \alpha$	4

Proton groups have been observed to the states displayed in Table 11.2. τ_{m} for the first excited state is $166 \pm 15 \mathrm{fs}$, corresponding to a very large E1 transition strength of 0.36 ± 0.03 W.u.; $E_{\gamma}=320.04 \pm 0.10 \mathrm{keV}$. The J^{π} of ${ }^{11} \mathrm{Be}^{*}(0.32)$ is $\frac{1}{2}^{-}$, as determined by a study of the yield of $320 \mathrm{keV} \gamma$-rays as a function of time in μ^{-}capture by ${ }^{11} \mathrm{~B}$. The strength of the E1 transition fixes J^{π} of ${ }^{11} \mathrm{Be}\left(\right.$ g.s.) to be $\frac{1}{2}^{+}$or $\frac{3}{2}^{+}$, using the parity information obtained from the nature of the β^{-}decay of the ground state [see reaction 26 in ${ }^{11} \mathrm{~B}$]. ${ }^{11} \mathrm{Be}^{*}(5.24$, $6.71,8.82$) are strongly populated at $E_{\mathrm{t}}=20 \mathrm{MeV}$ indicating that these states have a large overlap with ${ }^{9} \mathrm{Be}_{\text {g.s. }}+2 \mathrm{n}$. See (80AJ01, 85AJ01) for references.
3. ${ }^{10} \mathrm{Be}(\mathrm{d}, \mathrm{p}){ }^{11} \mathrm{Be}$
$Q_{\mathrm{m}}=-1.720$

Angular distributions of the p_{0} and p_{1} groups have been measured at $E_{\mathrm{d}}=6 \mathrm{MeV}$ and $12 \mathrm{MeV}: l_{\mathrm{n}}=0\left[\right.$ and therefore $J^{\pi}=\frac{1}{2}^{+}$for $\left.{ }^{11} \mathrm{Be}(0)\right]$ and $\mathrm{l}, S=0.73 \pm 0.06$ and 0.63 ± 0.15, respectively. At $E_{\mathrm{d}}=25 \mathrm{MeV}^{11} \mathrm{Be}^{*}(0,0.32,1.78)$ are strongly populated: $S=0.77,0.96$, and 0.50 , respectively, $J^{\pi}=\left(\frac{5}{2}, \frac{3}{2}\right)^{+}$for ${ }^{11} \mathrm{Be}^{*}(1.78)\left[l_{\mathrm{n}}=2\right]$. See (80AJ01) for references.
4. ${ }^{11} \mathrm{Li}\left(\beta^{-}\right){ }^{11} \mathrm{Be}$
$Q_{\mathrm{m}}=20.68$

See ${ }^{11} \mathrm{Li}$.
5. ${ }^{11} \mathrm{~B}\left(\pi^{-}, \gamma\right){ }^{11} \mathrm{Be}$
$Q_{\mathrm{m}}=128.063$

The photon spectrum from stopped pions includes a peak corresponding to ${ }^{11} \mathrm{Be} *(0 \pm 0.32)$ (86PE05).
6. ${ }^{12} \mathrm{C}\left(\pi^{-}, \mathrm{p}\right){ }^{11} \mathrm{Be} \quad Q_{\mathrm{m}}=112.105$

See (87BL07; $\left.E_{\pi^{-}}=145 \mathrm{MeV}\right)$.
7. ${ }^{12} \mathrm{C}\left({ }^{7} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{11} \mathrm{Be}$
$Q_{\mathrm{m}}=-28.187$

At $E\left({ }^{7} \mathrm{Li}\right)=82 \mathrm{MeV}{ }^{11} \mathrm{Be}^{*}(0+0.32,1.8,3.4)$ are populated (85AL1G).
8. ${ }^{13} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{8} \mathrm{~B}\right){ }^{11} \mathrm{Be}$
$Q_{\mathrm{m}}=-25.884$

At $E\left({ }^{6} \mathrm{Li}\right)=80 \mathrm{MeV},{ }^{11} \mathrm{Be} e^{*}(0.32)$ is strongly populated and the angular distribution to this state has been measured. ${ }^{11} \mathrm{Be}^{*}(2.69,4.0)$ are also observed: see (80AJ01).

$$
\begin{gathered}
{ }^{11} \mathrm{~B} \\
\text { (Figs. } 2 \text { and } 4 \text {) }
\end{gathered}
$$

GENERAL: See also (85AJJ01).
Nuclear models: (84ZW1A, 85KW02, 87KI1C, 88OR1C, 88WO04).
Special states: (84ZW1A, 85CH27, 85GO1A, 85HA1J, 85SH24, 87KI1C, 88KW1A, 88ZH1B, 89BA60, 89OR02).

Electromagnetic transitions and giant resonances: (83GM1A, 84MO1D, 84VA06, 85GO1A, 86ER1A, 87KI1C, 89BA60).

Astrophysical questions: (82AU1A, 82CA1A, 84TR1C, 85DW1A, 85WA1K, 87AR1J, 87AU1A, 87DW1A, 87MA2C, 87RO1D, 87WE1E, 88AP1A, 88BA1H, 88FE1A, 88RE1B, 89BO1F, 89BO1M, 89GU1Q, 89JI1A).

Complex reactions involving ${ }^{11} \mathrm{~B}$: (84AI1A, 84FI17, 84HO23, 84RE1A, 84SI15, 84XI1B, 85AG1A, 85BE40, 85BH02, 85JA1B, 85MC03, 85MO08, 85PO11, 85SH1G, 85SI19, 85WA1F, 85WA22, 86AV1B, 86BA69, 86BI1A, 86BO1B, 86CH2G, 86CS1A, 86HA1B, 86MA19, 86ME06, 86MO15, 86PO06, 86RE13, 86SA30, 86SH2B, 86UT01, 86WA1H, 86WE1C, 87AN1A, 87AR19, 87BA1G, 87BA38, 87BE58, 87BE55, 87BO1K, 87BU07, 87DE37, 87FE1A, 87GR1O, 87JA06, 87KI05, 87KO15, 87LY04, 87MA2F, 87MU1D, 87NA01, 87OS1E, 87PA01, 87PO1I, 87SH23, 87SI1C, 87ST01, 87TE1D 87TR05, 87VI02, 87WA09, 87WE1D, 87YA16, 88BA53, 88BL09, 88CA06, 88FE1A, 88FO03, 88GA12, 88KA1L, 88KH1G, 88KI05, 88KI06, 88MI28, 88MO1K, 88PAZS, 88RA10, 88RU01, 88SA19, 88TE03, 88UT02, 89BL1D, 89CEZZ, 89HA1L, 89PA06, 89PO06, 89SA10, 89SE03, 89ST1G, 89YO02).

Applications: (84CA1D, 86NO1C, 88XI1B).
Muon and neutrino capture and reactions: (83GM1A, 84KO24, 85MI1D, 86KE1Q, 87KU23, 87SU06, 87WE1E, 88RA1E, 89MI1G).

Pion and kaon capture and reactions (see also reactions 20, 30, and 48): (83GE1C, 83GM1A, 84BA1T, 84BA1U, 85CO16, 86PE05, 86RO03, 87AB1E, 87BO1X, 88GIZU).

Antinucleon interactions: (85BA51).
Hypernuclei: (83SH1E, 84CH1G, 84SH1J, 84ZH1B, 85AH1A, 85GA1E, 85GR10, 86AN1R, 86BA3L, 86BI1G, 86DA1H, 86DA1G, 86DA1B, 86DU1P, 86FR1J, 86GA1J, 86GA1H, 86KI1K, 86KO1A, $86 \mathrm{ME} 1 \mathrm{~F}, 86 \mathrm{PO} 1 \mathrm{H}, ~ 86 \mathrm{SZ1A}, ~ 86 \mathrm{YA} 1 \mathrm{~F}, ~ 87 \mathrm{MI} 1 \mathrm{~A}, ~ 87 \mathrm{PO} 1 \mathrm{H}, 88 \mathrm{MA1G}, 88 \mathrm{MO} 1 \mathrm{~L}$, 88TA1B, 88TA14, 89MI30).

Other topics: (84P()11, 85AN28, 85SH24, 86AN07, 88KW1A, 880R1C, 89BA60, 890R02).

Table 11.3: Energy Levels of ${ }^{11} \mathrm{~B}$

$E_{\text {x }}$	$\begin{gathered} J^{\pi} ; T \\ (\mathrm{MeV} \pm \mathrm{keV}) \\ \hline \end{gathered}$	$\begin{gathered} \tau_{\mathrm{m}}(\mathrm{fs}) \text { or } \\ \Gamma_{\mathrm{c} . \mathrm{m} .}(\mathrm{keV}) \end{gathered}$	Decay	Reactions
0	$\frac{3}{2}^{-} ; \frac{1}{2}$	stable		$1,2,6,7,9,13$, $14,15,16,17,19$, $23,24,25,26,27$, $28,29,30,31,32$, $33,34,35,36,37$, $38,39,40,41,42$, $43,44,45,46,47$, $48,49,50,51,52$, $53,54,55,56,57$, $58,59,60,61,62$, 63,64
2.124693 ± 0.027	$\frac{1}{2}^{-}$	$\tau_{\mathrm{m}}=5.5 \pm 0.4$	γ	$\begin{aligned} & 1,6,7,9,13,14, \\ & 15,16,17,23,24, \\ & 25,26,27,29,30, \\ & 32,33,36,37,38, \\ & 40,47,48,49,51, \\ & 52,53,55,58,59, \\ & 60,61,62,63,64 \end{aligned}$
4.44489 ± 0.50	$\frac{5}{2}^{-}$	1.18 ± 0.04	γ	$1,2,6,7,9,13$, $14,15,19,23,24$, 25, 26, 27, 29, 30, $32,33,36,37,38$, 40, 47, 49, 51, 53, 59, 60, 61
5.02031 ± 0.30	$\frac{3}{2}^{-}$	0.34 ± 0.01	γ	$1,6,7,9,14,15$, $23,24,25,26,27$, 29, 30, 32, 33, 36, 37, 38, 47, 48, 51, $52,53,55,59,60$, 61
6.7429 ± 1.8	$\frac{7}{2}^{-}$	22 ± 5	γ	$1,2,6,14,15,19$, $23,24,25,26,29$, $33,36,37,38,47$, $48,53,55,59,60$, 61

Table 11.3: Energy Levels of ${ }^{11} \mathrm{~B}$ (continued)

$E_{\text {x }}$	$\begin{gathered} J^{\pi} ; T \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \tau_{\mathrm{m}}(\mathrm{fs}) \text { or } \\ \Gamma_{\text {c.m. }}(\mathrm{keV}) \\ \hline \end{gathered}$	Decay	Reactions
6.79180 ± 0.30	$\frac{1}{2}^{+}$	1.7 ± 0.2	γ	$\begin{aligned} & 1,2,6,14,15,23, \\ & 24,25,27,29,33, \\ & 37,40,47,48,51, \\ & 55,60 \end{aligned}$
7.28551 ± 0.43	$\frac{5}{2}^{+}$	0.57 ± 0.04	γ	$1,2,6,13,14,15$, 23, 24, 25, 27, 29, 33, 38, 48, 53
7.97784 ± 0.42	$\frac{3}{2}+$	0.57 ± 0.06	γ	$\begin{aligned} & 1,2,14,23,24 \\ & 27,29,33,48,53 \end{aligned}$
8.5603 ± 1.8	$\left(\frac{3}{2}^{-}\right)$	0.70 ± 0.07	γ	1, 13, 14, 23, 24, 29, 30, 33, 48, 53, 60, 61
8.9202 ± 2.0	$\frac{5}{2}^{-}$	$\Gamma=4.37 \pm 0.02 \mathrm{eV}$	γ, α	$\begin{aligned} & 1,2,13,14,19, \\ & 23,24,26,29,30, \\ & 33,38,55,59,60, \\ & 61 \end{aligned}$
9.1850 ± 2.0	$\frac{7}{2}^{+}$	$1.9{ }_{-1.1}^{+1.5} \mathrm{eV}$	γ, α	$\begin{aligned} & 1,2,14,23,24, \\ & 26,33,62 \end{aligned}$
9.2744 ± 2	$\frac{5}{2}^{+}$	4	γ, α	$\begin{aligned} & 1,2,14,23,24, \\ & 33,62 \end{aligned}$
9.82 ± 25	$\left(\frac{1}{2}{ }^{+}\right)$			48
9.876 ± 8	$\frac{3}{2}+$	110 ± 15	α	5,14, 27
10.26 ± 15	$\frac{3}{2}^{-}$	150 ± 25	γ, α	2, 5, 14, 61
10.33 ± 11	$\frac{5}{2}^{-}$	110 ± 20	γ, α	2, 5, 14, 24, 61
10.597 ± 9	$\frac{7}{2}+$	100 ± 20	γ, α	2, 5, 14, 20, 22
10.96 ± 50	$\frac{5}{2}^{-}$	4500	α	5
11.265 ± 17	$\frac{9}{2}+$	110 ± 20	α	5, 14
11.444 ± 19		103 ± 20	α	5, 14
11.600 ± 30	$\frac{5}{2}^{+}$	170 ± 30	n, α	$\begin{aligned} & 3,5,14,20,22, \\ & 33,61 \end{aligned}$
11.886 ± 17	$\frac{5}{2}^{-}$	200 ± 20	n, α	3, 5, 14, 20, 22
12.0 ± 200	$\frac{7}{2}{ }^{+}$	≈ 1000	n, α	5, 20, 22
12.557 ± 16	$\frac{1}{2}^{+}\left(\frac{3}{2}+{ }^{+}\right) ; \frac{3}{2}$	210 ± 20	$\gamma, \mathrm{p}, \alpha$	5, 14, 17, 18, 36

Table 11.3: Energy Levels of ${ }^{11} \mathrm{~B}$ (continued)

$E_{\text {x }}$	$\begin{gathered} J^{\pi} ; T \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} \tau_{\mathrm{m}}(\mathrm{fs}) \text { or } \\ \Gamma_{\mathrm{c} . \mathrm{m} .}(\mathrm{keV}) \end{gathered}$	Decay	Reactions
12.916 ± 12	$\frac{1}{2}^{-} ; \frac{3}{2}$	200 ± 25	$\gamma, \mathrm{p}, \alpha$	$\begin{aligned} & 5,14,17,18,33, \\ & 59,61 \end{aligned}$
13.137 ± 40	$\frac{9}{}{ }^{-}$	426 ± 40	nt, α	3, 14, 20, 21, 22
13.16	$\frac{5}{2}^{+} ; \frac{7}{2}^{+}$	430	n, α	20, 22
14.04 ± 100	$\frac{11}{2}^{+}$	500 ± 200	n, α	3, 20, 22
14.34 ± 20	$\frac{5}{2}^{+} ; \frac{3}{2}$	254 ± 18	γ, p	14, 17, 36
14.565 ± 15		≤ 30	$\mathrm{n}, \mathrm{t}, \alpha$	$\begin{aligned} & 3,14,20,21,22, \\ & 36,61 \end{aligned}$
15.29 ± 25	$\left(\frac{3}{2}, \frac{5}{2}, \frac{7}{2}\right)^{+} ;\left(\frac{3}{2}\right)$	250 ± 50	$\gamma, \mathrm{p}, \mathrm{n}, \alpha$	20, 22, 33, 61
16.437 ± 20	$T=\frac{3}{2}$	≤ 30	$\mathrm{p}, \mathrm{d}, \alpha$	$\begin{aligned} & 11,14,22,30,33, \\ & 61 \end{aligned}$
17.33		≈ 1000	$\mathrm{n}, \mathrm{d}, \mathrm{t}, \alpha$	11, 21, 22
17.43 ± 50	$T=\frac{3}{2}$	100 ± 30	$\gamma, \mathrm{n}, \mathrm{p}, \mathrm{d}, \alpha$	3, 9, 11, 14
18.0	$T=\frac{3}{2}$	870 ± 100		14
18.37 ± 50	$\left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\right)^{+}$	260 ± 80	γ, d	9
19.13 ± 30	($\pi=+$) ; $\frac{3}{2}$	115 ± 25		14, 61
19.7	$\left(\frac{1}{2}^{+}\right)$	broad	γ, d	9, 28
21.27 ± 50	$T=\frac{3}{2}$	300 ± 30		14
23.7	$\left(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}\right)^{+}$		γ, d	9
26.5		broad	γ, n	28

Ground-state properties of ${ }^{11} \mathrm{~B}$: (84AN1B, 84ZI04, 85AN28, 85GO1A, 85HA18, 85FA01, 85ZI05, 86DO1E, 86GL1A, 86RO03, 86WI04, 87AB03, 87FU06, 87KI1C, 88AR1I, 88BI1A, 88VA03, 88WA08, 88WO04, 89SA10).

$$
\begin{gathered}
\mu=+2.688637(2) \mathrm{nm}(78 \mathrm{LEZA}), \\
Q=40.65(26) \mathrm{mb}[\mathrm{see}(80 \mathrm{AJ} 01)], \\
B\left(\mathrm{E} 2 ; \frac{3}{2}^{-} \rightarrow \frac{1}{2}^{-}\right)=2.6 \pm 0.4 e^{2} \cdot \mathrm{fm}^{4}(80 \mathrm{FE} 07) .
\end{gathered}
$$

Mass of ${ }^{11} \mathrm{~B}$: The mass excess of ${ }^{11} \mathrm{~B}$ has been measured to be $9303.09 \pm 1.30 \mu \mathrm{u}$ (84EL05) [mass spectrometer]. The mass excess listed by (88WA18) is $8668.2 \pm 0.3 \mathrm{keV}$, and we adopt it.

Table 11.4: Electromagnetic transitions in ${ }^{11} \mathrm{~B}{ }^{\text {a }}$

Initial state		J^{π}	$\begin{gathered} \hline \Gamma_{\gamma}(\text { total }) \\ (\mathrm{eV}) \end{gathered}$	Branching ratios (\%) to final state							
		g.s.		2.12	4.44	5.02	6.74	6.79	7.29		
	$2.12{ }^{\text {b }}$		$\frac{1}{2}^{-}$	0.120 ± 0.009	100						
	$4.44{ }^{\text {b }}$	$\frac{5}{2}$	0.56 ± 0.02	$100{ }^{\text {c }}$							
	$5.02{ }^{\text {b }}$	$\frac{3}{2}$	1.963 ± 0.067	$85.6 \pm 0.6{ }^{\text {d }}$	$14.4 \pm 0.6{ }^{\text {e }}$						
	$6.74{ }^{\text {b }}$	$\frac{7^{-}}{}{ }^{-}$	0.030 ± 0.007	$70 \pm 2^{\text {f }}$	<3	30 ± 2	<1				
	$6.79{ }^{\text {b }}$	$\frac{1}{2}+$	0.385 ± 0.044	67.5 ± 1.1	28.5 ± 1.1	< 0.04	4.0 ± 0.3				
	$7.29{ }^{\text {b }}$	$\frac{5}{2}+$	1.149 ± 0.080	87.0 ± 2.0	<1	5.5 ± 1	7.5 ± 1				
\checkmark	$7.98{ }^{\text {b }}$	$\frac{3}{2}+$	1.15 ± 0.15	46.2 ± 1.1	53.2 ± 1.2	< 0.06	<0.09		<0.10	0.85 ± 0.04	
\bigcirc	$8.56{ }^{\text {b }}$	$\left(\frac{3}{2}^{-}\right)^{\mathrm{g}}$	0.946 ± 0.090	56 ± 2	30 ± 2	5 ± 1	9 ± 1				
	$8.92{ }^{\text {b }}$	$\frac{5}{2}^{-}$	4.368 ± 0.021	$95 \pm 1^{\text {h }}$	<1	4.5 ± 0.5	<1	<1	<1		
	$9.19{ }^{\text {i }}$	$\frac{7}{2}+$	$0.17_{-0.03}^{+0.06}$	0.9 ± 0.3		86.6 ± 2.3		12.5 ± 1.1	<1.3		
	$9.27^{\text {i }}$	$\frac{5}{2}^{+}$	1.15 ± 0.16	18.4 ± 0.9		69.7 ± 1.4		11.9 ± 0.6	< 0.6		

[^0]Comments [mainly from (65OL03, 62GR07)]
(1) $4.44 \mathrm{MeV} .9 .28 \rightarrow 4.44 \rightarrow 0$ angular distribution fixes $J=\frac{5}{2}$. Odd parity determined from direct interaction assignments.
(2) 5.02 MeV . Internal pair correlation permit M1, E2 for the g.s. transition: $J^{\pi} \leq \frac{7}{2}^{-}$(parity from l-assignments). τ_{m} excludes $\frac{7}{2}$, branch to 2.12 , $\frac{5}{2}$. Angular correlation fixes $\frac{3}{2}^{-}$.
(3) 6.74 MeV . Internal pairs indicate practically pure $\mathrm{E} 2 \mathrm{~g} . \mathrm{s}$. radiation. Angular distributions and branching ratios (and l-assignments) all lead to $\frac{7}{2}^{-}$.
(4) 6.79 MeV . The allowed β-decay from ${ }^{11} \mathrm{Be}\left[J^{\pi}=\frac{1}{2}^{+}\right]$requires $J^{\pi} \leq \frac{3}{2}^{+}$. The relatively strong γ-branch to ${ }^{11} \mathrm{~B}^{*}(2.12)$ favors $\frac{1}{2}^{+}, \frac{3}{2}^{+}$. All $\gamma^{\text {'s }}$ from this level are isotropic, suggesting $J^{\pi}=\frac{1}{2}^{+}$, but not excluding $\frac{3}{2}^{+}$.
(5) 7.29 MeV . The g.s. transition is mainly E1, so $J^{\pi} \leq \frac{5}{2}^{+}$. The assignment $\frac{1}{2}^{+}$is excluded by the strength of $(7.29 \rightarrow 4.44) . J^{\pi}=\frac{5}{2}^{+}$is consistent with $\log f t>8.04$ in the ${ }^{11} \mathrm{Be} \beta$-decay.
(6) 7.98 MeV. Transitions to ${ }^{11} \mathrm{~B}(0,2.12)$ are predominantly E1; thus ${ }^{11} \mathrm{~B}^{*}(7.98)$ has even parity, and the odd parity of ${ }^{11} \mathrm{~B}^{*}(2.12)$ is confirmed. The transition to ${ }^{11} \mathrm{~B}^{*}(2.12)$ is not isotropic, so $J^{\pi}=\frac{3}{2}^{+}$.
$\not{ }^{\leftharpoondown} \quad(7) 8.56 \mathrm{MeV}$. Correlation of internal pairs indicate that the g.s. transition is $\mathrm{M} 1+\mathrm{E} 2$ or $\mathrm{E} 1+\mathrm{M} 2, \mathrm{~J}^{\pi}=\leq \frac{5}{2}^{+}$or $\leq \frac{7}{2}^{+}$; the lifetime to ${ }^{11} \mathrm{~B}^{*}(2.12)$ excludes $\frac{7}{2}^{-}$. If the level has even parity, the required M2 admixture is excessive. $J^{\pi} \leq \frac{5}{2}^{-}$is favored. See also footnote ${ }^{\mathrm{i}}$ in Table 11.4.
(8) 8.92 MeV . From ${ }^{7} \operatorname{Li}(\alpha, \gamma)^{11} \mathrm{~B}, J^{\pi}=\frac{3}{2}^{+}, \frac{5}{2}^{+}, \frac{5}{2}^{-}$. The internal pair correlation confirms $\frac{5}{2}^{-}$. For higher states see comments under individual reactions and (68AJ02).

Isotopic abundance: $(80.1 \pm 0.2) \%$ (84 DE 1 A$)$.

1. ${ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \mathrm{p}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=12.215$

Angular distributions have been measured for the proton groups to the first eight states of ${ }^{11} \mathrm{~B}$ at $E\left({ }^{6} \mathrm{Li}\right)=2$ to 16 MeV (87DO05). For the earlier work see (80AJ01). For excitation functions see ${ }^{12} \mathrm{C}$. See also (87DO07).
2. ${ }^{7} \operatorname{Li}(\alpha, \gamma){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=8.6637
$$

Resonances for capture radiation are displayed in Table 11.5. See also (84YA1A, 85CA41, 88BU01, 88CA26; astrophys.).
3. ${ }^{7} \operatorname{Li}(\alpha, \mathrm{n}){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-2.7905$
$E_{\mathrm{b}}=8.6637$

The total cross section has been measured from threshold to $E_{\alpha}=5.67 \mathrm{MeV}$ [see also reaction 21]: a broad maximum at $E_{\alpha} \approx 5.1 \mathrm{MeV}\left(\sigma_{\max }=40 \mathrm{mb}\right)$ is observed (84OL05). For the earlier work see Tables 11.7 in (80AJ01) and (85AJ01). See also (85CA41; astrophys.).
4. ${ }^{7} \mathrm{Li}(\alpha, \mathrm{t})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-2.5597$
$E_{\mathrm{b}}=8.6637$

Excitation functions have been measured for $E_{\alpha}=14$ to $25 \mathrm{MeV}\left(\mathrm{t}_{0}\right)$ and 18 to 25 MeV $\left(\mathrm{t}_{1}\right)$: see (80AJ01). See also ${ }^{8}$ Be in (88AJ01) and (87DM1C).

5. ${ }^{7} \mathrm{Li}(\alpha, \alpha)^{7} \mathrm{Li}$

$$
E_{\mathrm{b}}=8.6637
$$

The elastic scattering and the scattering to ${ }^{7} \mathrm{Li}^{*}(0.48)$ have been studied at many energies to $E_{\alpha}=22.5 \mathrm{MeV}$: see (75AJ02, 80AJ01, 85AJ01). Observed resonances are displayed in Table 11.6. For $\alpha-{ }^{7} \mathrm{Li}$ correlations see (87PO03) and the "General" section. See also (87BU27), (87EL1B; applied) and (85CH27; theor.).
6. ${ }^{7} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \mathrm{d}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=7.189$

Angular distributions have been measured for $E\left({ }^{7} \mathrm{Li}\right)=3.3$ to 5.95 MeV : see (75AJ02).

Table 11.5: Resonances in ${ }^{7} \operatorname{Li}(\alpha, \gamma)^{11} \mathrm{~B}^{\text {a }}$

	$\begin{gathered} E_{\text {res }} \\ (\mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\text {c.m. }} \\ & (\mathrm{keV}) \end{aligned}$	$\begin{gathered} { }^{11} \mathrm{~B}^{*} \\ (\mathrm{MeV}) \end{gathered}$	J^{π}	$\begin{gathered} \omega \gamma \\ (\mathrm{eV}) \\ \hline \end{gathered}$	$\begin{aligned} & \Gamma_{\gamma_{0}} \\ & (\mathrm{eV}) \end{aligned}$	Percentage decay to ${ }^{11} \mathrm{~B}^{*}$			
							0	4.44	6.74	6.79
	$401 \pm 3{ }^{\text {b }}$	$4.37 \pm 0.02 \mathrm{eV}$	8.919	$\frac{5}{2}^{-}$	$(8.8 \pm 1.4) \times 10^{-3}$	$4.15 \pm 0.02^{\text {c }}$	95 ± 1	4.5 ± 0.5		
	$814 \pm 2^{\text {b }}$	$1.8{ }_{-1.1}^{+1.5} \mathrm{eV}$	9.182	$\frac{7^{+}}{}{ }^{+}$	0.310 ± 0.047	$0.17_{-0.01}^{+0.05}{ }^{\text {d }}$	0.9 ± 0.3	90.8 ± 4.0	8.3 ± 1.0	<1.3
	$953 \pm 2^{\text {b }}$	4	9.271	$\frac{5}{2}^{+}$	1.72 ± 0.24	$0.20 \pm 0.03{ }^{\text {c }}$	17.1 ± 1.0	71.7 ± 1.8	11.2 ± 0.6	$<0.6{ }^{\text {e }}$
\leftharpoondown	2500 ± 20	433	10.26			17	f			
ω	2620 ± 20	100	10.33			1.0	f			
	2800 ± 50	≈ 140	10.45			$10 /(2 J+1)$				
	(3040)	90	(10.60)			<0.2	f			

a See Table 11.6 in (80AJ01) for comments and references.
${ }^{\mathrm{b}} \Gamma_{\alpha}(\mathrm{c} . \mathrm{m})=.(5.9 \pm 0.9) \times 10^{-3}, 1.6_{-1.1}^{+1.5}$, and $4 \times 10^{3} \mathrm{eV}$ for ${ }^{11} \mathrm{~B}^{*}(8.92,9.19,9.27)(84 \mathrm{HA} 13)$. See also Table 11.4
c See Table 11.4
${ }^{\mathrm{d}} \Gamma_{\gamma}$, not $\Gamma_{\gamma 0}$. See also Table 11.4.
${ }^{\text {e }}$ The decay to ${ }^{11} \mathrm{~B}^{*}(7.29,7.98)\left[J^{\pi}=\frac{5}{2}^{+}, \frac{3}{2}^{+}\right]$is also observed: $\approx 1 \%$ and $\approx 0.03 \%$ respectively.
f $<10 \%$ to ${ }^{11} \mathrm{~B}^{*}(2.12)$.
7. ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}, \mathrm{t}\right){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=6.196
$$

Angular distributions have been measured at $E\left({ }^{7} \mathrm{Li}\right)=2.10$ to 5.75 MeV . At $E\left({ }^{7} \mathrm{Li}\right)=$ 79.6 MeV transitions are observed to several ${ }^{11} \mathrm{~B}$ states. ${ }^{11} \mathrm{~B}_{\text {g.s. }}$ is particularly strongly populated. See (75AJ02) for references.
8. ${ }^{8} \mathrm{Li}(\alpha, \mathrm{n}){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=6.6309$

See (88MA1U; astrophysics). See also (88SA2Q, 89BO1K).
9. ${ }^{9} \mathrm{Be}(\mathrm{d}, \gamma){ }^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=15.8153$

The $90^{\circ} \gamma_{0}$ differential cross section has been measured for $E_{\mathrm{d}}=0.5$ to 11.9 MeV : see (75AJ02). The behavior of the γ_{0}, γ_{1}, and γ_{2+3} total cross sections and of the angular distributions of these γ-rays indicate two resonances at $E_{\mathrm{d}}=1.98 \pm 0.05$ and $3.12 \pm 0.05 \mathrm{MeV}$ with $\Gamma_{\text {lab }}=225 \pm 50$ and $320 \pm 100 \mathrm{keV}$, corresponding to ${ }^{11} \mathrm{~B}^{*}(17.43,18.37)$. The higher resonance was not observable in the $\gamma_{2}+\gamma_{3}$ cross section which was not measured beyond $E_{\mathrm{d}}=2.5 \mathrm{MeV}$. The maximum γ_{0} cross section observed is $10.1 \pm 3.5 \mu \mathrm{~b}$ at $E_{\mathrm{d}} \approx 0.96 \mathrm{MeV}$. Resonant behavior is observed in the $90^{\circ} \gamma_{0}$ cross section at $E_{\mathrm{d}} \approx 3.4$ and $9.65 \mathrm{MeV}\left({ }^{11} \mathrm{~B}^{*}(18.6,23.7)\right)$ in addition to a wide structure at $4.7 \mathrm{MeV}\left({ }^{11} \mathrm{~B}^{*}(19.7)\right)$. The angular distributions of γ_{0} from ${ }^{11} \mathrm{~B}^{*}(18.6,23.7)$ are typical of E 1 transitions. The $\left(\mathrm{d}, \gamma_{0}\right)$ reaction appears to proceed via excitation of the $T=\frac{1}{2}$ component of the giant dipole resonance in ${ }^{11} \mathrm{~B}$.
10. ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{n}){ }^{10} \mathrm{~B} \quad Q_{\mathrm{m}}=4.3612 \quad E_{\mathrm{b}}=15.8153$

The cross section follows the Gamow function for $E_{\mathrm{d}}=70$ to 110 keV . The fast neutron and γ-yield rise smoothly to $E_{\mathrm{d}}=1.8 \mathrm{MeV}$ except for a possible "resonance" at $E_{\mathrm{d}} \approx 0.94 \mathrm{MeV}$. The fast neutron yield then remains approximately constant to 3 MeV : see (68AJ02) for references. The excitation functions for $n_{0} \rightarrow n_{4}$, and n to ${ }^{10} B^{*}(5.1,6.57)$ have been measured for $E_{\mathrm{d}}=14$ to 16 MeV ; no strong fluctuations are observed: see (75AJ02). Thick target yields for γ-rays have been measured at $E_{\mathrm{d}}=48$ to 170 keV : see (85 AJ 01). Thick target yields are also reported at $E_{\mathrm{d}}=14.8,18.0$ and 23.0 MeV : see (80AJ01). Polarization measurements have been carried out at $E_{\mathrm{d}}=0.4$ to 5.5 MeV [see (75AJ02, 80AJ01)] and at $E_{\overrightarrow{\mathrm{d}}}=12.3 \mathrm{MeV}$: see (85AJ01). See also ${ }^{10} \mathrm{~B}$ in (88AJ01), (85SM08, 86BA40) and (88ZVZZ; theor.).

Table 11.6: Structure in ${ }^{7} \mathrm{Li}(\alpha, \alpha)^{7} \mathrm{Li}$ and ${ }^{7} \mathrm{Li}\left(\alpha, \alpha^{\prime}\right)^{7} \mathrm{Li}^{\text {a }}$

$E_{\alpha}{ }^{\mathrm{b}}$ (keV)	$E_{\alpha}{ }^{\mathrm{c}}$ (keV)	$\Gamma_{\text {c.m. }}$ (keV)	E_{x} $(\mathrm{MeV} \pm \mathrm{keV})$	J^{π}
1900 ± 10		130 ± 30	9.873 ± 10	$\frac{3}{2}^{{ }^{+}}$
2480 ± 50		150 ± 40	10.24 ± 50	$\frac{3}{2}^{(-)}, \frac{1}{2}$
3040 ± 10	3630 ± 30	80 ± 30	10.34 ± 30	$\frac{5}{2}^{-}, \frac{7}{2}^{2}$
3600 ± 50		70 ± 10	10.599 ± 10	$\frac{7}{2}^{+}$
	4120 ± 30	90 ± 50	10.96 ± 50	$\frac{5}{2}^{-}$
4430 ± 50	4430		11.29 ± 30	$\frac{9}{2}^{+}$
4600 ± 50		150 ± 50	11.59 ± 50	
5050 ± 30		150 ± 50	11.88 ± 30	
	5300 ± 200	≈ 1000	12.0 ± 200	
6100 ± 30	5500 ± 100	60 ± 50	$(12.17 \pm 100)^{\mathrm{d}}$	
6850 ± 60		150 ± 50	12.55 ± 30	
$(7200 \pm 50)^{\mathrm{e}}$		270 ± 50	13.03 ± 60	
$(8450 \pm 200)^{\mathrm{f}}$	7800 ± 100	500 ± 200	$(13.25 \pm 50)^{\mathrm{d}}$	
$(9450 \pm 200)^{\mathrm{f}}$		500 ± 200	$(13.63 \pm 100)^{\mathrm{d}}$	
		≤ 250	(14.0 ± 200)	
$(11200 \pm 200)^{\mathrm{f}}$	9950 ± 20	500 ± 200	$(15.00 \pm 20)^{\mathrm{d}}$	
		(15.8 ± 200)		

[^1]11. (a) ${ }^{9} \operatorname{Be}(d, p){ }^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=4.5874 \quad E_{\mathrm{b}}=15.8153$
(b) ${ }^{9} \mathrm{Be}(\mathrm{d}, \alpha)^{7} \mathrm{Li}$
$Q_{\mathrm{m}}=7.152$
(c) ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{t})^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=4.5919$
Measurements of proton yields have been carried out at E_{d} up to 6.0 MeV for p_{0} and p_{1} [see (75AJ02, 80AJ01, 85AJ01)]. The p_{0} and p_{1} yields show a resonance at $E_{\mathrm{d}}=750 \pm 15 \mathrm{keV}$ $\left[{ }^{11} \mathrm{~B}^{*}(16.43), \Gamma \approx 40 \mathrm{keV}\right]$ and the p_{1} yield resonates at $1.85 \mathrm{MeV}\left[{ }^{11} \mathrm{~B}^{*}(17.33), \Gamma_{\mathrm{c} . \mathrm{m} .} \approx\right.$ $1.0 \mathrm{MeV}]$ and $2.3 \mathrm{MeV}\left[{ }^{11} \mathrm{~B}^{*}(17.70)\right.$, sharp]. See also (75AJ02, 85AJ01) for other possible structures. Polarization of the protons has been measured at $E_{\mathrm{d}}=1$ to 21 MeV [see (75AJ02, 80AJ01, 85AJ01)] and at $E_{\overrightarrow{\mathrm{d}}}=2.0$ to 2.8 MeV (84DE46; VAP; p $\mathrm{p}_{0}, \mathrm{p}_{1}$). See also ${ }^{10} \mathrm{Be}$ in (88AJ01) and (84AN1D).

The yield of α-particles (reaction (b)) has been measured for $E_{\mathrm{d}}=0.3$ to 14.43 MeV [see (75AJ02, 80AJ01, 85AJ01)]. The 0.75 MeV resonance, observed in reaction (a), is weakly populated in the α_{0} yield. For polarization measurements see (85AJ01) and (84AN1D: $E_{\mathrm{d}}=2.0$ to $\left.2.8 \mathrm{MeV} ; \alpha_{0+1} ; \mathrm{VAP}\right)$. See also ${ }^{7} \mathrm{Li}$ in (88AJ01).

The cross section for reaction (c) has been measured for $E_{\mathrm{d}}=0.15$ to 19 MeV : see (68AJ02, 75AJ02, 80AJ01). Polarization meaurements are reported at $E_{\overrightarrow{\mathrm{d}}}=12$ and 15 MeV [see (80AJ01)] and at $E_{\overrightarrow{\mathrm{d}}}=2.0$ to 2.8 MeV (84AN1D; t_{0}). There is no clear evidence of resonance structure. See also ${ }^{8} \mathrm{Be}$ in (88AJ01).
12. ${ }^{9} \mathrm{Be}(\mathrm{d}, \mathrm{d}){ }^{9} \mathrm{Be}$

$$
E_{\mathrm{b}}=15.8153
$$

Excitation functions for elastically scattered deuterons have been measured for $E_{\mathrm{d}}=0.4$ to 7.0 MeV and for 12.17 to 14.43 MeV (also $\mathrm{d}_{1}, \mathrm{~d}_{2}$) [see (75AJ02, 80AJ01)]. Polarization measurements have been reported at $E_{\overrightarrow{\mathrm{d}}}=6.3$ to 15 MeV [see (75AJ02, 80AJ01)] and at $E_{\mathrm{d}}=2.0$ to 2.8 MeV (83DE50; $\left.\mathrm{d}_{0} ; \mathrm{VAP}\right)$. See also ${ }^{9}$ Be in (88AJ01).
13. ${ }^{9} \mathrm{Be}(\mathrm{t}, \mathrm{n}){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=9.5580
$$

Angular distributions have been measured at $E_{\mathrm{t}}=1.1$ to $1.7 \mathrm{MeV}\left(\mathrm{n}_{0}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{6}, \mathrm{n}_{8}\right.$, n_{9}): see (80AJ01).
14. ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=10.3218$

Observed proton groups are displayed in Table 11.7. Angular distributions have been obtained at a number of energies in the range $E\left({ }^{3} \mathrm{He}\right)=1.0$ to 38 MeV [see (80AJ01, 85AJ01)] and at 3 to 6 MeV (81LI1C; nine groups; DWBA). It is suggested that the $T=\frac{1}{2}$ strength is strongly fragmented (82ZW02). See also (85AJ01), ${ }^{12} \mathrm{C}, ~(85 \mathrm{MC1C}$; applied) and (88KH11; theor.).

Table 11.7: Energy levels of ${ }^{11} \mathrm{~B}$ from ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$

$\begin{gathered} E_{\mathrm{x}}{ }^{\mathrm{a}} \\ \mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{gathered} E_{\mathrm{x}}{ }^{\mathrm{b}} \\ \mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$\begin{aligned} & \Gamma_{\text {c.m. }}{ }^{b}{ }^{b}(\mathrm{keV}) \end{aligned}$	L
0			0
2.1243 ± 0.9			0
4.4434 ± 1.8			0
5.0187 ± 2.3			0
6.7411 ± 3.0			
6.7909 ± 3.1			1
7.285 ± 10			
7.975 ± 10			
8.553 ± 10			0
8.909 ± 10	8.934 ± 15		$0+2$
9.175 ± 10	9.183 ± 15		(1) +3
9.264 ± 10	9.265 ± 15	10 ± 10	$1+3$
9.86 ± 20	9.887 ± 15	104 ± 15	1
	10.265 ± 25	168 ± 25	2
	10.337 ± 20	123 ± 20	$0+2$
	10.580 ± 20	122 ± 20	$1+3$
	11.254 ± 20	110 ± 20	3
	11.437 ± 20	103 ± 20	$(0+2)$
	11.588 ± 30	180 ± 30	$1+3$
	11.889 ± 20	204 ± 20	$0+2$
	$12.563 \pm 20^{\text {c }}$	202 ± 25	1
	$12.920 \pm 20^{\text {c }}$	155 ± 25	2
	13.137 ± 40	426 ± 40	$1+3$
	$\equiv 14.40{ }^{\text {d }}$	261 ± 25	$1+3$
	14.565 ± 15	≤ 30	(1)
	$16.437 \pm 20^{\text {c,e }}$	≤ 30	
	$\equiv 17.69{ }^{\text {c,e }}$	91 ± 25	$(0+2)$
	$18.0 \pm 100^{\text {c,e }}$	870 ± 100	$(1+3)$
	$19.146 \pm 30^{\mathrm{c}, \mathrm{e}}$	115 ± 25	3
	$21.27 \pm 50^{\text {c }}$	300 ± 30	$(1+3)$

${ }^{\text {a }}$ See Table 11.9 in (80AJ01) for references and Table 11.14 here.
${ }^{\text {b }} E\left({ }^{3} \mathrm{He}\right)=38 \mathrm{MeV}$; DWBA analysis.
${ }^{\text {c }} T=\frac{3}{2}$ state.
${ }^{\mathrm{d}}$ This state may have mixed isospin $\left(T=\frac{1}{2}+T=\frac{3}{2}\right)$.
e Not observed in ${ }^{9} \operatorname{Be}(\alpha, d){ }^{11} B$.
15. ${ }^{9} \operatorname{Be}(\alpha, d){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-8.0314$

Angular distributions have been measured at a number of energies in the range $E_{\alpha}=23.4$ to 28.3 MeV [see (80AJ01)] and at 30.2 MeV (84VA07; $\mathrm{d}_{0} \rightarrow \mathrm{~d}_{3}$). The predominant L transfers are $L=0,2 ; 0 ; 0$ for ${ }^{11} \mathrm{~B}^{*}(0,2.12,5.02)$. The angular distribution to ${ }^{11} \mathrm{~B}^{*}(4.44)$ is flat at $E_{\alpha}=27 \mathrm{MeV}$. At $E_{\alpha}=48 \mathrm{MeV},{ }^{11} \mathrm{~B}^{*}(16.44,17.69,18.0,19.15)$ are not excited suggesting that these states are rather pure $T=\frac{3}{2}$ states (82ZW02): see Table 11.7.
16. ${ }^{9} \mathrm{Be}\left({ }^{6} \mathrm{Li}, \alpha\right){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=14.3403
$$

Angular distributions have been determined for seven α-groups at $E\left({ }^{6} \mathrm{Li}\right)=3$ to 4 MeV , and at 24 MeV to ${ }^{11} \mathrm{~B}^{*}(0,2.12)$ and to a number of unresolved levels with $E_{\mathrm{x}} \leq 13.2 \mathrm{MeV}$: see (68AJ02, 75AJ02). For the breakup reactions see (75AJ02).
17. ${ }^{10} \mathrm{Be}(\mathrm{p}, \gamma){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=11.2279$

The yield of γ_{0} has been measured at 90° for $E_{\mathrm{p}}=0.6$ to 6.3 MeV . Observed resonances are displayed in Table 11.8. $T=\frac{3}{2}$ assignments are made for the states at $E_{\mathrm{x}}=12.56,12.91$, 14.33 and 15.32 MeV whose energies match those of the first four states of ${ }^{11} \mathrm{Be}$ [compare with the $T=\frac{3}{2}$ states reported in ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$ - Table 11.7]. See also Table 11.14. Several known $T=\frac{1}{2}$ states in ${ }^{11} \mathrm{~B}$ are not observed in this reaction: see Table 11.3.
18. ${ }^{10} \mathrm{Be}(\mathrm{p}, \mathrm{n}){ }^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-0.2262$
$E_{\mathrm{b}}=11.2279$

The reaction cross section has been measured for $E_{\mathrm{p}}=0.89$ to 1.93 MeV : the excitation of ${ }^{11} \mathrm{~B}^{*}(12.56,12.91)$ is reported (86 TE 1 A and G.M. Ter-Akopian, private communication; 87ER1D). See also (88DUO6; theor.).

Table 11.8: Levels of ${ }^{11} \mathrm{~B}$ from the ${ }^{10} \mathrm{Be}\left(\mathrm{p}, \gamma_{0}\right)^{11} \mathrm{~B}$ reaction (70GO04)

E_{p} $(\mathrm{MeV} \pm \mathrm{keV})$	E_{x} (MeV)	$\Gamma_{\text {c.m. }}$ (keV)	$\left(J+\frac{1}{2}\right)$ $\left(\Gamma_{\mathrm{p}} / \Gamma\right) \Gamma_{\gamma_{0}} \mathrm{a}$ (eV)	$\Gamma_{\gamma_{0}}{ }^{\mathrm{a}}$ (eV)	$\Gamma_{\gamma_{1} / \Gamma_{\gamma_{0}}}$	J^{π}
$(1.05 \pm 40)^{\mathrm{b}}$	(12.18)	230 ± 90	$3.1_{-2.0}^{+2.9}$			
1.46 ± 30	12.56	230 ± 65	10_{-5}^{+7}	10_{-5}^{+7}	0.25 ± 0.08	$\frac{1}{2}^{+}\left(\frac{3}{2}^{+}\right)$
1.85 ± 20	12.91	235 ± 27	29 ± 9	$29 \pm 9{ }^{\mathrm{c}}$	≤ 0.06	$\frac{1}{2}^{-}$
3.41 ± 20	14.33	255 ± 36	29 ± 9	14.5 ± 4.3	≤ 0.1	$\frac{5}{2}^{(+)}\left(\frac{3}{2}^{-}\right)$
4.5 ± 100	15.32	635 ± 180	$53_{-26}^{+34}{ }^{\mathrm{d}}$			

${ }^{\text {a }}$ Values reported in (70GO04) are here shown multiplied by 1.7: see (73GO09). See also Table 11.14
${ }^{\mathrm{b}}$ May be due to ${ }^{10} \mathrm{~B}^{*}(0.7)+\mathrm{n}$ threshold.
${ }^{c}$ In the ($\mathrm{e}, \mathrm{e}^{\prime}$) work of (75KA02) a strong group is observed at $E_{\mathrm{x}}=13.0 \pm 0.1 \mathrm{MeV}$. If it corresponds to the excitation of ${ }^{11} \mathrm{~B}^{*}(12.91)$ with $J^{\pi}=\frac{1^{-}}{2} ; T=\frac{3}{2}$, then $\Gamma_{\gamma_{0}}=36 \pm 7 \mathrm{eV}$ (75KA02).
${ }^{\mathrm{d}}$ Assumes that $\sigma_{\text {total }}=4 \pi \mathrm{~d} \sigma / \mathrm{d} \Omega\left(90^{\circ}\right)$.

Table 11.9: Neutron capture γ-rays from ${ }^{10} \mathrm{~B}+\mathrm{n}{ }^{\text {a }}$

$E_{\gamma}(\mathrm{keV})$	$I_{\gamma}{ }^{\mathrm{b}}$	$I_{\gamma}{ }^{\mathrm{c}}$	Assignment	$E_{\mathrm{x}}(\mathrm{keV})$
11447.35 ± 0.52	4.6 ± 0.3	4.7 ± 0.3	capt. \rightarrow g.s.	
8916.80 ± 0.27	13 ± 1	13.4 ± 0.9	$8.92 \rightarrow \mathrm{~g} . \mathrm{s}$.	8920.44 ± 0.27
6738.34 ± 0.50	19 ± 2	19.0 ± 0.9	$6.74 \rightarrow$ g.s.	6741.76 ± 0.24
4444.03 ± 0.12	67 ± 4	65.7 ± 2.4	$4.44 \rightarrow \mathrm{~g} . \mathrm{s}$.	4444.95 ± 0.15
7006.75 ± 0.10	56 ± 2	55.4 ± 1.7	capt. $\rightarrow 4.44$	
4711.17 ± 0.10	28 ± 2	25.6 ± 0.9	capt. $\rightarrow 6.74$	
2533.49 ± 0.23	12 ± 4	14.4 ± 1.8	capt. $\rightarrow 8.92$	
2296.61 ± 0.59	7 ± 4	8.9 ± 2.4	$6.74 \rightarrow 4.44$	

${ }^{\text {a }}$ (86 KO 19). For the earlier work see Table 11.12 in (75AJ02): I_{γ} for $5.02 \rightarrow$ g.s. and $2.12 \rightarrow$ g.s. are <2 and <3, respectively (67 TH 05).
${ }^{\mathrm{b}}$ Photons/ 100 captures.
${ }^{\text {c }}$ Adopted: weighted mean of (67 TH 05) and (86 KO 19).

Table 11.10: Resonances in ${ }^{10} \mathrm{~B}+\mathrm{n}^{\text {a }}$

${ }^{10} \mathrm{~B}\left(\mathrm{n}, \mathrm{n}^{\prime} \gamma\right)^{10} \mathrm{~B}$		${ }^{10} \mathrm{~B}(\mathrm{n}, \alpha)^{7} \mathrm{Li}$		Yield of	${ }^{11} \mathrm{~B}^{*}$ (MeV)
$E_{\text {res }}(\mathrm{MeV})$	$\Gamma(\mathrm{keV})$	$E_{\text {res }}(\mathrm{MeV})$	$\Gamma(\mathrm{keV})$	$\sigma_{\mathrm{t}}, \alpha$	11.66
		0.23^{b}		σ_{0}, α_{1}	11.94
1.93	260	$0.53^{\mathrm{b}, \mathrm{c}}$	140	1.86	570
(2.6)	broad	2.79	530	$\sigma_{\mathrm{t}}, \alpha_{0}, \alpha_{1}, \mathrm{t}, \mathrm{n}^{\prime}$	13.2
3.31	370	3.43	<120	$\alpha_{0}, \alpha_{1}, \mathrm{n}^{\prime}$	14.0
4.1		4.1	800	$\sigma_{\mathrm{t}}, \alpha_{0}, \alpha_{1}, \mathrm{n}^{\prime}$	14.57
4.73				n^{\prime}	15.2
		5.7	broad	α_{0}, t	16.6
		6.4	broad	α_{0}, t	17.3

${ }^{\text {a }}$ See also Table 11.11 For references see Table 11.12 in (80AJ01).
b (84OL05) [see reaction 21] report $E_{\mathrm{R}}=241 \pm 18$ and $493 \pm 4 \mathrm{keV}, \Gamma=166 \pm 40$ and $194 \pm 6 \mathrm{keV}: E_{\mathrm{x}}$ are then 11.673 and 11.902 MeV .
${ }^{c}$ See footnote ${ }^{\mathrm{b}}$ in Table 11.11

19. ${ }^{10} \mathrm{~B}(\mathrm{n}, \gamma){ }^{11} \mathrm{~B} \quad$| | $Q_{\mathrm{m}}=11.4542$ |
| :--- | :--- |
| | $Q_{0}=11454.1 \pm 0.2 \mathrm{keV}(86 \mathrm{KO} 19)$ |

The thermal capture cross section is $0.29 \pm 0.04 \mathrm{~b}$ (86 KO 19). The observed capture γ-rays are displayed in Table 11.9. See also (88MU05; theor.).
20. ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{n}){ }^{10} \mathrm{~B}$

$$
E_{\mathrm{b}}=11.4542
$$

The scattering amplitude (bound) $a=-0.2 \pm 0.4 \mathrm{fm}$, the total scattering cross section $\sigma($ free $)=2.23 \pm 0.06 \mathrm{~b}$ (83 KO 17). The total scattering cross section is constant at $2.23 \pm$ 0.06 b for $E_{\mathrm{n}}=0.7$ to 10 keV and then rises to 2.97 b at $E_{\mathrm{n}}=127 \mathrm{keV}$. For a display of cross sections and a listing of measurements see (88 MCZT).

Total cross section measurements in the range $E_{\mathrm{n}}=10$ to 500 keV show a broad maximum near $E_{\mathrm{n}}=0.23 \mathrm{MeV}$, also observed in the (n, α) cross section. At higher energies the total cross section shows broad maxima at $E_{\mathrm{n}}=1.9,2.8$ and 4.3 MeV : see Table 11.10. In the range $E_{\mathrm{n}}=5.5$ to $16 \mathrm{MeV} \sigma_{\text {tot }}$ is constant at 1.5 b .

Polarization measurements (0.075 to 2.2 MeV and 2.63 MeV) and measurements of differential cross sections (0.075 to 4.4 MeV) have been analyzed using R-matrix calculations:

Table 11.11: R-matrix analysis of resonant state in ${ }^{10} \mathrm{~B}+\mathrm{n}^{\text {a }}$

E_{n}	$E_{\text {x }}$	J^{π}	$l_{\text {n }}$	Γ_{n}	$\Gamma_{\alpha_{0}}$	$\Gamma_{\alpha_{1}}$	$\begin{aligned} & \Gamma_{\mathrm{c} . \mathrm{m} .} \\ & (\mathrm{keV}) \end{aligned}$
(MeV)	(MeV)			(c.m., MeV)			
	10.60	2	0	0.120	0.030	0.070	220
0.17	11.61	+	0	0.004	0.296	0.0	300
0.37	11.79	$\frac{7}{2}+$	0	0.770	0.001	0.113	884
$0.53{ }^{\text {b }}$	11.94	$\frac{5}{2}$	1	0.031	0.080	0.090	201
1.83	13.12	2	1	0.100	0.275	0.050	425
1.88	13.16	$\frac{5}{2}^{+}, \frac{7}{2}^{+}$	2	0.080	0.200	0.150	430
2.82	14.02	$\frac{11}{2}{ }^{+}$	2	0.800	0.045	0.010	855
4.2	15.3	$\left(\frac{3}{2}, \frac{5}{2}, \frac{7}{2}\right)^{+}$	2	0.500	0.100	0.100	700

${ }^{\text {a }}$ Analysis based on polarization and differential cross-section measurements of the elastic scattering, and on results from ${ }^{10} \mathrm{~B}\left(\mathrm{n}, \alpha_{0}\right)$ and (n, α_{1}). The analysis used a two-level, four-channel R-matrix formalism with a non-diagonal background R-matrix: see (73HA64). This analysis does not include ${ }^{11} \mathrm{~B}^{*}(14.53)$ because the resonance is weak, narrow and almost entirely in the α-channel (73CO05). See also Table 11.10
b (78LA23) report $E_{\text {res }}=495 \pm 5 \mathrm{keV}, \Gamma=140 \pm 15 \mathrm{keV}, \sigma_{\max }[\mathrm{in}(\mathrm{n}$, $\left.\left.\alpha_{1} \gamma\right)\right]=94 \pm 6 \mathrm{mb}$.
the results are shown in Table 11.11. They are consistent with results from ${ }^{10} \mathrm{~B}\left(\mathrm{n}, \mathrm{n}^{\prime} \gamma\right)$ and ${ }^{7} \operatorname{Li}(\alpha, n)$. See (80AJ01) for references.

Elastic and inelastic cross sections have also been reported at $E_{\mathrm{n}}=4$ to 14.1 MeV [see (80AJ01)], at $E_{\mathrm{n}}=3.0$ to 12.0 MeV (86SAZR, 87SAZX; prelim.), at 8.0 to 13.9 MeV (82GL02) and at 10 to 17 MeV (86MU1D; also polarization measurements at 10 and 15 MeV ; prelim.). The yield of $0.7 \mathrm{MeV} \gamma$-rays has been studied from threshold to $E_{\mathrm{n}}=5.2 \mathrm{MeV}$: observed resonances are displayed in Table 11.10. Inelastic scattering cross sections for formation of various ${ }^{10} \mathrm{~B}$ states have been measured at a number of energies in the range $E_{\mathrm{n}}=1.45$ to 14.8 MeV : see (75AJ02). See also ${ }^{10} \mathrm{~B}$ in (88AJ01), (86BAYL, 86DR1D), (83GO1H, 88MA1H), (88RE09; computer code) and (85CH27, 88HAZT; theor.).
21.
(a) ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{p})^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=0.2262$
$E_{\mathrm{b}}=11.4542$
(b) ${ }^{10} \mathrm{~B}(\mathrm{n}, \mathrm{t})^{4} \mathrm{He}^{4} \mathrm{He}$
$Q_{\mathrm{m}}=0.3226$

The thermal cross section for reaction (a) is $6.4 \pm 0.5 \mathrm{mb}$ (87LA16); that for reaction (b) is $4.47 \pm 0.15 \mathrm{mb}$ (89CL01) [see also for other references], $7 \pm 2 \mathrm{mb}$ (87KA32). The cross section for reaction (b) has also been studied for $E_{\mathrm{n}}=1.4$ to 8.2 MeV [see Table 11.10 and (68AJ02)] and 3 to 8 MeV (86QA1A; prelim.). For various breakup processes see (84TU02). For a display of cross sections and a listing of measurements see (88MCZT). See also (85BO1D, 88MA1H, 88SUZY).
22. ${ }^{10} \mathrm{~B}(\mathrm{n}, \alpha)^{7} \mathrm{Li}$

$$
Q_{\mathrm{m}}=2.7905
$$

$$
E_{\mathrm{b}}=11.4542
$$

The "recommended" value of the thermal isotopic absorption cross section is $3837 \pm 9 \mathrm{~b}$ (81MUZQ). The α_{0} / α_{1} branching for thermal neutrons is (6.723 ± 0.011) \% [mean of values listed in (85AJ01)]. At $E_{\mathrm{n}}=2$ and 24 keV the values are $(7.05 \pm 0.16) \%$ and $(7.13 \pm 0.15) \%$, respectively (79ST1B).

The cross section for this reaction has been measured for $E_{\mathrm{n}}=0.025 \mathrm{eV}$ to 14.8 MeV [see (75A.J02, 80A.J01, 85AJ01)]: for observed and deduced structures see Tables 11.10 and 11.11. For a display of cross sections and a listing of measurements see (88 MCZT). For a review see (86CA28). "Detailed balance" [from ${ }^{7} \mathrm{Li}(\alpha, \mathrm{n})$ measurements] has led to the determination of the ${ }^{10} \mathrm{~B}\left(\mathrm{n}, \alpha_{0}\right)$ cross section from $0<E_{\mathrm{n}} \leq 0.78 \mathrm{MeV}$: two resonances are inferred at $E_{\mathrm{R}}=241 \pm 18$ and $493 \pm 4 \mathrm{keV}$, with $\sigma_{\mathrm{R}}=17 \pm 3$ and $112 \pm 3 \mathrm{mb}$ and $\Gamma=166 \pm 40$ and $194 \pm 6 \mathrm{keV}$ (84OL05).

A study of the reaction involving polarized thermal neutrons and a polarized ${ }^{10} \mathrm{~B}$ target shows that the transition to ${ }^{7} \mathrm{Li}^{*}(0.48)$ proceeds almost totally through the $J=\frac{7}{2}$ channel (86KO19). The ratio of the ${ }^{10} \mathrm{~B}(\mathrm{n}, \alpha)$ cross section to the ${ }^{6} \mathrm{Li}(\mathrm{n}, \mathrm{t})$ cross section has been measured from $E_{\mathrm{n}} \approx 1$ to 45 eV (86CA29; prelim.).

Parity violation has been studied using polarized thermal neutrons: the P-odd asymmetries for the transitions to ${ }^{7} \mathrm{Li}^{*}(0,0.48)$ are $<3.7 \times 10^{-6}$ and $<6.1 \times 10^{-7}$, respectively (86ER05): see also (83VE10), and (85AJ01) for the earlier work. See also ${ }^{7} \mathrm{Li}$ in (88AJ01), (84AL1M, 84XI1A, 86CO1M, 86DR1G, 86GR1F, 86OL1B, 86WI1B; applied) and (86AB1E, 86MI1G, 88MA1H).
23. ${ }^{10} \mathrm{~B}\left(\mathrm{p}, \pi^{+}\right)^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-128.897$

Angular distributions have been obtained at $E_{\mathrm{p}}=168$ to 800 MeV to several states of ${ }^{11} \mathrm{~B}$ [see (80AJ01, 85AJ01)] as have cross sections for π^{+}production near threshold. At $E_{\overrightarrow{\mathrm{p}}}=200$ to 260 MeV , angular distributions and analyzing powers have been measured for the groups to ${ }^{11} \mathrm{~B}^{*}(0,2.12)$ (85ZI04).
24. ${ }^{10} \mathrm{~B}(\mathrm{~d}, \mathrm{p}){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=9.2296
$$

Table 11.12: Beta decay of ${ }^{11} \mathrm{Be}(82 \mathrm{MI} 08)^{\text {a }}$

${ }^{11} \mathrm{~B}(\mathrm{keV})$	$J^{\text {a b }}$	Branching ${ }^{\mathrm{c}}$ ratio (\%)	$\log f t$	$E_{\gamma}(\mathrm{keV})$	$\begin{aligned} & \hline I_{\gamma}{ }^{c} \\ & (\%) \end{aligned}$	Transition to ${ }^{11} \mathrm{~B}^{*}(\mathrm{MeV})$
g.s.	$\frac{3}{2}^{-}$	$54.7 \pm 2.0{ }^{\text {d }}$	6.830 ± 0.016			
2124.693 ± 0.027	$\frac{1}{2}{ }^{-}$	31.4 ± 1.8	6.648 ± 0.025	2124.473 ± 0.027	100	g.s.
4444.89 ± 0.50	$\frac{5}{2}^{-}$	0.054 ± 0.004	$10.93 \pm 0.03{ }^{\text {e }}$	4443.90 ± 0.50	100	g.s.
5020.31 ± 0.30	$\frac{3}{2}^{-}$	0.282 ± 0.020	7.934 ± 0.031	5018.98 ± 0.40	85.6 ± 0.6	g.s.
				2895.30 ± 0.40	14.4 ± 0.6	2.12
$6791.80 \pm 0.30^{\text {f }}$	$\frac{1}{2}^{+}$	6.47 ± 0.45	5.938 ± 0.030	6789.81 ± 0.50	67.5 ± 1.1	g.s.
				4665.90 ± 0.40	28.5 ± 1.1	2.12
				1171.31 ± 0.30	4.0 ± 0.3	5.02
7285.51 ± 0.43	$\frac{5}{2}+$	<0.03	> 8.04	7282.92	87.0 ± 2.0	g.s.
$7977.84 \pm 0.42{ }^{\text {g }}$	$\frac{3}{2}+$	4.00 ± 0.30	5.576 ± 0.033	7974.73	46.2 ± 1.1	g.s.
				5851.47 ± 0.42	53.2 ± 1.2	2.12
				692.31 ± 0.10	0.85 ± 0.04	7.29
9.876	$\frac{3}{2}+$	$3.1 \pm 0.4{ }^{\text {h }}$	4.04 ± 0.08			

${ }^{\text {a }}$ See also Tables 11.15 in (80AJ01) and 11.13 in (85AJ01).
${ }^{\mathrm{b}}$ From Table 11.3.
${ }^{\text {c }}$ Adopted by (82MI08); based on their work and on the earlier work.
${ }^{\mathrm{d}}$ From the relative intensities of the γ-rays and $I_{2.13} / I_{\text {total } \beta}=0.355 \pm 0.018$.
${ }^{\mathrm{e}} \log f_{1} t$.
${ }^{\mathrm{f}}$ Transition to ${ }^{11} \mathrm{~B}^{*}(4.44)$ is $<0.04 \%$.
${ }^{\mathrm{g}}$ Transitions to ${ }^{11} \mathrm{~B}^{*}(4.44,5.02,6.79)$ are $<0.06,<0.09$ and $<0.10 \%$.
${ }^{\mathrm{h}}$ From the relative intensities of the γ-rays and $I_{\alpha} / I_{2.12}$ of (81AL03).

Reported proton groups are displayed in Table 11.14 of (80AJ01). Angular distributions have been studied at many energies in the range $E_{\mathrm{d}}=0.17$ to 28 MeV [see (68AJ02, 75AJ02, 80AJ01)]. The lowest five levels are formed by $l_{\mathrm{n}}=1$ except for ${ }^{11} \mathrm{~B}^{*}(2.12)$ which appears to involve a spin-flip process. They are presumed to comprise the set $\frac{3}{2}^{-}, \frac{1^{-}}{2}, \frac{5^{-}}{2}, \frac{3}{2}^{-}, \frac{7}{2}^{-}$ expected as the lowest p^{7} levels $(a / K \approx 4.0) .{ }^{11} \mathrm{~B}^{*}(9.19,9.27)\left[J^{\pi}=\frac{7}{2}^{+}, \frac{5}{2}^{+}\right]$show strong $l=0$ stripping and are ascribed to capture of a 2 s neutron by ${ }^{10} \mathrm{~B}$: see (68AJ02) for a listing of all the relevant references. Studies of p γ correlations are discussed in reaction 14 of (68AJ02) and displayed in Table 11.4 of this paper. See also ${ }^{12} \mathrm{C}$.
25. (a) ${ }^{10} \mathrm{~B}(\mathrm{t}, \mathrm{d})^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=5.1969$
(b) ${ }^{10} \mathrm{~B}\left(\alpha,{ }^{3} \mathrm{He}\right)^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-9.1236$

See (68AJ02, 75AJ02).
26. (a) ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{Li}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=4.204$
(b) ${ }^{10} \mathrm{~B}\left({ }^{9} \mathrm{Be},{ }^{8} \mathrm{Be}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=9.7888$
(c) ${ }^{10} \mathrm{~B}\left({ }^{13} \mathrm{C},{ }^{12} \mathrm{C}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=6.5078$

See (80AJ01, 85AJ01).
27. ${ }^{11} \mathrm{~B}\left(\beta^{-}\right){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=11.506
$$

${ }^{11}$ Be decays to many states of ${ }^{11} \mathrm{~B}$: see Table 11.12 for the observed β - and γ-transitions (82MI08). ${ }^{11} \mathrm{~B}^{*}(9.88)$ decays via α-emission for ${ }^{7} \mathrm{Li}^{*}(0,0.48)$ with branching ratios ($87.4 \pm$ $1.2) \%$ and $(12.6 \pm 1.2) \%$, respectively (81AL03). A study of the $\beta \nu$ angular correlation in the first-forbidden decay of ${ }^{11} \mathrm{Be}$ to the $\frac{1}{2}^{-}$state ${ }^{11} \mathrm{~B}^{*}(2.12)$ has been performed: the β-transition is dominated by rank- 0 matrix elements and is of interest as a test of meson-exchange effects: see (85AJ01). See also (88WA1E).
28. (a) ${ }^{11} \mathrm{~B}(\gamma, \mathrm{n})^{10} \mathrm{~B}$
$Q_{\mathrm{m}}=-11.4542$
(b) ${ }^{11} \mathrm{~B}(\gamma, \mathrm{p})^{10} \mathrm{Be}$
$Q_{\mathrm{m}}=-11.2279$
(c) ${ }^{11} \mathrm{~B}(\gamma, \mathrm{~d}){ }^{9} \mathrm{Be}$
$Q_{\mathrm{m}}=-15.8153$
(d) ${ }^{11} \mathrm{~B}(\gamma, \mathrm{t}){ }^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-11.2234$

The giant dipole resonance is shown to consist mainly of $T=\frac{1}{2}$ states in the lower energy region and of $T=\frac{3}{2}$ states in the higher energy region by observing the decay to states in ${ }^{10} \mathrm{~B}$ and ${ }^{10} \mathrm{Be}$ [reactions (a) and (b)]. Absolute measurements of the ${ }^{11} \mathrm{~B}(\gamma$, all n$)$ cross section have been carried out from threshold to 35 MeV : the cross section exhibits a main peak at $E_{\gamma}=25$ to 28 MeV and weak shoulders at 13 and 16 MeV . The integrated cross section to 35 MeV is $69.1 \pm 0.8 \mathrm{MeV} \cdot \mathrm{mb}$: see (80AJ01) and (88DI02). See also (84AL22). For other structures reported in the (γ, n) and (γ, p) cross sections see (75AJ02). The (γ, d_{0}) cross section peaks at $\approx 19 \mathrm{MeV}$, lower than it would if $T=\frac{3}{2}$ states were involved. The yield of $3.37 \mathrm{MeV} \gamma$-rays [from ${ }^{10} \mathrm{Be}^{*}(3.37)$, reaction (b)] has been measured for $E_{\mathrm{bs}}=100$ to 800 MeV . See also (84AL22, 86AL24). For reaction (d) see (86AL24). See (80AJ01, 85AJ01) for references and for other photonuclear processes. See also (85CH27, 85GO1A, 87KI1C, 87LU1B, 88DU04; theor.).
29. ${ }^{11} \mathrm{~B}(\gamma, \gamma){ }^{11} \mathrm{~B}$

Widths of excited states are displayed in Table 11.13. See also (84AL22, 88BEYY).
30. (a) ${ }^{11} \mathrm{~B}(e, e)^{11} \mathrm{~B}$
(b) ${ }^{11} \mathrm{~B}(\mathrm{e}, \text { ep })^{10} \mathrm{Be} \quad Q_{\mathrm{m}}=-11.2279$

$$
\left\langle r^{2}\right\rangle^{1 / 2}=2.43 \pm 0.11 \mathrm{fm} \quad \text { (86DO1E; prelim.). }
$$

[See also unpublished result in (80AJ01).]
Magnetic elastic scattering at $\theta=180^{\circ}$ shows strong M3 effects: the derived ratio of static M3/M1, $2.9 \pm 0.2 \mathrm{fm}^{2}$, suggests a j-j coupling scheme for ${ }^{11} \mathrm{~B}$ (g.s.). The quadrupole contribution to the elastic form factor is best accounted for by the undeformed shell model, $Q=3.72(\pm 20 \%) \mathrm{fm}^{2},\left\langle r^{2}\right\rangle^{1 / 2}=2.42 \mathrm{fm}$. See (80AJ01) for references. A recent study of the elastic scattering for $q=2.0$ to $3.9 \mathrm{fm}^{-1}$ is reported by (88 HI 02): the M3 component is dominant in the elastic form factor for $q>1.5 \mathrm{fm}^{-1}$.

The excitiation of ${ }^{11} \mathrm{~B}^{*}(2.1,4.4,5.0,8.6,8.9)$ has been studied. The giant resonance region, centered at $\approx 18 \mathrm{MeV}$, is characterized by a lack of prominent features except for a pronounced peak at $E_{\mathrm{x}}=13.0 \pm 0.1 \mathrm{MeV}$ (mixed M1-E2) and a broad transverse group at $E_{\mathrm{x}}=15.5 \mathrm{MeV}$. At $E_{\mathrm{e}}=121,186$ and 250 MeV form factors (and $B(\mathrm{E} \lambda) \uparrow$) are obtained for ${ }^{11} \mathrm{~B}^{*}(4.4,6.7,8.5,8.9,13.00 \pm 0.15)$ and the excitation of ${ }^{11} \mathrm{~B}^{*}(14.50 \pm 0.15,16.7 \pm 0.2)$ is also reported: see (85AJ01). See also (84DO1A, 87DE1A).

For $\Gamma_{\gamma_{0}}$ see Table 11.13. For reaction (b) see (75AJ02). See also (85KE1E, 86HA1M, 86KE1F, 87AL1M, 87DO12; theor.).

Table 11.13: Gamma widths from ${ }^{11} \mathrm{~B}(\gamma, \gamma){ }^{11} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}(\mathrm{e}, \mathrm{e}){ }^{11} \mathrm{~B}{ }^{\text {a }}$

$E_{\mathrm{x}}(\mathrm{MeV})$	J^{π}	$\Gamma_{\gamma_{0}}(\mathrm{eV})$	Reaction
2.12	$\frac{1}{2}^{-}$	$0.120 \pm 0.009^{\mathrm{b}}$	(γ, γ)
4.44	$\frac{5}{2}^{-}$	0.58 ± 0.04	(γ, γ)
		0.55 ± 0.02	(γ, γ)
		$0.60 \pm 0.09(\mathrm{M} 1)$	(e, e)
		$\pm 0.016 \pm 0.002(\mathrm{E} 2)$	
		$0.56 \pm 0.02^{\mathrm{b}}$	
5.02	$\frac{3}{2}^{-}$	1.80 ± 0.13	(γ, γ)
		1.64 ± 0.07	(γ, γ)
		$1.73 \pm 0.14(\mathrm{M} 1)$	(e, e)
		$\leq 0.0034(\mathrm{E} 2)$	
		$1.68 \pm 0.06^{\mathrm{b}}$	
6.74	$\frac{7}{2}^{-}$	0.021 ± 0.005	(γ, γ)
7.79	$\frac{1}{2}^{+}$	0.26 ± 0.03	(γ, γ)
7.29	$\frac{5}{2}^{+}$	$1.00 \pm 0.07^{\mathrm{b}}$	(γ, γ)
7.98	$\frac{3}{2}^{+}$	0.53 ± 0.07	(γ, γ)
8.56	$\left.\frac{3}{2}^{-}\right)$	0.53 ± 0.05	(γ, γ)
8.92	$\frac{5}{2}^{-}$	$4.15 \pm 0.20^{\mathrm{b}}$	$(\gamma, \gamma) ;(\mathrm{e}, \mathrm{e})$

[^2]31. ${ }^{11} \mathrm{~B}\left(\pi^{+}, \pi^{+}\right)^{11} \mathrm{~B}$

The proton matter distribution in ${ }^{11} \mathrm{~B}_{\text {g.s. }}$ has a radius of $2.368 \pm 0.021 \mathrm{fm}$, assuming that for ${ }^{12} \mathrm{C}$ to be 2.44 fm . The result is not sensitive to the details of the optical-model calculations ($80 \mathrm{BA} 45 ; E_{\pi^{+}}=38.6$ and 47.7 MeV). See also the "General" section.
32. ${ }^{11} \mathrm{~B}(\mathrm{n}, \mathrm{n}){ }^{10} \mathrm{~B}$

Angular distributions have been reported for $E_{\mathrm{n}}=75 \mathrm{keV}$ to 14.1 MeV [see (80AJ01, 85AJ01)] and at $E_{\mathrm{n}}=8.0$ to $13.9 \mathrm{MeV}\left(82 \mathrm{GL} 02 ; \mathrm{n}_{0} \rightarrow \mathrm{n}_{3}\right)$. Recent work (prelim.) is reported to 17 MeV (86MU1D; n_{0}). See also ${ }^{12} \mathrm{~B}$, (85WA1P) and (88HAZT; theor.).
33. (a) ${ }^{11} \mathrm{~B}(\mathrm{p}, \mathrm{p})^{11} \mathrm{~B}$
$\begin{array}{ll}\text { (b) }{ }^{11} \mathrm{~B}(\mathrm{p}, 2 \mathrm{p})^{10} \mathrm{Be} & Q_{\mathrm{m}}=-11.2279 \\ (\mathrm{c}){ }^{11} \mathrm{~B}(\mathrm{p}, \mathrm{pn})^{10} \mathrm{~B} & Q_{\mathrm{m}}=-11.4542\end{array}$
Observed proton groups are displayed in Table 11.4. Angular distributions have been measured for $E_{\mathrm{p}}=6$ to 185 MeV [see (80AJ01)] and at 1 GeV (85AL1F). For reactions (b) and (c) at 1 GeV see (85BE1J, 85DO1B). For pion production see (87AB1E). See also ${ }^{12} \mathrm{C}$, (88BE2B), (85MUZZ) and (85AJ01).
34. ${ }^{11} \mathrm{~B}(\mathrm{~d}, \mathrm{~d}){ }^{11} \mathrm{~B}$

Elastic scattering has been studied at $E_{\mathrm{d}}=5.5$ and 11.8 MeV : see (80AJ01).
35. ${ }^{11} \mathrm{~B}(\mathrm{t}, \mathrm{t})^{11} \mathrm{~B}$

The elastic scattering has been studied at $E_{\mathrm{t}}=1.8$ and 2.1 MeV : see (80AJ01).
36. ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}$

The elastic scattering has been studied at $E\left({ }^{3} \mathrm{He}\right)=8$ to 74 MeV : see (75AJ02, 80AJ01). At $E\left({ }^{3} \mathrm{He}\right)=17.5$ and 40 MeV angular distributions have also been studied for the ${ }^{3} \mathrm{He}$ ions to ${ }^{11} \mathrm{~B}^{*}(2.12,4.44,5.02,6.74) . T=\frac{3}{2}$ states observed in this reaction are displayed in Table 11.14. See also (85AJ01). There is a weak indication of a state at $E_{\mathrm{x}}=14.51 \mathrm{MeV}$: see (75AJ02). See also (86JA14) and (87TR01; theor.).

Table 11.14: $T=\frac{3}{2}$ states in ${ }^{11} \mathrm{~B}{ }^{\text {a }}$

Reaction	$E_{\mathrm{x}}(\mathrm{MeV} \pm \mathrm{keV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	12.563 ± 20	202 ± 25
${ }^{10} \mathrm{Be}(\mathrm{p}, \gamma){ }^{11} \mathrm{~B}$	12.56 ± 30	230 ± 65
${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}^{*}$	$\underline{12.51 \pm 50}$	$\underline{260 \pm 50}$
	$12.557 \pm 16^{\text {b }}$	$215 \pm 21^{\text {b }}$
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	12.920 ± 20	155 ± 25
${ }^{10} \mathrm{Be}(\mathrm{p}, \gamma){ }^{11} \mathrm{~B}$	12.91 ± 20	235 ± 27
${ }^{13} \mathrm{C}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}$	12.94 ± 50	350 ± 50
${ }^{13} \mathrm{C}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}$	12.91 ± 30	260 ± 50
${ }^{14} \mathrm{C}(\mathrm{p}, \alpha){ }^{11} \mathrm{~B}$	$\underline{12.92 \pm 20}{ }^{\text {c }}$	$\underline{238 \pm 15}$
	$12.916 \pm 12^{\text {d }}$	$155 \pm 25^{\text {d }}$
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	$14.40{ }^{\text {e }}$	261 ± 25
${ }^{10} \mathrm{Be}(\mathrm{p}, \gamma){ }^{11} \mathrm{~B}$	14.33 ± 20	255 ± 30
${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}^{*}$	$\underline{14.40 \pm 50}$	$\underline{220 \pm 50}$
	$14.34 \pm 20^{\text {b }}$	$254 \pm 18^{\text {b }}$
${ }^{10} \mathrm{Be}(\mathrm{p}, \gamma){ }^{11} \mathrm{~B}$	$15.32 \pm 100^{\text {c }}$	635 ± 180
${ }^{14} \mathrm{C}(\mathrm{p}, \alpha)^{11} \mathrm{~B}$	$15.29 \pm 25^{\text {c }}$	282 ± 15
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	$16.437 \pm 2{ }^{\text {f }}$	≤ 30
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	17.69	91 ± 25
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	18.0 ± 100	870 ± 100
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	$19.146 \pm 30^{\text {f }}$	115 ± 25
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right){ }^{11} \mathrm{~B}$	21.27 ± 50	300 ± 30

${ }^{\text {a }}$ See also Table 11.18 in (80AJ01). See Table 11.16 in (85AJ01) for references.
${ }^{\mathrm{b}}$ Mean value.
c See Table 11.3
d "Best" value.
${ }^{e}$ May have mixed isospin $\left(T=\frac{1}{2}+T=\frac{3}{2}\right)$.
${ }^{\mathrm{f}}$ See also reaction 60 (85AR03).
$37 .{ }^{11} \mathrm{~B}(\alpha, \alpha){ }^{11} \mathrm{~B}$

Angular distributions have been reported at $E_{\alpha}=24$ to 31.2 MeV : [see (75AJ02, 80AJ01, 85AJ01)] and at 48.7 and 54.1 MeV ($87 \mathrm{AB} 03 ; \alpha_{0}$). See also (83SA07) and (85SH1D; theor.).
38. (a) ${ }^{11} \mathrm{~B}\left({ }^{6} \mathrm{Li},{ }^{6} \mathrm{Li}\right)^{11} \mathrm{~B}$
(b) ${ }^{11} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{7} \mathrm{Li}\right){ }^{11} \mathrm{~B}$

The elastic scattering has been studied at $E\left({ }^{6} \mathrm{Li}\right)=28 \mathrm{MeV}$: see (75AJ02). At $E\left({ }^{7} \mathrm{Li}\right)=$ 34 MeV angular distributions have been reported to ${ }^{11} \mathrm{~B}^{*}(0,2.12,4.44,5.02,6.74,7.29,8.92)$ (87CO02, 87CO16). See also (88HN01; theor.).
39. (a) ${ }^{11} \mathrm{~B}\left({ }^{9} \mathrm{Be},{ }^{9} \mathrm{Be}\right){ }^{11} \mathrm{~B}$
(b) ${ }^{11} \mathrm{~B}\left({ }^{10} \mathrm{~B},{ }^{10} \mathrm{~B}\right){ }^{11} \mathrm{~B}$
(c) ${ }^{11} \mathrm{~B}\left({ }^{11} \mathrm{~B},{ }^{11} \mathrm{~B}\right){ }^{11} \mathrm{~B}$

For reaction (a) see (84DA17, 86CU02). For fusion cross sections (reactions (b) and (c)) see (89SZ01). See also (75AJ02, 80AJ01), (85BE1A, 85CU1A) and (84HA43, 86RO12; theor.).
40. (a) ${ }^{11} \mathrm{~B}\left({ }^{12} \mathrm{C},{ }^{12} \mathrm{C}\right){ }^{11} \mathrm{~B}$
(b) ${ }^{11} \mathrm{~B}\left({ }^{13} \mathrm{C},{ }^{13} \mathrm{C}\right){ }^{11} \mathrm{~B}$

The elastic scattering has been studied at $E\left({ }^{11} \mathrm{~B}\right)=18.8$ to 50 MeV and at $E\left({ }^{12} \mathrm{C}\right)=15$ to 24 MeV and 87 MeV [see (80AJ01, 85AJ01)] as well as at $E\left({ }^{11} \mathrm{~B}\right)=10.4,12.4$ and 14.6 MeV (JA85), at $E_{\text {c.m. }}=25 \mathrm{MeV}(86 \mathrm{MA13})$, at $E\left({ }^{11} \mathrm{~B}\right)=42.5$ to 100 MeV (85MA10) and at $E\left({ }^{12} \mathrm{C}\right)=65 \mathrm{MeV}\left(85 \mathrm{GO} 1 \mathrm{H}\right.$; prelim.; involving various states of $\left.{ }^{12} \mathrm{C}\right)$ [see $\left.{ }^{12} \mathrm{C}\right]$. The population of ${ }^{11} \mathrm{~B}^{*}(2.12,4.44,6.79)$ is also reported. For yields, fusion and breakup studies see (85AJ01) and (85MA10, 86MA13). For reaction (b) see (84DE1J, 84HAZK; prelim.). See also (87PO15), (84FR1A, 84HA53, 85BE1A, 85CU1A, 88MA07), (82BA1D, 85BA1T; astrophys.) and (84HA43, 84IN03, 85KO1J, 86BA69, 86HA13; theor.).
41. ${ }^{11} \mathrm{~B}\left({ }^{14} \mathrm{~N},{ }^{14} \mathrm{~N}\right){ }^{11} \mathrm{~B}$

The elastic scattering has been investigated at $E\left({ }^{14} \mathrm{~N}\right)=41,77$ and 133 MeV : see (75AJ02, 85AJ01). See also (85BE1A, 85CU1A) and (84HA43; thoer.).
42. (a) ${ }^{11} \mathrm{~B}\left({ }^{16} \mathrm{O},{ }^{16} \mathrm{O}\right)^{11} \mathrm{~B}$
(b) ${ }^{11} \mathrm{~B}\left({ }^{18} \mathrm{O},{ }^{18} \mathrm{O}\right){ }^{11} \mathrm{~B}$

The elastic scattering in reaction (a) has been studied at $E\left({ }^{16} \mathrm{O}\right)=14.5$ to 60 MeV and at $E\left({ }^{11} \mathrm{~B}\right)=41.6,49.5$ and 115 MeV . The elastic scattering in reaction (b) is reported at $E\left({ }^{11} \mathrm{~B}\right)=115 \mathrm{MeV}$. For references see (75AJ02, 80AJ01, 85AJ01).
43. ${ }^{11} \mathrm{~B}\left({ }^{20} \mathrm{Ne},{ }^{20} \mathrm{Ne}\right){ }^{11} \mathrm{~B}$

The elastic angular distribution has been studied at $E\left({ }^{11} \mathrm{~B}\right)=115 \mathrm{MeV}$: see (85AJ01).
44. (a) ${ }^{11} \mathrm{~B}\left({ }^{24} \mathrm{Mg},{ }^{24} \mathrm{Mg}\right)^{11} \mathrm{~B}$
(b) ${ }^{11} \mathrm{~B}\left({ }^{25} \mathrm{Mg},{ }^{25} \mathrm{Mg}\right){ }^{11} \mathrm{~B}$
(c) ${ }^{11} \mathrm{~B}\left({ }^{26} \mathrm{Mg},{ }^{26} \mathrm{Mg}\right){ }^{11} \mathrm{~B}$
(d) ${ }^{11} \mathrm{~B}\left({ }^{27} \mathrm{Al},{ }^{27} \mathrm{Al}\right){ }^{11} \mathrm{~B}$
(e) ${ }^{11} \mathrm{~B}\left({ }^{28} \mathrm{Si},{ }^{28} \mathrm{Si}\right){ }^{11} \mathrm{~B}$

The elastic angular distributions for reactions (a) to (d) have been studied at $E\left({ }^{11} \mathrm{~B}\right)=$ 79.6 MeV: see (85AJ01). See also (87PO15). For reaction (e) see (84TE1A).
45. (a) ${ }^{11} \mathrm{~B}\left({ }^{40} \mathrm{Ar},{ }^{40} \mathrm{Ar}\right){ }^{11} \mathrm{~B}$
(b) ${ }^{11} \mathrm{~B}\left({ }^{40} \mathrm{Ca},{ }^{40} \mathrm{Ca}\right){ }^{11} \mathrm{~B}$

For reaction (a) see (85 MO 1 K ; prelim.). Angular distributions have been reported in reaction (b) at $E\left({ }^{11} \mathrm{~B}\right)=51.5 \mathrm{MeV}$ to ${ }^{11} \mathrm{~B}^{*}(0,2.12)$: see (85AJ01).
46. ${ }^{11} \mathrm{C}\left(\beta^{+}\right)^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=1.982$

See ${ }^{11} \mathrm{C}$.
47. (a) ${ }^{12} \mathrm{C}(\gamma, \mathrm{p})^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-15.9572$
(b) ${ }^{12} \mathrm{C}(e, p){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-15.9572$

The fraction of transitions to the ground and to excited states of ${ }^{11} \mathrm{~B}$ (and to ${ }^{11} \mathrm{C}$ states reached in the (γ, n) reaction) has been measured at $E_{\mathrm{b} . \mathrm{s} .}=21.7$ to 42 MeV : the ground state is predominantly populated: see (80AJ01). The predominant population of ${ }^{11} \mathrm{~B}_{\mathrm{g} . \mathrm{s} .}$ has also recently been observed at $E_{\gamma}=28 \mathrm{MeV}$ (89FE01). Analog states are populated similarly in the (γ, n) and (γ, p) reactions. Angular distributions for the protons to several states of ${ }^{11} \mathrm{~B}$ have been measured at $E_{\gamma}=21.7 \rightarrow 31 \mathrm{MeV}$ and at 60,80 and 100 MeV [see (80AJ01, 85AJ01)] as well as in the giant resonance region [see ${ }^{12} \mathrm{C}$] (86KE06; p_{0}) and at 60 MeV (88SH08; p to ${ }^{11} \mathrm{~B}^{*}\left(0,2.12,5.0,6.8\right.$ (unres.)). The relative population of ${ }^{11} \mathrm{~B}^{*}(6.8)$ is much greater than that reported in (e, ep) (88SH08). Spectra have also been studied by (86AN25, 86MC15). For reaction (b) see (85AJ01). See also ${ }^{12} \mathrm{C}$, (87VO08) and (84BO18, 87GO37, 88OR02, 89PIZZ; theor.).
48. ${ }^{12} \mathrm{C}(e, e p){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-15.9572
$$

(88VA09) have studied the $l=1$ knockout to ${ }^{11} \mathrm{~B}^{*}(0,2.12,5.02)$ at $E_{\mathrm{e}}=284.5$ to 481.1 MeV. One-third to one-half of the sum-rule strength predicted by the independentparticle shell model is observed. See (88VA09) also for a review of spectroscopic factors. ${ }^{11} B^{*}(4.44)$ is not observed: the two-step processes which are necessary to excite it in this reaction appear to be weak (85VA16, 88VA21). Weak transitions have been studied to states at $E_{\mathrm{x}}=6.751$ (unresolved), $7.278,7.954,8.61,9.820(\pm 25 \mathrm{keV}$, except $\pm 50 \mathrm{keV}$ for 8.61) and to a broad structure at $11.5 \mathrm{MeV} . l=0$ and 1 are suggested for the structures at 9.8 and 11.5 MeV (88VA21; also S_{α}). See also the earlier work in (85VA05). The effects of the nuclear medium have been studied by (86VA17, 87UL03, 88VA09): see ${ }^{12} \mathrm{C}$. See ${ }^{12} \mathrm{C}$ and (84CA34, 87CAZY) for the decay of ${ }^{12} \mathrm{C}$ states to ${ }^{11} \mathrm{~B}^{*}(0,2.12)$. See also (85DE56, 86DE1U, 86LA1T, 88HA12, 89BOZZ) and (84LA16, 85CA32, 85LA1F, 86DE05, 87BL10, 87GOZ0, 87VA15, 88HO10, 88SU02, 89RY03; theor.).
49. ${ }^{12} \mathrm{C}\left(\pi^{+}, \pi^{+} \mathrm{p}\right)^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=-15.9572$

At $E_{\pi^{+}}=100$ to 200 MeV the reaction proceeds primarily to ${ }^{11} \mathrm{~B}_{\text {g.s. }}$. At $E_{\pi}=200 \mathrm{MeV}$ the ratios for σ_{n} / σ_{p} for the first excited states in ${ }^{11} \mathrm{C} /{ }^{11} \mathrm{~B}$ are 1.4 ± 0.2 for π^{-}and $1 / 1.8 \pm 0.2$ for π^{+}. At $E_{\pi^{+}}=60$ to $300 \mathrm{MeV}^{11} \mathrm{~B}^{*}(4.44)\left[J^{\pi}=\frac{5}{2}^{-}\right]$is strongly populated as is the analog state in the mirror reaction: see (80AJ01, 85AJ01) for references. At $E_{\pi^{ \pm}}=220 \mathrm{MeV}$ the quasi-elastic nature of the scattering has been studied by (84FA11). See also the studies by (84ZI1B, 87HU02), ${ }^{12} \mathrm{C}$, (84GO1F), (86CH1J) and (85CO03; theor.).
50. ${ }^{12} \mathrm{C}(\mathrm{n}, \mathrm{d}){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-13.7326$

See (85FR07, 87FR16, 89ROZW) and in ${ }^{13} \mathrm{C}$ in (86AJ01, 90AJ01). See also (86DO12, 88YOZX).
51. ${ }^{12} \mathrm{C}(\mathrm{p}, 2 \mathrm{p})^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-15.9572$

At $E_{\mathrm{p}}=98.7 \mathrm{MeV}$ groups are observed to ${ }^{11} \mathrm{~B}^{*}(0,2.12,4.44,5.02,6.79)$. DWIA lead to relative spectroscopic factors of $2.0,0.37,0.15,1.08,0.25$ for these states. No evidence is seen for multistep reaction processes which would be necessary to populate ${ }^{11} \mathrm{~B}^{*}(4.44,6.74)$: see (85AJ01). At $E_{\mathrm{p}}=1 \mathrm{GeV}$ the separation energy between 6 and 14 MeV broad $1 \mathrm{p}_{3 / 2}$ and $1 \mathrm{~s}_{1 / 2}$ groups is 18 MeV (85BE1J, 85DO1B). See also (84VD1B, 86VD1C; $E_{\mathrm{p}}=50 \mathrm{MeV}$), (89TEZZ) and (85DE56, 87VD1A).
52. ${ }^{12} \mathrm{C}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-10.4637$

Angular distributions of ${ }^{3} \mathrm{He}$ ions have been measured for $E_{\mathrm{d}}=20$ to 80 MeV and spectroscopic factors have been derived for ${ }^{11} \mathrm{~B}^{*}(0,2.12,5.02)$: see (75AJ02, 80AJ01, 85AJ01).
53. ${ }^{12} \mathrm{C}(\mathrm{t}, \alpha)^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=3.8568
$$

Angular distributions have been measured at $E_{\mathrm{t}}=33$ and 38 MeV to ${ }^{11} \mathrm{~B}^{*}(0,2.12,4.44$, $5.02,6.74,7.29,7.98,8.56)$. As expected, the $\frac{5^{-}}{2}$ and $\frac{7}{2}^{-}$states ${ }^{11} \mathrm{~B}^{*}(4.44,6.74)$ are populated by two-step processes. The best J^{π} value for ${ }^{11} \mathrm{~B}^{*}(8.56)$ is $\frac{3^{-}}{2}$ but this assumes some direct population which may not be the case (87FO21, 88SI08) [see for spectroscopic factors]. For the earlier work see (75AJ02).
54. ${ }^{12} \mathrm{C}\left(\alpha,{ }^{5} \mathrm{Li}\right){ }^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=-17.92$

See (87GA20) and (85AJ01).
55. ${ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{7} \mathrm{Be}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-10.351$

At $E\left({ }^{6} \mathrm{Li}\right)=93 \mathrm{MeV},{ }^{11} \mathrm{~B}^{*}(0,2.12,5.0,6.8,8.9)$ are populated (88BUZI; prelim.). See also (86GL1E; prelim.).
56. ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{13} \mathrm{~N}\right){ }^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=-14.0134$

Angular distributions involving ${ }^{11} \mathrm{Bg}$.s. have been measured at $E\left({ }^{12} \mathrm{C}\right)=93.8$ and 114 MeV : see (85AJ01). See also (87WIZW).
57. ${ }^{12} \mathrm{C}\left({ }^{13} \mathrm{C},{ }^{14} \mathrm{~N}\right){ }^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=-8.4066$

See (87AD07, 88VO08) and ${ }^{14} \mathrm{~N}$ in (90AJ01). See also (89VO1D).
58. ${ }^{12} \mathrm{C}\left({ }^{19} \mathrm{~F},{ }^{20} \mathrm{Ne}\right){ }^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=-3.108$

At $E\left({ }^{19} \mathrm{~F}\right)=40,60$ and 68.8 MeV angular distributions involving ${ }^{11} \mathrm{~B}^{*}(0,2.12)$ and ${ }^{20} \mathrm{Ne}^{*}(0,1.63)$ have been measured: see (80AJ01). See also (86HE1A, 88DI08; theor.).
59. ${ }^{13} \mathrm{C}\left(\mathrm{p},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-13.1855$

At $E_{\mathrm{p}}=50.5 \mathrm{MeV}$, in addition to ${ }^{11} \mathrm{~B}^{*}(0,2.12,4.44,5.02,6.74,8.92)$, a state is observed at $E_{\mathrm{x}}=12.94 \pm 0.05 \mathrm{MeV}, \Gamma=350 \pm 50 \mathrm{keV}$. Comparison of the angular distributions of the ${ }^{3} \mathrm{He}$ and of the tritons [to the analog state] at $E_{\mathrm{p}}=43.7$ and 50.5 MeV lead to the assignments $J^{\pi}=\frac{1}{2}^{-}, T=\frac{3}{2}$ for this state and for ${ }^{11} \mathrm{C}^{*}(12.50)$: the strong proton and the weak α decay are consistent with this assignment: see Table 11.14. Angular distributions have been measured at $E_{\mathrm{p}}=26.9$ to 49.6 MeV involving the above states except for ${ }^{11} \mathrm{~B}^{*}(8.92)$ and at $E_{\overrightarrow{\mathrm{p}}}=65 \mathrm{MeV}$ (to ${ }^{11} \mathrm{~B}^{*}(0,2.12)$): see (75AJ02, 80AJ01, 85AJ01). See also ${ }^{14} \mathrm{~N}$ in (86AJ01) and (85HA1J).
60. ${ }^{13} \mathrm{C}(\mathrm{d}, \alpha){ }^{11} \mathrm{~B} \quad Q_{\mathrm{m}}=5.1677$

Observed proton groups are displayed in Table 11.15. Angular distributions are reported at $E_{\mathrm{d}}=0.41$ to 14.1 MeV : See (75AJ02). See also (85HA1J).
61. ${ }^{14} \mathrm{C}(\mathrm{p}, \alpha){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-0.7842$

Table 11.15: States of ${ }^{11} \mathrm{~B}$ from ${ }^{11} \mathrm{~B}\left(\mathrm{p}, \mathrm{p}^{\prime}\right){ }^{11} \mathrm{~B}^{*},{ }^{13} \mathrm{C}(\mathrm{d}, \alpha){ }^{11} \mathrm{~B}$ and ${ }^{14} \mathrm{C}(\mathrm{p}, \alpha){ }^{11} \mathrm{~B}^{\mathrm{a}}$

$E_{\mathrm{x}}(\mathrm{keV})^{\mathrm{b}}$	$E_{\mathrm{x}}(\mathrm{keV})^{\mathrm{c}}$	$E_{\mathrm{x}}(\mathrm{keV})^{\mathrm{d}}$	$\Gamma_{\text {c.m. }}(\mathrm{keV})^{\mathrm{d}}$
0	0	0	
2124.7 ± 0.5	2125.4 ± 1.4	2120 ± 10	
4445.2 ± 0.5	4444.5 ± 1.6	4450 ± 10	
5021.1 ± 0.6	5020.2 ± 1.9	5025 ± 8	
$6743.0 \pm 0 . \mathrm{e}^{\mathrm{e}}$	6745.8 ± 3.4	$6746 \pm 5^{\mathrm{f}}$	
6792.6 ± 1.6	6795 ± 3.0		
7285.6 ± 1.5			
7978.0 ± 1.7		$8560 \pm 10^{\mathrm{g}}$	
8559.4 ± 1.9	8520 ± 70	$8920 \pm 10^{\mathrm{h}}$	
8920.2 ± 2.0	8910 ± 60		
9185.0 ± 2.0		$10300 \pm 60^{\mathrm{i}}$	133 ± 10
9274.4 ± 2.0		11620 ± 30	186 ± 25
10450 ± 150		12920 ± 20	238 ± 15
11650 ± 150		14560 ± 15	42 ± 27
12850 ± 100		15290 ± 25	282 ± 15
		16500 ± 50	201 ± 10
15200 ± 150		19070 ± 50	294 ± 10
16400 ± 150			

${ }^{\text {a }}$ For references see Table 11.17 in (80AJ01).
${ }^{b}{ }^{11} \mathrm{~B}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{11} \mathrm{~B}$.
c ${ }^{13} \mathrm{C}(\mathrm{d}, \alpha)^{11} \mathrm{~B}$.

${ }^{e}$ Values below are normalized to $E_{\mathrm{x}}=4445.3,5020.0$ and 6743.4 keV .
${ }^{f}$ Very strongly excited.
${ }^{8}$ Very weakly excited.
${ }^{\mathrm{h}}$ On the basis of the similarity with the angular distribution to ${ }^{11} \mathrm{~B}^{*}(4.44), J^{\pi}=\frac{5}{2}^{-}$is assigned.
${ }^{\mathrm{i}}$ This state and the ones below may be unresolved.

Observed states are displayed in Table 11.14 (85AR03). It is suggested ${ }^{11} \mathrm{~B}^{*}(12.92,15.29$, $16.50,19.07$) are $T=\frac{3}{2}$, negative-parity states. Spectroscopic factors have also been derived (85AR03).
62. (a) ${ }^{14} \mathrm{~N}(\mathrm{n}, \alpha)^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-0.1583$
(b) ${ }^{14} \mathrm{~N}(\mathrm{n}, 2 \alpha)^{7} \mathrm{Li}$
$Q_{\mathrm{m}}=-8.8220$

Angular distributions have been measured for $E_{\mathrm{n}}=4.9$ to 18.8 MeV [see (75AJ02, 80AJ01, 85AJ01)] and at $12.2,14.1$ and 18.0 MeV (86RU1B; α_{0}, α_{1}). At $E_{\mathrm{n}}=14.1$ and 15.7 MeV various states of ${ }^{11} \mathrm{~B}$ with $8.9<E_{\mathrm{x}}<14.5 \mathrm{MeV}$ appear to be involved in the sequential decay to ${ }^{7} \mathrm{Li}$. Angular correlation results are consistent with $J=\frac{7}{2}$ and $\frac{5}{2}$ for ${ }^{11} \mathrm{~B}^{*}(9.19,9.27)$ respectively: see (75AJ02). See also (85HA1J).
63. ${ }^{14} \mathrm{~N}\left(\mathrm{p}, \mathrm{p}^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=-20.7361$

See (86VD1C; prelim.; 50 MeV).
64. ${ }^{16} \mathrm{O}\left(\mathrm{d},{ }^{7} \mathrm{Be}\right){ }^{11} \mathrm{~B}$

$$
Q_{\mathrm{m}}=-16.038
$$

At $E_{\mathrm{d}}=80 \mathrm{MeV}$ angular distributions have been measured to ${ }^{11} \mathrm{~B}^{*}(0,2.12,4.44+5.02$, $6.74+6.79+7.29):$ see (80AJ01).

${ }^{11} \mathrm{C}$

(Figs. 3 and 4)
GENERAL: (See also (85AJ01).)
Model calculations: (88WO04)
Special states: (85SH24, 86AN07, 88KW1A)
Astrophysical Questions: (87RA1D)
Complex reactions involving ${ }^{11} \mathrm{C}$: (81AS04, 85AR09, 85HI1C, 85MO08, 86AV1B, 86AV07, 86BA3G, 86HA1B, 86HI1D, 86UT01, 87AR19, 87BA38, 87DE37, 87NA01, 87RI03, 87SN01, 87ST01, 87YA16, 88CA06, 88KI05, 88KI06, 88SA19, 88SM07, 88VUZZ, 89AR1G, 89HA1L, 89SA10, 89SE03, 89YO02) Applications: (85TA1D, 86WE1E, 87BO16, 87HI1B, 88FA1C, 88HI1F, 88VO1D, 89TR1B, 89WO1B)

Pion and kaon capture and reactions (see also reactions 19, 20 and 27): (84OH04, 88AB05, 88GIZU)

Hypernuclei: (AS84D, ZH84B, GA85A, DA86, DA86A)
Other topics: (85AN28, 85SH24, 85TA26, 86HE01, 88KW1A)
Ground-state properties of ${ }^{11} \mathrm{C}$: (84ZI04, 85AN28, 85HA18, 85FA01, 85ZI05, 86GL1A, 87FU06, 87SA15, 88VA03, 88WA08, 88WO04, 89SA10)

$$
\begin{gathered}
\mu=-0.964 \pm 0.001 \mathrm{~nm} \text { (69WO03) } \\
Q=34.26 \mathrm{mb}(78 \mathrm{LEZA})
\end{gathered}
$$

1. ${ }^{11} \mathrm{C}\left(\beta^{+}\right){ }^{11} \mathrm{~B}$
$Q_{\mathrm{m}}=1.982$

The half life of ${ }^{11} \mathrm{C}$ is $1223.1 \pm 1.2 \mathrm{~s}$. Log $f t=3.599 \pm 0.002$. The ratio of K-capture to positron emission is $\left(0.230_{-0.011}^{+0.014}\right) \%$. See (80AJ01) for references. See also (85AJ01) and (87BO1Y).

$$
\text { 2. }{ }^{6} \mathrm{Li}\left({ }^{6} \mathrm{Li}, \mathrm{n}\right){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=9.450
$$

At $\mathrm{E}\left({ }^{6} \mathrm{Li}\right)=4.1 \mathrm{MeV}$ angular distributions have been obtained for the neutrons to ${ }^{11} \mathrm{C}^{*}(2.00,4.32,4.80,6.34+6.48,6.90,7.50)$. In addition, $\mathrm{n} \gamma$ - coincidences via ${ }^{11} \mathrm{C}^{*}(8.42)$ [and an $8.42 \mathrm{MeV} \gamma$-ray] are reported. ${ }^{11} \mathrm{C}^{*}(8.10)$ was not observed. The lifetimes, τ_{m}, for ${ }^{11} \mathrm{C}^{*}(4.32,6.90,7.50)$ are $<140,<69$ and $<91 \mathrm{fs}$, respectively. See (80AJ01) for references. For yields see ${ }^{12} \mathrm{C}$ and (87DO05).

Table 11.16: Energy levels of ${ }^{11} \mathrm{C}^{\mathrm{a}}$

$\begin{gathered} E_{\mathrm{x}} \text { in }{ }^{11} \mathrm{C} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m }}$.	Decay	Reactions
0	$\frac{3}{2}^{-} ; \frac{1}{2}$	$\tau_{1 / 2}=20.39 \pm 0.02 \mathrm{~min}$	β^{+}	$1,2,4,6,12,13$, $14,15,16,17,18$, 19, 20, 21, 22, 23, $24,25,26,27,28$, 29, 31
2.0000 ± 0.5	$\frac{1}{2}^{-}$	$\tau_{\mathrm{m}}=10.3 \pm 0.7 \mathrm{fs}$	γ	$2,5,6,12,13,14$, $15,16,20,21,22$, $23,24,25,28,29$
4.3188 ± 1.2	$\frac{5}{2}^{-}$	<12 fs	γ	$\begin{aligned} & 2,5,6,12,13,15, \\ & 16,17,19,20,21, \\ & 22,23,28 \end{aligned}$
4.8042 ± 1.2	$\frac{3}{2}^{-}$	<11 fs	γ	$\begin{aligned} & 2,5,12,15,16 \\ & 17,20,21,23,28 \end{aligned}$
6.3392 ± 1.4	$\frac{1}{2}^{+}$	$<110 \mathrm{fs}$	γ	2, 5, 13, 23
6.4782 ± 1.3	$\frac{7}{2}^{-}$	$<8 \mathrm{fs}$	γ	$\begin{aligned} & 2,5,6,12,13,15 \\ & 16,20,21,23,27, \\ & 28 \end{aligned}$
6.9048 ± 1.4	$\frac{5}{2}+$	<69 fs	γ	$\begin{aligned} & 2,5,12,13,16 \\ & 21,23 \end{aligned}$
7.4997 ± 1.5	$\frac{3}{2}^{+}$	<91 fs	γ	$\begin{aligned} & 2,5,13,16,21 \\ & 23,28 \end{aligned}$
8.1045 ± 1.7	$\frac{3}{2}-$	$0.06 \pm 0.04 \mathrm{fs}^{\text {b }}$	γ, α	4, 13, 17, 21, 23
8.420 ± 2	$\frac{5}{2}-$	$0.43 \pm 0.011 \mathrm{fs}^{\text {b }}$	γ, α	$\begin{aligned} & 2,4,5,12,13,15, \\ & 21,23 \end{aligned}$
8.655 ± 8	$\frac{7}{2}+$	$\Gamma \leq 5 \mathrm{keV}$	(γ)	12, 13, 15, 21
8.699 ± 10	$\frac{5}{2}+$	15 ± 1	γ, p	$6,12,13,15$
9.20 ± 50	$\frac{5}{2}^{+}$	500 ± 100	γ, p	6
9.65 ± 50	$\left(\frac{3}{2}^{-}\right)$	210 ± 50	$\gamma, \mathrm{p}, \alpha$	6, 8, 11, 21
9.78 ± 50	$\left(\frac{5}{2}^{-}\right)$	240 ± 60	γ, p	6, 8, 11, 21
9.97 ± 50	$\left(\frac{7}{2}^{-}\right)$	120 ± 20	γ, p	6, 21
10.083 ± 5	$\frac{7}{2}^{+}$	≈ 230	$\gamma, \mathrm{p}, \alpha$	$6,8,11,13,21$
10.679 ± 5	$\frac{9}{2}+$	200 ± 30	$\gamma, \mathrm{p}, \alpha$	$6,8,11,12,21$
11.03 ± 30	$T=\frac{1}{2}$	300 ± 60		21, 23, 28

Table 11.16: Energy levels of ${ }^{11} \mathrm{C}^{\text {a }}$ (continued)

E_{x} in ${ }^{11} \mathrm{C}$	$J^{\pi} ; T$	τ or $\Gamma_{\text {c.m. }}$	Decay	Reactions
$(\mathrm{MeV} \pm \mathrm{keV})$			p, α	11,21
11.44 ± 10		360	p	$5,9,17$
12.16 ± 40	$T=\frac{3}{2}^{2}$	270 ± 50	γ, p	6,23
12.4	$\pi=-$	$1-2 \mathrm{MeV}$	p	$5,9,17,20,28$
12.51 ± 30	$\frac{1}{2}^{-} ; \frac{3}{2}$	$490 \pm 40 \mathrm{keV}$	$\mathrm{p},{ }^{3} \mathrm{He}, \alpha$	$6,10,11$
12.65 ± 20	$\left(\frac{7}{2}^{+}\right)$	360	γ, p	6
(13.01)				20,28
13.33 ± 60		270 ± 80	p, α	11,21
13.4		1100 ± 100	p	$6,9,17,28$
13.90 ± 20	$\left(T=\frac{3}{2}\right)$	200 ± 100	n, p	7,28
14.07 ± 20		135 ± 50	$\mathrm{n}, \mathrm{p},{ }^{3} \mathrm{He}$	$5,7,9,10$
14.76 ± 20		≈ 450	$\gamma, \mathrm{n}, \mathrm{p}$	$6,7,9,23$
15.35 ± 50	$\pi=-$	broad	n, p	7,9
15.59 ± 50		≈ 450	γ, p	6
16.7	$\pi=-$	800 ± 100	γ, p	6
(18.2)				23
(23.0)				
(28.0)				

${ }^{\text {a }}$ See also Table 11.17
${ }^{\mathrm{b}} \Gamma_{\mathrm{c} . \mathrm{m} .}=\Gamma_{\alpha}+\Gamma_{\gamma}=11 \pm 7 \mathrm{eV}$ and $15.2 \pm 3.8 \mathrm{eV}$ for ${ }^{11} \mathrm{C}^{*}(8.10,8.42)$: see reaction 4.
${ }^{\text {c }}$ I am grateful to Professor F. C. Barker for his comments.
3. ${ }^{7} \mathrm{Li}\left({ }^{7} \mathrm{Li}, 3 \mathrm{n}\right){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-5.050$

At $E\left({ }^{7} \mathrm{Li}\right)=82 \mathrm{MeV}$ no states of ${ }^{11} \mathrm{C}$ are populated (87AL10).
4. ${ }^{7} \operatorname{Be}(\alpha, \gamma){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=7.543$

Table 11.17: Gamma decay of ${ }^{11} \mathrm{C}$ levels ${ }^{\text {a }}$

$E_{\mathrm{i}}(\mathrm{MeV})$	J^{π}	$\tau_{\mathrm{m}}(\mathrm{fs})$	$E_{\mathrm{f}}(\mathrm{MeV})$	Branch
2.00	$\begin{aligned} & \frac{1}{2}^{-} \\ & \frac{5}{2}^{-} \\ & \frac{3}{2}^{-} \end{aligned}$	$10.3 \pm 0.7 \mathrm{fs}$	0	100
$4.32{ }^{\text {b }}$		$<12^{\text {h }}$	0	100
4.80		$<11^{\text {h }}$	0	85.2 ± 1.4
			2.00	14.8 ± 1.4
$6.34{ }^{\text {c }}$	$\frac{1}{2}^{+}$	<110	0	66.5 ± 2.1
			2.00	33.5 ± 2.1
$6.48{ }^{\text {d }}$	$\frac{7}{2}^{-}$	$<8^{\text {h }}$	0	88.5 ± 1.4
			4.32	11.5 ± 1.4
$6.90{ }^{\text {e }}$	$\frac{5}{2}^{+}$	< 69	0	91 ± 2
			4.32	4.5 ± 1
			4.80	4.5 ± 1
$7.50{ }^{\text {f }}$	$\frac{3}{2}^{+}$	<91	0	36 ± 2
			2.000	64 ± 2
$8.10^{\text {i }}$	$\frac{3}{2}^{-}$	0.06 ± 0.04		74 ± 12
			0 200	26 ± 5
$\begin{aligned} & 8.42^{\mathrm{i}, \mathrm{l}} \\ & 8.70^{\mathrm{k}, \mathrm{l}} \end{aligned}$	$\begin{aligned} & \frac{5}{2}^{-} \\ & \frac{5}{2}^{+} \end{aligned}$	0.043 ± 0.011	0	$100^{\text {j }}$
			0	42 ± 10
			4.32	42 ± 10
			4.80	2.4 ± 1.5
			6.48	13.6 ± 4.6
9.20^{k}	$\frac{5}{2}^{+}$		0	74 ± 18
			4.32	6 ± 5
			6.48	20 ± 10
$9.65^{\text {g,k }}$	$\left(\frac{3}{2}^{-}\right)$		0	60 ± 5
			4.32	32 ± 10
			4.80	8 ± 4
$9.78{ }^{\text {g,k }}$	$\left(\frac{5}{2}^{-}\right)$		0	76 ± 16
			4.32	8 ± 2
			4.80	4 ± 2
			6.48	12 ± 4
$9.97^{\text {k }}$	$\left(\frac{7}{2}^{-}\right)$		4.32	90 ± 10

Table 11.17: Gamma decay of ${ }^{11} \mathrm{C}$ levels ${ }^{\text {a }}$ (continued)

$E_{\mathrm{i}}(\mathrm{MeV})$	J^{π}	$\tau_{\mathrm{m}}(\mathrm{fs})$	$E_{\mathrm{f}}(\mathrm{MeV})$	Branch
			6.48	10 ± 7
10.08^{k}	$\frac{7}{2}^{+}$		4.32	67 ± 8
			6.48	13 ± 6
10.68^{k}	$\frac{9}{2}^{+}$		6.48	100

${ }^{\text {a }}$ Mostly from (65OL03) and (68EA03): see Table 11.20 in (80AJ01) for other references and additional information.
${ }^{\mathrm{b}}$ Cascade via ${ }^{11} \mathrm{C}^{*}(2.0)$ is $<2 \%$.
${ }^{\text {c }}$ Cascade via ${ }^{11} \mathrm{C}^{*}(4.32)$ is $<7 \%$; that through ${ }^{11} \mathrm{C}^{*}(4.80)$ is $<3 \%$.
${ }^{\mathrm{d}}$ Cascades via ${ }^{11} \mathrm{C}^{*}(2.00,4.80)$ are $<2 \%$.
${ }^{e}$ Cascade via ${ }^{11} \mathrm{C}^{*}(2.00,6.34,6.48)$ are $<1,<5,<5 \%$, respectively. The cascade via ${ }^{11} \mathrm{C}^{*}(4.80)$ is not reported by (65OL03) [they suggest $<3 \%$].
${ }^{\mathrm{f}}$ Cascades via ${ }^{11} \mathrm{C}^{*}(4.32,4.80,6.34,6.48,6.90)$ are $<1,<1,<3,<3$ and $<4 \%$.
${ }^{\mathrm{g}}$ See also (79AN16).
${ }^{\mathrm{h}}$ (79AN16). See also (81CA06) for τ_{m} of ${ }^{11} \mathrm{C}^{*}(4.32,4.80,6.48)$.
${ }^{\mathrm{i}}$ (84HA13).
${ }^{\mathrm{j}}$ Branching ratio to ${ }^{11} \mathrm{C}^{*}(4.32)$ is $<7 \%$ (84 HA 13).
k (83WI09).
${ }^{1} \Gamma_{\gamma} / \Gamma=0.20 \pm 0.05,<0.06$ and ≤ 0.1 for ${ }^{11} \mathrm{C}^{*}(8.42,8.66,8.70)$, respectively: $\Gamma_{\text {total }}($ c.m. $) \leq 4.5$, ≤ 4.5 and $15 \pm 1 \mathrm{keV}$ (83WI09).

At the resonances at $E_{\alpha}=0.884 \pm 0.008$ and $1.376 \pm 0.003 \mathrm{MeV}\left[{ }^{11} \mathrm{C}^{*}(8.106,8.419)\right], \omega \gamma=$ 0.331 ± 0.041 and $3.80 \pm 0.57 \mathrm{eV}, \Gamma_{\gamma}=0.350 \pm 0.056$ and $3.1 \pm 1.3 \mathrm{eV}$ for these two states and $\Gamma_{\alpha}=6_{-2}^{+12}$ and $12.6 \pm 3.8 \mathrm{eV}$, respectively (84HA13). See also (83HA1B, 84YA1A, 85CA41, 88BU01, 88CA26; astrophysics).
5. ${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{11} \mathrm{C}$

$$
Q_{\mathrm{m}}=7.5572
$$

Reported neutron groups are listed in Table 11.16 of (68AJ02). Angular distributions have been studied in the range $E\left({ }^{3} \mathrm{He}\right)=1.3$ to 13 MeV : see (80AJ01). The dominant L-values are 0 for ${ }^{11} \mathrm{C}^{*}(0,8.10), 1$ for ${ }^{11} \mathrm{C}^{*}(6.34,7.50), 2$ for ${ }^{11} \mathrm{C}^{*}(2.00,4.32,4.80,6.48,8.42)$ and 3 for ${ }^{11} \mathrm{C}^{*}(6.90)$. Neutron groups to $T=\frac{3}{2}$ states have been reported at $E_{\mathrm{x}}=12.17 \pm 0.05$ [see, however, reaction 28], $12.55 \pm 0.05 \mathrm{MeV}$ and $14.7 \pm 0.1 \mathrm{MeV}$: see Table 11.18.

Gamma branching ratios and multipolarities for ${ }^{11} \mathrm{C}$ levels up to $E_{\mathrm{x}}=7.5 \mathrm{MeV}$ have been studied by (65OL03): see Table 11.17. Together with evidence from reactions 12 and 21 they lead to assignments of $J^{\pi}=\frac{1}{2}^{-}, \frac{5}{2}^{-}, \frac{3}{2}^{-}, \frac{1}{2}^{+}, \frac{7}{2}^{-}, \frac{5}{2}^{+}, \frac{3}{2}^{+}$for ${ }^{11} \mathrm{C}^{*}(2.00,4.32,4.80,6.34$,

Table 11.18: $T=\frac{3}{2}$ states in ${ }^{11} \mathrm{C}^{\text {a }}$

Reaction	$E_{\mathrm{x}}(\mathrm{MeV})$	$\Gamma_{\text {c.m. }}(\mathrm{keV})$
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{11} \mathrm{C}$	12.17 ± 0.05	200 ± 100
${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{p} /)^{10} \mathrm{~B}^{*}$	12.20 ± 0.10	
${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{11} \mathrm{C}$	$\underline{12.15 \pm 0.05}$	$\underline{290 \pm 50}$
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{n}\right){ }^{11} \mathrm{C}$	12.16 ± 0.04	${ }^{\mathrm{b}}$
${ }^{10} \mathrm{~B}\left(\mathrm{p}, \mathrm{p}_{2}\right)^{10} \mathrm{~B}^{*}$	12.45 ± 0.05	$350 \pm 50^{\mathrm{b}}$
${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{11} \mathrm{C}$	12.57 ± 0.07	400 ± 100
${ }^{13} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{11} \mathrm{C}$	12.47 ± 0.06	370 ± 90
${ }^{13} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{11} \mathrm{C}$	$\underline{12.48 \pm 0.04}$	550 ± 50
${ }^{9} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{11} \mathrm{C}$	$12.51 \pm 0.03^{\mathrm{b}}$	490 ± 60
${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{n}\right)^{11} \mathrm{C}$	13.7 ± 0.1	

${ }^{\text {a }}$ See also Table 11.14 for $T=\frac{3}{2}$ states in ${ }^{11} \mathrm{~B}$, and Table 11.21 in (80AJ01). For references see Table 11.19 in (85AJ01).
${ }^{\mathrm{b}}$ Mean.
$6.48,6.90,7.50$): see (65 OL 03) and reaction 3 in (68 AJ 02) for a summary of the evidence concerning these assignments. See (80AJ01) for references. See also ${ }^{12} \mathrm{C}$ and (84SU1E).
6. ${ }^{10} \mathrm{~B}(\mathrm{p}, \gamma){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=8.6896$

This reaction has been investigated for $E_{\mathrm{p}}=0.07$ to 17.0 MeV . Reported resonances are displayed in Table 11.19. Observed capture γ-rays are displayed in Table 11.17 [see also for τ_{m} measurements]. Capture measurements for $E_{\mathrm{p}}=0.07$ to 2.20 MeV are consistent with five new resonances (see Tables 11.19 and 11.17), the lowest two (at $E_{\mathrm{p}}=10$ and 560 keV) of which are s-wave resonances. Thermonuclear reaction rates for $T=(0.01 \rightarrow 5) \times 10^{9} \mathrm{~K}$ are deduced from the results (83WI09; see also for spectroscopic factors).

The 90° yield of γ_{0} has been measured for $E_{\mathrm{p}}=2.6$ to 17 MeV and angular distributions have been obtained for $E_{\mathrm{p}}=2.8$ to 14 MeV . The excitation function is consistent with the giant resonance centered at $E_{\mathrm{x}} \approx 16 \mathrm{MeV}$. In addition to weak structures at $E_{\mathrm{p}}=4.75$ MeV and 10.5 MeV , there are three major peaks at $E_{\mathrm{p}}=4.1,7.0$ and $8.8 \mathrm{MeV}(\Gamma=1-2$ $\mathrm{MeV})\left[E_{\mathrm{x}}=12.4,15.0,16.7 \mathrm{MeV}\right]$. At ${ }^{11} \mathrm{C}^{*}(12.4)$, the γ_{0} angular distribution is essentially isotropic: $\Gamma_{\mathrm{p}} \Gamma_{\gamma} / \Gamma \approx 200 \mathrm{eV}, \Gamma_{\gamma} \approx 5 \mathrm{keV}$ (assuming $\Gamma_{\mathrm{p}} \approx 10 \mathrm{keV}$). The $E_{\mathrm{p}}=4.1 \mathrm{MeV}$ resonance is probably part of the E 1 giant resonance and is formed by s-wave capture. At

Table 11.19: Resonances ${ }^{\text {a }}$ in ${ }^{10} \mathrm{~B}+\mathrm{p}$

$E_{\text {res }}$ $(\mathrm{MeV} \pm \mathrm{keV})$	E_{x} (MeV)	J^{π}	$\Gamma_{\text {lab }}$ (keV)	Decay
$0.010 \pm 2^{\mathrm{b}}$	8.699 ± 10	$\frac{5}{2}^{+}$	$16 \pm 1^{\mathrm{c}}$	γ
$0.56 \pm 60^{\mathrm{b}}$	9.20 ± 50	$\frac{5}{2}^{+}$	550 ± 100	γ
$1.05 \pm 60^{\mathrm{b}}$	9.64 ± 50	${\left(\frac{3}{2}^{-}\right)}^{5^{-}}$	230 ± 50	$\gamma,\left(\mathrm{p}_{0}, \alpha_{0}\right)$
$1.20 \pm 50^{\mathrm{b}}$	9.78 ± 50	$\left.\left(\frac{5}{2}\right)^{-}\right)$	260 ± 60	$\gamma,\left(\mathrm{p}_{0}, \alpha_{0}\right)$
$1.41 \pm 50^{\mathrm{b}}$	9.97 ± 50	$\left(\frac{7}{2}^{-}\right)$	130 ± 20	γ
1.533 ± 5	10.083	$\frac{7}{2}^{+}$	≈ 250	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}$
2.189 ± 5	10.679	$\frac{9}{2}^{+}$	220 ± 30	$\mathrm{p}_{0}, \alpha_{0}, \alpha_{1}$
3.03 ± 10	11.44		400	α_{0}, α_{1}
3.9 ± 10	12.20	$T=\frac{3}{2}$		p_{2}
4.1 ± 100	12.45	$T=\frac{3}{2}$	440 ± 100	p_{2}
$4.1^{\mathrm{d}, \mathrm{e}}$	12.4	$\pi=-$	$1-2 \mathrm{MeV}$	γ_{0}
4.36 ± 20	12.65	$\left(\frac{7^{+}}{2}\right)$	400	$\gamma_{1}, \alpha_{0}, \alpha_{1},{ }^{3} \mathrm{He}$
(4.75)	(13.01)		γ_{0}	
5.2	13.4		1200 ± 100	α_{0}, α_{1}
5.73 ± 20	13.90		≈ 500	γ_{1}, p
5.92 ± 20	14.07		broad	n
6.68 ± 40	14.76		≈ 500	$\mathrm{n}, \mathrm{p},{ }^{3} \mathrm{He}$
$7.33 \pm 50^{\mathrm{e}}$	15.35	$\pi=-$	broad	$\gamma_{0}, \mathrm{n}, \mathrm{p}$
7.60 ± 50	15.59		≈ 500	n, p
8.8^{e}	16.7	$\pi=-$	900 ± 100	γ_{0}
(10.5)	(18.2)			γ_{0}

[^3]the two higher resonances the angular distributions are characteristic of E1 giant resonances in light nuclei. The ${ }^{10} \mathrm{~B}\left(\mathrm{p}, \gamma_{1}\right)$ cross section is small for $E_{\mathrm{p}}=2.6$ to 17 MeV : see (80AJ01). See also (84YA1A, 85CA41, 88CA26; astrophysics).
7. ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{n}){ }^{10} \mathrm{C}$
$Q_{\mathrm{m}}=-4.4305$
$$
E_{\mathrm{b}}=8.6896
$$

The total (p, n) cross section has been measured to $E_{\mathrm{p}}=10.6 \mathrm{MeV}$: broad maxima are observed at $E_{\mathrm{p}}=5.92 \pm 0.02,6.68 \pm 0.04,7.33 \pm 0.05$ and $7.60 \pm 0.05 \mathrm{MeV}$ (see Table 11.19). The cross section for formation of ${ }^{10} \mathrm{C}$ (g.s.) measured up to 12 MeV shows similar behavior to 8 MeV . At $E_{\mathrm{p}} \approx 8 \mathrm{MeV}$, a sharp maximum is observed. The cross section for production of $3.35 \mathrm{MeV} \gamma$-rays $\left(\right.$ from $\left.{ }^{10} \mathrm{C}^{*}\right)$ does not appear to show structure for $E_{\mathrm{p}}=8.5$ to 12 MeV . For references see (80AJ01). For n_{0} and n_{1} excitiation curves from $E_{\mathrm{p}}=13.7$ to 14.7 MeV see (85SC08). See also (84BA1R, 84BA1U).
8. ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{p})^{10} \mathrm{~B}$

$$
E_{\mathrm{b}}=8.6896
$$

Below $E_{\mathrm{p}}=0.7 \mathrm{MeV}$ the scattering can be explained in terms of pure s-wave potential scattering but the possibility of a state near $E_{\mathrm{p}}=0.27 \mathrm{MeV}\left(E_{\mathrm{x}}=8.95 \mathrm{MeV}\right)$ cannot be excluded. The elastic scattering then shows two conspicuous anomalies at $E_{\mathrm{p}}=1.50 \pm$ 0.02 MeV and at $2.18 \mathrm{MeV}\left[E_{\mathrm{x}}=10.05\right.$ and 10.67 MeV$]$ with $J^{\pi}=\frac{7}{2}^{+}$and $\frac{9}{2}^{+}$: see Table 11.19. At higher energies (to $E_{\mathrm{p}}=10.5 \mathrm{MeV}$) a single broad resonance is reported at $E_{\mathrm{p}} \approx 5 \mathrm{MeV}$. Polarization measurements are reported at 30.3 MeV : optical model parameters have been derived. The depolarization parameter D has been measured for polarized protons at 26 and 50 MeV . For references see (80AJ01, 85AJ01). See also (84BA1U) and (86MU1D).
9. ${ }^{10} \mathrm{~B}\left(\mathrm{p}, \mathrm{p}^{\prime}\right)^{10} \mathrm{~B}$

$$
E_{\mathrm{b}}=8.6896
$$

The yield of $\gamma_{1}\left[\right.$ from $\left.{ }^{10} \mathrm{~B}^{*}(0.72)\right]$ rises monotonically from $E_{\mathrm{p}}=1.5$ to 4.1 MeV and then shows resonance behavior at $E_{\mathrm{p}}=4.36$ and 5.73 MeV : see Table 11.19. For $E_{\mathrm{p}}=6$ to 12 MeV , the cross section for γ_{1} shows several sharp maxima superposed on a broad maximum $(\Gamma \approx 2.5 \mathrm{MeV})$ at $E_{\mathrm{p}} \approx 7.2 \mathrm{MeV}$. See however (75AJ02). Yields of five other γ-rays involved in the decay of ${ }^{10} \mathrm{~B}^{*}(1.74,2.16,3.59,5.18)$ have also been measured in the range $E_{\mathrm{p}}=4$ to 12 MeV [see (75AJ02)].

Excitation curves for the $\mathrm{p}_{1}, \mathrm{p}_{2}$ and p_{3} groups have been measured for $E_{\mathrm{p}}=3.5$ to 5.0 MeV . Possible resonances are observed in the p_{2} yield [to the $T=1$ state ${ }^{10} \mathrm{~B}^{*}(1.74)$] corresponding to the first $T=\frac{3}{2}$ states at $E_{\mathrm{x}}=12.16$ [see however reaction 28] and 12.50 MeV [see Table 11.18: these do not occur in the yield of p_{1} and p_{3}. Yield curves for inelastically scattered protons have also been measured at $E_{\mathrm{p}}=5.0$ to $16.4 \mathrm{MeV}\left(\mathrm{p}_{1}, \mathrm{p}_{2}\right.$,
p_{3}), 6.6 to $16.4 \mathrm{MeV}\left(\mathrm{p}_{4}\right), 8.9$ to $16.4 \mathrm{MeV}\left(\mathrm{p}_{5}\right)$ and 10.9 to $16.4 \mathrm{MeV}\left(\mathrm{p}\right.$ to ${ }^{10} \mathrm{~B}^{*}(6.03)$): the principal feature for all groups, except that to ${ }^{10} \mathrm{~B}^{*}(6.03)$, is a structure at $E_{\mathrm{p}} \approx 7.5 \mathrm{MeV}$, $\Gamma \approx 4 \mathrm{MeV}$. In addition narrower structures are observed, including three at $E_{\mathrm{p}}=5.75,6.90$ and $7.80 \mathrm{MeV}(\pm 0.2 \mathrm{MeV})$ and widths of $\approx 500 \mathrm{keV}$. For references see (80AJ01, 85AJ01).
10. (a) ${ }^{10} \mathrm{~B}(\mathrm{p}, \mathrm{d})^{9} \mathrm{~B}$
$Q_{\mathrm{m}}=-6.212$
$E_{\mathrm{b}}=8.6896$
(b) ${ }^{10} \mathrm{~B}\left(\mathrm{p},{ }^{3} \mathrm{He}\right)^{8} \mathrm{Be}$
$Q_{\mathrm{m}}=-0.5330$

Polarization measurements (reaction (a)) have been carried out at $E_{\mathrm{p}}=49.6 \mathrm{MeV}$ for the deuterons to ${ }^{9} \mathrm{~B}^{*}(0,2.36)$: see (75 AJ 02). In reaction (b) two strong maxima are observed at $E_{\mathrm{p}} \approx 4.5$ and 6.5 MeV : see Table 11.19. See also (75AJ02).
11. ${ }^{10} \mathrm{~B}(\mathrm{p}, \alpha)^{7} \mathrm{Be} \quad Q_{\mathrm{m}}=1.1462 \quad E_{\mathrm{b}}=8.6896$

The total cross section for this reaction has been measured for $E_{\mathrm{p}}=60$ to 180 keV : the extrapolated cross section at the Gamow energy, taken to be 19.1 keV , is $\approx 10^{-12} \mathrm{~b}$. The thick target yield for $E_{\mathrm{p}}=75 \mathrm{keV}$ to 3 MeV shows that the ${ }^{7} \mathrm{Be}$ yield constitutes a potential problem if natural boron is used as fuel in CTR devices.

The parameters of observed resonances are displayed in Table 11.19. The ground state $\left(\alpha_{0}\right) \alpha$-particles exhibit broad resonances at $E_{\mathrm{p}}=1.17,1.53,2.18,3.0,4.4,5.1$ and 6.3 MeV . Alpha particles to ${ }^{7} \mathrm{Be}^{*}(0.43)\left[\alpha_{1}\right]$ and $0.43-\mathrm{MeV} \gamma$-rays exhibit all but the 1.2 MeV resonance: see (75AJ02). A broad maximum dominates the region from $E_{\mathrm{p}}=4 \mathrm{MeV}$ to about 7.5 MeV . A study of the yield of $0.43 \mathrm{MeV} \gamma$-rays for $E_{\mathrm{p}}=2.0$ to 4.1 MeV suggests that the 3.0 MeV resonance, which is asymmetric, is due to two broad states. A weak structure at $E_{\mathrm{p}}=2.5 \mathrm{MeV}$ is also reported. For references see (80AJ01, 85AJ01). See also ${ }^{7} \mathrm{Be}$ in (88AJ01) and (84YA1A, 85CA41; astrophysics).
12. ${ }^{10} \mathrm{~B}(\mathrm{~d}, \mathrm{n}){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=6.4650$

Table 11.20 presents the results obtained in this reaction and in the $\left({ }^{3} \mathrm{He}, \mathrm{d}\right)$ reaction. Information on τ_{m} and on the γ-decay of ${ }^{11} \mathrm{C}$ states is displayed in Table 11.16: see (68AJ02, 75AJ02) for references. See also (86WE1E; applied) and ${ }^{12} \mathrm{C}$.
13. ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=3.1961$

Table 11.20: Energy levels of ${ }^{11} \mathrm{C}$ from ${ }^{10} \mathrm{~B}(\mathrm{~d}, \mathrm{n}){ }^{11} \mathrm{C}$ and ${ }^{10} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{d}\right){ }^{11} \mathrm{C}^{\mathrm{a}}$

$\begin{gathered} E_{\mathrm{x}} \\ (\mathrm{MeV} \pm \mathrm{keV}) \end{gathered}$	J^{π}	$l{ }^{\text {b }}$	$l^{\text {c }}$	$S_{\text {d, }}{ }^{\text {c }}$	$S^{3}{ }^{\text {He, }}{ }^{\text {c }}$	$l^{\text {d }}$	$S_{3}{ }^{\text {He, }}$ d ${ }^{\text {d }}$
0	$\frac{3}{2}^{-}$	1	1	1.12	0.88	1	1.09
2.0006 ± 0.9	$\frac{1}{2}^{-}$	(1)	(1)	(0.18)	(0.036)		
			(3)		≤ 0.09	(3)	<0.40
4.322 ± 10	$\frac{5}{2}^{-}$	1	1	0.27	0.20	1	0.17, 0.19
4.808 ± 10	$\frac{3}{2}^{-}$	1	1	< 0.02		(1)	<0.08
						(3)	<0.35
6.345 ± 10	$\begin{aligned} & \frac{1}{2}^{+} \\ & \frac{7}{2}^{-} \\ & \frac{5}{2}^{+} \end{aligned}$	$\begin{gathered} 1 \\ (1) \end{gathered}$	2	0.86	0.07	2	0.08
6.476 ± 10			1		0.56	1	0.73, 0.79
6.903 ± 10						2	0.06
						0	<0.04
7.498 ± 10	$\frac{3}{2}^{+}$					2	0.08
8.107 ± 10	$\frac{3}{2}^{-}$					1	0.07
8.424 ± 8	$\frac{5}{2}^{-}$	1	1	0.65	0.46	1	0.73, 0.79
8.655 ± 8	$\frac{5}{2}^{+}$	0	0	$\underline{0.84}$	0.45		
			2	0.8	0.32		
	$\frac{7}{2}+$		0	$\underline{0.63}$	0.33	2	0.41
			2	0.6	$\underline{0.24}$	0	<0.34
8.701 ± 20	$\begin{aligned} & \frac{5}{2}^{+} \\ & \frac{7}{2}^{+} \end{aligned}$	(0)	0	$\underline{0.40}$	0.14	0	<0.8
			2	≤ 0.2	0.13		
			0	$\underline{0.30}$	0.11		
			2	≤ 0.15	0.10		
10.08							
$10.68{ }^{\text {e }}$			$(0,2)$				

a See Table 11.23 in (80AJ01) for references.
${ }^{\mathrm{b}}$ From (d,n) work summarized in Table 11.20 of (68AJ02).
${ }^{\text {c }} S_{\mathrm{d}, \mathrm{n}}$ obtained at $E_{\mathrm{d}}=5.8 \mathrm{MeV}, S_{3} \mathrm{He}, \mathrm{d}$ obtained at $E\left({ }^{3} \mathrm{He}\right)=11.0 \mathrm{MeV}$ [both $\pm 30 \%$]. When $S_{\mathrm{d}, \mathrm{n}}$ and $S_{3^{\mathrm{He}, \mathrm{d}}}$ differ appreciably, the more reliable value is underlined.
${ }^{\text {d }} E\left({ }^{3} \mathrm{He}\right)=21 \mathrm{MeV}$; when two values are shown for $S_{3^{3} \mathrm{He}, \mathrm{d}}$, they are in order of descending j .
${ }^{e} \Gamma \approx 200 \mathrm{keV}$.

Table 11.20 displays the information derived from this reaction and from the (d, n) reaction. The study of the angular distributions of the deuterons to ${ }^{11} \mathrm{C}^{*}(8.66,8.70)$ shows that these levels are the analogs, respectively, of ${ }^{11} \mathrm{~B}^{*}(9.19,9.27)$ whose J^{π} are $\frac{7}{2}^{+}$and $\frac{5}{2}^{+}$ [the ${ }^{11} \mathrm{~B}$ states were studied in the (d, p) reaction]: $\Gamma_{\text {c.m. }}$ are $\ll 9 \mathrm{keV}$ and $15 \pm 1 \mathrm{keV}$, respectively, for ${ }^{11} \mathrm{C}^{*}(8.66,8.70)$: see (75AJ02) for references.
14. ${ }^{10} \mathrm{~B}(\alpha, \mathrm{t}){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-11.1244$

Angular distributions have been measured at $E_{\alpha}=25.1$ and 56 MeV [see (80AJ01)] and at 24.8 and 30.1 MeV (83VA28; $\mathrm{t}_{0}, \mathrm{t}_{1}$). See also (84BE23; theor.)
15. ${ }^{10} \mathrm{~B}\left({ }^{7} \mathrm{Li},{ }^{6} \mathrm{He}\right){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-1.285$

Angular distributions of ${ }^{6} \mathrm{He}$ ions have been measured at $E\left({ }^{7} \mathrm{Li}\right)=3.0$ to 3.8 MeV and at 24 MeV [to $\left.{ }^{11} \mathrm{C}^{*}(0,4.32,6.48)\right] .{ }^{11} \mathrm{C}^{*}(2.0,4.80,8.42,8.66+8.70)$ are also populated: see (80AJ01) for references.
16. ${ }^{11} \mathrm{~B}(\mathrm{p}, \mathrm{n}){ }^{11} \mathrm{C}$

$$
Q_{\mathrm{m}}=-2.7646
$$

Angular distributions have been measured at many energies up to 49.5 MeV [see (80AJ01, 85AJ01)] and at $E_{\mathrm{p}}=14.0,14.3$ and $14.6 \mathrm{MeV}\left(85 \mathrm{SC} 08 ; \mathrm{n}_{0}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3},\left(\mathrm{n}_{4+5}\right), \mathrm{n}_{6}, \mathrm{n}_{7}\right), 15.8$ and 18.6 MeV ($88 \mathrm{KA} 30 ; \mathrm{n}_{0}, \mathrm{n}_{1}$) and 16 to 26 MeV (85GR09; $\mathrm{n}_{0}, \mathrm{n}_{1}, \mathrm{n}_{2}, \mathrm{n}_{3}$) [see also for a study of the GT matrix elements]. For 0° cross sections at $E_{\mathrm{p}}=492$ and 590 MeV see (89RA09). See also ${ }^{12} \mathrm{C}$, (84BA1R, 85GU1C), (88CA26; astrophysics), (84TA1F, 86MU1D, 87RA32) and (86HU06; theor.).
17. ${ }^{11} \mathrm{~B}\left({ }^{3} \mathrm{He}, \mathrm{t}\right){ }^{11} \mathrm{C}$

$$
Q_{\mathrm{m}}=-2.0008
$$

Angular distributions of t_{0} and t_{1} have been measured at $E\left({ }^{3} \mathrm{He}\right)=10,14$, and 217 MeV [the latter also for the triton groups to ${ }^{11} \mathrm{C}^{*}(4.3,4.8,6.48,8.10]$ and at $E\left({ }^{3} \overrightarrow{\mathrm{He}}\right)=33 \mathrm{MeV}$. At $E\left({ }^{3} \mathrm{He}\right)=26 \mathrm{MeV}$ the known states of ${ }^{11} \mathrm{C}$ below $E_{\mathrm{x}}=11 \mathrm{MeV}$ are populated and triton groups are also observed to the possibly $T=\frac{3}{2}$ states displayed in Table 11.18 as well as a state at 14.15 MeV . For references see (80AJ01, 85AJ01).
18.
(a) ${ }^{12} \mathrm{C}(\gamma, \mathrm{n})^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-18.7215$
(b) ${ }^{12} \mathrm{C}(\mathrm{e}, \text { en })^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-18.7215$

The fraction of transitions to the ground and to excited states of ${ }^{11} \mathrm{C}$ [and to ${ }^{11} \mathrm{~B}$ states reached in the (γ, p) reaction] has been measured at $E_{\mathrm{bs}}=24.5,27,33$ and 42 MeV : the ground state is predominantly populated. The population of analog states in the (γ, n) and (γ, p) reactions are similar. And a significant decay strength is found to the positiveparity states with $6<E_{\mathrm{x}}<8 \mathrm{MeV}$. In general the main contribution to the strength of the transitions to the various excited states of ${ }^{11} \mathrm{~B},{ }^{11} \mathrm{C}$ lies in rather localized energy bands in ${ }^{12} \mathrm{C}$ which are a few MeV wide (70ME17). See also reactions 24 and 25 in (80AJ01) (85AJ01), (88HA01) in ${ }^{12} \mathrm{C}$ and (85CA32, 87GOZ0, 87GO37, 87VA15; theor.).
19. (a) ${ }^{12} \mathrm{C}\left(\pi^{ \pm}, \pi^{ \pm} \mathrm{n}\right)^{11} \mathrm{C}$

$$
Q_{\mathrm{m}}=-18.7215
$$

(b) ${ }^{12} \mathrm{C}(\mathrm{n}, 2 \mathrm{n})^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-18.7215$
(c) ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{pn}){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-18.7215$
${ }^{11} \mathrm{C}^{*}(4.32)\left[\frac{5}{2}^{-}\right]$(and the analog state in ${ }^{11} \mathrm{~B}$) is surprisingly strongly populated for $E_{\pi^{+}}=$ 60 to 300 MeV : see (80AJ01, 85AJ01). For reaction (b) see ${ }^{13} \mathrm{C}$ in (86AJ01). In reaction (c) at 1 GeV the separation energy between 6 and 13 MeV broad $1 \mathrm{p}_{3 / 2}$ and $1 \mathrm{~s}_{1 / 2}$ groups is ≈ 17 MeV (85BE1J, 85DO1B). See also ${ }^{12} \mathrm{C}$ and (84GO1F).
20. ${ }^{12} \mathrm{C}\left(\pi^{+}, \mathrm{p}\right){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=121.629$

Angular distributions at $E_{\pi^{+}}=49.3,90$ and 180 MeV have been obtained to ${ }^{11} \mathrm{C}^{*}(0,2.0$, $4.3+4.8,6.5,8.5)$. At the same momentum transfer this reaction and the (p, d) reaction give similar intensities to the low lying states of ${ }^{11} \mathrm{C} . T=\frac{3}{2}$ states have been suggested at $E_{\mathrm{x}}=12.5 \pm 0.3$ and 13.3 MeV : see (85AJ01). See also (82DO01).
21. ${ }^{12} \mathrm{C}(\mathrm{p}, \mathrm{d}){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=-16.4972$

Angular distributions have been measured for $E_{\mathrm{p}}=19$ to 800 MeV [see (68AJ02, 75AJ02, 80AJ01, 85AJ01) for references], at $E_{\overrightarrow{\mathrm{p}}}=497 \mathrm{MeV}\left(84 \mathrm{OH} 06 ; \mathrm{p}_{0}\right.$; also $\left.A_{\mathrm{y}}\right)$ and at $E_{\mathrm{p}}=800$ MeV (84SM04; to ${ }^{11} \mathrm{C}^{*}(0,2.0,4.3,4.8,6.5,8.1,8.66+8.70,9.98 \pm 0.2,10.56 \pm 0.2)$). In the latter experiment ${ }^{11} \mathrm{C}^{*}(8.4)$ and a state at $13.22 \pm 0.25 \mathrm{MeV}(\Gamma \approx 2 \mathrm{MeV})$ are also reported (84SM04). Earlier observed states of ${ }^{11} \mathrm{C}$ are displayed in Table 11.24 of (80AJ01). See also ${ }^{13} \mathrm{~N}$ in (90AJ01), (87CA20) and (84RE1A).
22. ${ }^{12} \mathrm{C}(\mathrm{d}, \mathrm{t})^{11} \mathrm{C}$

$$
Q_{\mathrm{m}}=-12.4645
$$

Table 11.21: Levels of ${ }^{11} \mathrm{C}$ from ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{11} \mathrm{C}{ }^{\text {a }}$

E_{x} $(\mathrm{MeV} \pm \mathrm{keV})$	l	$S_{\text {rel }}$			
		$E\left({ }^{3} \mathrm{He}\right)=16 \mathrm{MeV}$	24 MeV	28 MeV	35.6 MeV
0	1	1	1	1	1.00
1.999 ± 4	1	0.10	≤ 0.6	≤ 0.6	0.19
4.3188 ± 1.2	3	0.057	(0.04)	(0.06)	(0.031)
4.8042 ± 1.2	1	0.11	0.22	0.22	0.13
6.3392 ± 1.4	0	0.003^{b}	≤ 0.07	≤ 0.07	$(\lesssim 0.2)$
6.4782 ± 1.4	3	0.11^{b}	0.06	(0.06)	(0.21)
6.9048 ± 1.4	2	0.018	(0.15)	(0.17)	(0.054)
7.4997 ± 1.5	2	0.006^{b}	(0.07)	(0.09)	(0.046)
8.1045 ± 1.7	1	$0.017^{\mathrm{b}, \mathrm{c}}$			(0.035)
8.42	3	$0.034^{\mathrm{b}, \mathrm{d}}$			(0.041)

${ }^{\text {a }}$ See Table 11.17 for γ-decay work. Higher excited states are also reported: see text. See Table 11.25 in (80AJ01) for references and for additional information.
${ }^{\mathrm{b}}$ At $E\left({ }^{3} \mathrm{He}\right)=18 \mathrm{MeV}$.
${ }^{\text {c }}$ Assuming $J^{\pi}=\frac{3}{2}{ }^{-}$.
${ }^{\mathrm{d}}$ Assuming $J^{\pi}=\frac{5}{2}^{-}$.

At $E_{\mathrm{d}}=28 \mathrm{MeV}$ the t_{0} angular distribution has been measured and a detailed comparison has been made with the results for the mirror reaction ${ }^{12} \mathrm{C}\left(\mathrm{d},{ }^{3} \mathrm{He}\right){ }^{11} \mathrm{~B}$. At $E_{\mathrm{d}}=29 \mathrm{MeV}$ the t_{0} angular distribution leads to spectroscopic factor $C^{2} S=2.82$ or 3.97 depending on different sets of parameters for ${ }^{11} \mathrm{C}_{\text {g.s. }} .{ }^{11} \mathrm{C}^{*}(2.0,4.32)$ are also populated. See also ${ }^{14} \mathrm{~N}$ in (86AJ01), (80AJ01) for references, and (84KO1M).
23. (a) ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}, \alpha\right){ }^{11} \mathrm{C}$

$$
\begin{aligned}
& Q_{\mathrm{m}}=1.8560 \\
& Q_{\mathrm{m}}=-17.9577
\end{aligned}
$$

(b) ${ }^{12} \mathrm{C}\left({ }^{3} \mathrm{He}\right.$, tp $){ }^{11} \mathrm{C}$

Angular distributions have been measured at many energies to $E\left({ }^{3} \mathrm{He}\right)=217 \mathrm{MeV}$ [see (68AJ02, 75AJ02, 80AJ01, 85AJ01) for references]. Observed states are displayed in Table 11.21. In addition the excitation of states at $E_{\mathrm{x}}=11.2,12.4,15.3,23$, and (28) MeV has also been suggested: see (80AJ01).

At $E\left({ }^{3} \mathrm{He}\right)=35.6 \mathrm{MeV}$ one finds good fits by DWBA for strong $l=1$ transitions, and reasonable agreement in the forward direction, as well as with $S_{\text {theor. }}$, for weak $l=1$ transitions. Transitions involving $l=0$ or 2 (and 3) are weak and the agreement with theory
is poor. It is suggested that ${ }^{11} \mathrm{C}^{*}(8.10)\left[\frac{3}{2}^{-}\right]$is predominantly a $\mathrm{p}_{3 / 2}$ hole state coupled to ${ }^{12} \mathrm{C}^{*}(7.65)\left[0^{+}\right]$: see (80AJ01).

Alpha- γ correlations have been studied for $E\left({ }^{3} \mathrm{He}\right)=4.7$ to 12 MeV . Their results are summarized in Table 11.17 and are discussed in detail in reaction 22 of (68AJ02). A measurement of the linear polarization of the $2.00 \mathrm{MeV} \gamma$-ray (together with knowledge of the τ_{m}) fixes $J^{\pi}=\frac{1}{2}^{-}$for ${ }^{11} \mathrm{C}^{*}(2.00) . \tau_{\mathrm{m}}=10.3 \pm 0.7$ fs for ${ }^{11} \mathrm{C}^{*}(2.00)$. See also ${ }^{12} \mathrm{~N}$, and ${ }^{15} \mathrm{O}$ in (86AJ01).

Reaction (b) has been studied at $E\left({ }^{3} \mathrm{He}\right)=75 \mathrm{MeV}$: transitions to ${ }^{11} \mathrm{C}^{*}(0,2.0,4.3,4.8$, 6.3) are observed by looking at p, t angular correlations: see (85AJ01). See also (84BE1A; applied).

$$
\text { 24. }{ }^{12} \mathrm{C}\left({ }^{6} \mathrm{Li},{ }^{7} \mathrm{Li}\right)^{11} \mathrm{C} \quad Q_{\mathrm{m}}=-11.471
$$

The angular distributions involving ${ }^{7} \mathrm{Li}_{\mathrm{g} . \mathrm{s} .}+{ }^{11} \mathrm{C}_{\text {g.s. }}$ and ${ }^{7} \mathrm{Li}^{*}{ }_{0.48}+{ }^{11} \mathrm{C}^{*}{ }_{2.00}$ have been studied at $E\left({ }^{6} \mathrm{Li}\right)=36 \mathrm{MeV}$: see (80AJ01). See also (86GL1E).
25. ${ }^{12} \mathrm{C}\left({ }^{10} \mathrm{~B},{ }^{11} \mathrm{~B}\right){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=-7.2673$

At $E\left({ }^{10} \mathrm{~B}\right)=100 \mathrm{MeV}$, angular distributions have been measured involving ${ }^{11} \mathrm{~B}_{\text {g.s. }}+{ }^{11} \mathrm{C}_{\text {g.s. }}$, ${ }^{11} \mathrm{~B}_{\text {g.s. }}+{ }^{11} \mathrm{C}_{2.00}$ and ${ }^{11} \mathrm{C}_{\text {g.s. }} .{ }^{11} \mathrm{~B}_{2.12}$. Both ${ }^{12} \mathrm{C}\left({ }^{10} \mathrm{~B},{ }^{11} \mathrm{~B}\right.$) ${ }^{11} \mathrm{C}$ (with ${ }^{11} \mathrm{~B}$ detected in the forward direction) and ${ }^{12} \mathrm{C}\left({ }^{10} \mathrm{~B},{ }^{11} \mathrm{C}\right){ }^{11} \mathrm{~B}$ (with ${ }^{11} \mathrm{C}$ detected in the forward direction) were measured. In each case, ${ }^{11} \mathrm{~B}_{\text {g.s. }}+{ }^{11} \mathrm{C}_{2.00}$ and ${ }^{11} \mathrm{C}_{\text {g.s. }}+{ }^{11} \mathrm{~B}_{2.12}$ were not resolved, but the authors argues that the $\left({ }^{10} \mathrm{~B},{ }^{11} \mathrm{~B}\right)$ case would have little contribution from ${ }^{11} \mathrm{C}_{\text {g.s. }}+{ }^{11} \mathrm{~B}_{2.12}$ (because of the spins of ${ }^{10} \mathrm{~B}$ and ${ }^{11} \mathrm{~B}_{2.12}$), so that it essentially gives the ${ }^{11} \mathrm{~B}_{\text {g.s. }}+{ }^{11} \mathrm{C}_{2.00}$ angular distribution, and similarly for the other case. See (85AJ01) and (87OS1E; theor.)
26. ${ }^{12} \mathrm{C}\left({ }^{12} \mathrm{C},{ }^{13} \mathrm{C}\right){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=-13.7751$

Angular distributions involving ${ }^{11} \mathrm{C}_{\text {g.s. }}$ have been studied at $E\left({ }^{12} \mathrm{C}\right)=93.8$ and 114 MeV [see (80AJ01, 85AJ01)], at $20 \mathrm{MeV} / A(85 \mathrm{BO} 39)$ and at 25,35 , and $50 \mathrm{MeV} / A$ (88WI09, 89WI07). The strongest peak observed is due to the unresolved ${ }^{13} \mathrm{C}^{*}(3.68+3.85)+{ }^{11} \mathrm{C}^{*}(4.32)$ (88WI09, 89WI07). The results are in agreement with the predictions of the exact FRDWBA. Above $\approx 30 \mathrm{MeV} / A$ the angle-integrated cross sections fall off with an approximately exponential shape (88WI09).
27. ${ }^{13} \mathrm{C}\left(\pi^{+}, \mathrm{d}\right){ }^{11} \mathrm{C}$

$$
Q_{\mathrm{m}}=118.908
$$

At $E_{\pi^{+}}=32 \mathrm{MeV}$ angular distributions have been obtained for the deuterons to ${ }^{11} \mathrm{C}^{*}(0$, 6.48): see (85AJ01).
28. ${ }^{13} \mathrm{C}(\mathrm{p}, \mathrm{t}){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=-15.1863$

At $E_{\mathrm{p}}=43.7$ to 50.5 MeV angular distributions of the tritons have been studied to ${ }^{11} \mathrm{C}^{*}(0,2.00,4.32,4.80,6.48,6.90,7.50)$ and to a $T=\frac{3}{2}$ state at $E_{\mathrm{x}}=12.47 \mathrm{MeV}$ [see Table 11.18, whose J^{π} is determined to be $\frac{1^{-}}{2}$ [it is thus the analog of ${ }^{11} \mathrm{Be}^{*}(0.32)$]. The state decays primarily by $\mathrm{p} \rightarrow{ }^{10} \mathrm{~B}^{*}(1.74)$. Alpha decay to ${ }^{7} \mathrm{Be}^{*}{ }_{\mathrm{g} . \mathrm{s} .+0.4}$ is also observed. Angular distributions have also been measured for $E_{\mathrm{p}}=26.9$ to 65 MeV [see (80AJ01, 85AJ01)]. At $E_{\mathrm{p}}=46.7 \mathrm{MeV}$ the $T=\frac{3}{2}$ state is also observed by (74BE20) who, in addition, report the population of states with $E_{\mathrm{x}}=11.03 \pm 0.03,13.33 \pm 0.06,13.90 \pm 0.04$ and $14.07 \pm 0.04 \mathrm{MeV}$ $[\Gamma=300 \pm 60,270 \pm 80,150 \pm 50$ and $135 \pm 50 \mathrm{keV}$, respectively]. See also (89AR1G).
29. (a) ${ }^{14} \mathrm{~N}(p, \alpha){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-2.9228$
(b) ${ }^{14} \mathrm{~N}(\mathrm{p}, \mathrm{pt}){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-22.737$

Angular distributions have been reported at a number of energies in the range $E_{\mathrm{p}}=5.0$ to 44.3 MeV for the α_{0} and α_{1} groups: see (75AJ02, 80AJ01). For reaction (b) see (86VD1C; $E_{\mathrm{p}}=50 \mathrm{MeV}$; prelim.). See also (84RE1A, 85HA1J), (86MA1P, 87HI1B; applied), (88CA26; astrophysics) and (86GO28; theor.).
30. ${ }^{14} \mathrm{~N}\left(\alpha,{ }^{7} \mathrm{Li}\right){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-20.269$

See (88SH1E; theor.).
31. ${ }^{14} \mathrm{~N}\left({ }^{10} \mathrm{~B},{ }^{13} \mathrm{C}\right){ }^{11} \mathrm{C} \quad Q_{\mathrm{m}}=1.139$

This reaction has been studied at $E\left({ }^{10} \mathrm{~B}\right)=100 \mathrm{MeV}$; see (80AJ01). See also (87OS1E; theor.).
32. ${ }^{16} \mathrm{O}\left(\alpha,{ }^{9} \mathrm{Be}\right){ }^{11} \mathrm{C}$
$Q_{\mathrm{m}}=-24.3099$

See (87KW01, 87KW03; theor.).

${ }^{11} \mathrm{~N}$

(Fig. 4)
The ${ }^{14} \mathrm{~N}\left({ }^{3} \mathrm{He},{ }^{6} \mathrm{He}\right){ }^{11} \mathrm{~N}$ reaction has been studied at $E\left({ }^{3} \mathrm{He}\right)=70 \mathrm{MeV}$. A ${ }^{6} \mathrm{He}$ group is observed which corresponds to a state in ${ }^{11} \mathrm{~N}$ with an atomic mass excess of 25.23 ± 0.10 MeV and $\Gamma=740 \pm 100 \mathrm{keV}$. The cross section for forming this state is $0.5 \mu \mathrm{~b} / \mathrm{sr}$ at 10°. The observed state is interpreted as being the $J^{\pi}=\frac{1}{2}^{-}$mirror of ${ }^{11} \mathrm{Be}^{*}(0.32)$ because of its width; the $\frac{1}{2}^{+}$mirror ${ }^{11} \mathrm{Be}$ (g.s.) would be expected to be much broader (74BE20). This ${ }^{11} \mathrm{~N}$ state is unbound with respect to decay into ${ }^{10} \mathrm{C}+\mathrm{p}$ by 2.24 MeV . (88WA18) adopt an atomic mass excess of $24.89 \pm 0.14 \mathrm{MeV}$ for ${ }^{11} \mathrm{~N}_{\text {g.s. }}$. TThis value assumes that the first excited state in ${ }^{11} \mathrm{~N}$ is at $E_{\mathrm{x}}=0.34 \mathrm{MeV}$.] We suggest an uncertainty of $\pm 0.2 \mathrm{MeV}$ because the E_{x} of the first excited state in ${ }^{11} \mathrm{~N}$ may be depressed relative to ${ }^{11} \mathrm{Be}^{*}$. The ground state is then unstable with respect to ${ }^{10} \mathrm{C}+\mathrm{p}$ by 1.90 MeV . See also (85AN28, 86AN07; theor.).

$$
\begin{aligned}
& { }^{11} 0,{ }^{11} \mathrm{~F},{ }^{11} \mathrm{Ne} \\
& \text { (Not illustrated) }
\end{aligned}
$$

These nuclei have not been observed: see (80AJ01, 85AJ01) and (86AN07, 87SA15; theor.).

References

(Closed 01 June 1989)

62 GR07 L.L. Green, G.A. Stephens and J.C. Willmott, Proc. Phys. Soc. 79 (1962) 1017
65 OL03 J.W. Olness, E.K. Warburton, D.E. Alburger and J.A. Becker, Phys. Rev. 139 (1965) B512

66CU02 R.Y. Cusson, Nucl. Phys. 86 (1966) 481
67 TH05 G.E. Thomas, D.E. Blatchley and L.M. Bollinger, Nucl. Instr. Meth. 56 (1967) 325

68AJ02 F. Ajzenberg-Selove and T. Lauritsen, Nucl. Phys. A114 (1968) 1
68EA03 L.G. Earwaker and J.H. Montague, Nucl. Phys. A109 (1968) 507
69 WO03 G. Wolber, H. Figger, R.A. Haberstroh and S. Penselin, Phys. Letters A29 (1969) 461

70 AL21 D.E. Alburger and G.A.P. Engelbertink, Phys. Rev. C2 (1970) 1594
70 GO04 D.R. Goosman, E.G. Adelberger and K.A. Snover, Phys. Rev. C1 (1970) 123
70 ME 17 W.E. Meyerhof, M. Suffert, W. Feldman, Nucl. Phys. A148 (1970) 211
73 CO05 J.M. Cox, H.D. Knox, R.O. Lane and R.W. Finlay, Nucl. Phys. A203 (1973) 89
73GO09 D.R. Goosman and R.W. Kavanagh, Phys. Rev. C7 (1973) 1717
$73 H A 64$ S.L. Hausladen, C.E. Nelson and R.O. Lane, Nucl. Phys. A217 (1973) 563
74BE20 R.L. Becker, K.T.R. Davies, M.R. Patterson, Phys. Rev. C9 (1974) 1221
$74 R O 31$ W.J. Roberts, E.E. Gross, E. Newman, Phys. Rev. C9 (1974) 149
75 AJ02 F. Ajzenberg-Selove, Nucl. Phys. A248 (1975) 1
75KA02 P.T. Kan, G.A. Peterson, D.V. Webb, S.P. Fivozinsky, J.W. Lightbody, Jr. and S. Penner, Phys. Rev. C11 (1975) 323

75 TH08 C. Thibault, R. Klapisch, C. Rigaud, A.M. Poskanzer, R. Prieels, L. Lessard and W. Reisdorf, Phys. Rev. C12 (1975) 644
78LA23 G.P. Lamaze, R.A. Schrack and O.A. Wasson, Nucl. Sci. Eng. 68 (1978) 183
78LEZA C.M. Lederer, V.S. Shirley, E. Browne, J.M. Dairiki, R.E. Doebler, A.A. ShihabEldin, L.J. Jardine, J.K. Tuli and A.B. Buyrn, Table of Isotopes 7th ed. (New York: John Wiley \& Sons, 1978)

79AN16 A. Anttila, J. Keinonen and R. Hentela, Phys. Rev. C20 (1979) 920
79ST1B Stelts et al, Phys. Rev. C19 (1979) 1159
80AJ01 F. Ajzenberg-Selove and C.L. Busch, Nucl. Phys. A336 (1980) 1

80BA45 B.M. Barnett, W. Gyles, R.R. Johnson, K.L. Erdman, J. Johnstone, J.J. Kraushaar, S. Lepp, T.G. Masterson, E. Rost, D.R. Gill et al, Phys. Lett. B97 (1980) 45

80 FE07 M.P. Fewell, R.H. Spear, T.H. Zabel and A.M. Baxter, Aust. J. Phys. 33 (1980) 505; Corrigendum Aust. J. Phys. 37 (1984) 239; IBID 37 (1984) 239

81AL03 D.E. Alburger, D.J. Millener and D.H. Wilkinson, Phys. Rev. C23 (1981) 473
81AS04 E. Aslanides, P. Fassnacht, G. Dellacasa, M. Gallio and J.W.N. Tuyn, Phys. Rev. C23 (1981) 1826
81BJ01 T. Bjornstad, H.A. Gustafsson, P.G. Hansen, B. Jonson, V. Lindfors, S. Mattsson, A.M. Poskanzer, H.L. Ravn, the ISOLDE Collaboration, Nucl. Phys. A359 (1981) 1

81CA06 Sl. Cavallaro, S. Incardona, M.L. Sperduto and M. Romeo, Nuovo Cim. A62 (1981) 1

81LA11 M. Langevin, C. Detraz, D. Guillemaud, F. Naulin, M. Epherre, R. Klapisch, S.K.T. Mark, M. De Saint Simon, C. Thibault and F. Touchard, Nucl. Phys. A366 (1981) 449

81LI1C Lin, Hou and Wen, Chin. J. Phys. 19 (1981) 88; Phys. Abs. 83081 (1984)
81MUZQ S.F. Mughabghab, M. Divadeenam and N.E. Holden, Neutron Cross Sections A1 (1981) $\mathrm{Z}=1-60$
82AU1A Audouze and Reeves, Essays in Nucl. Astrophys. (1982) 355
82BA1D Barnes, Essays in Nucl. Astrophys. (1982) 193
82CA1A Cameron, Essays in Nucl. Astrophys. (1982) 23
82DO01 K.G.R. Doss, P.D. Barnes, N. Colella, S.A. Dytman, R.A. Eisenstein, C. Ellegaard, F. Takeutchi, W.R. Wharton, J.F. Amann, R.H. Pehl et al, Phys. Rev. C25 (1982) 962
82GL02 S.G. Glendinning, S. El-Kadi, C.E. Nelson, R.S. Pedroni, F.O. Purser, R.L. Walter, A.G. Beyerle, C.R. Gould, L.W. Seagondollar and P. Thambidurai, Nucl. Sci. Eng. 80 (1982) 256

82MI08 D.J. Millener, D.E. Alburger, E.K. Warburton, D.H. Wilkinson, Phys. Rev. C26 (1982) 1167
$82 Z W 02$ B. Zwieglinski, W. Benenson, G.M. Crawley, S. Gales and D. Weber, Nucl. Phys. A389 (1982) 301
$83 D E 50$ A.S. Deineko, I.I. Zalyubovsky, V.D. Sarana, A.I. Tutubalin, N.A. Shlyakhov and C. Hategan, Izv. Akad. Nauk SSSR, Ser. Fiz. 47 (1983) 2271
83GE1C Gensini, Nuovo Cim. A78 (1983) 471
83GM1A Gmitro et al, Sov. J. Part. and Nucl. 14 (1983) 323

83GO1H Gould, Dave and Walter, Proc. Int. Conf., Antwerp, Belgium 1982 (Dordrecht, Netherlands: Reidel (1983) 766
83HA1B Harris et al, Ann. Rev. Astron. Astrophys. 21 (1983) 165
83 KO17 L. Koester, K. Knopf and W. Waschkowski, Z. Phys. A312 (1983) 81
83SA07 M. Sasagase, M. Sato, S. Hanashima, K. Furuno, Y. Nagashima, Y. Tagishi, S.M. Lee and T. Mikumo, Phys. Rev. C27 (1983) 2630

83SH1E Shi and Zhuang, Phys. Energ. Fortis and Phys. Nucl. 7 (1983) 605
83VA28 O.I. Vasileva, V.M. Lebedev, A.V. Spassky, I.B. Teplov and L.N. Fateeva, Izv. Akad. Nauk SSSR, Ser. Fiz. 47 (1983) 2248
$83 V E 10$ V.A. Vesna, A.I. Egorov, E.A. Kolomensky, V.M. Lobashev, I.S. Okunev, B.G. Peskov, A.N. Pirozhkov, L.M. Smotritsky, E.V. Shulgina, A.F. Kornyushkin et al, Pisma Zh. Eksp. Teor. Fiz. 38 (1983) 265; JETP Lett. 38 (1983) 315
83WI09 M. Wiescher, R.N. Boyd, S.L. Blatt, L.J. Rybarcyk, J.A. Spizuoco, R.E. Azuma, E.T.H. Clifford, J.D. King, J. Gorres, C. Rolfs et al, Phys. Rev. C28 (1983) 1431

84AI1A Aivazyan et al, in Panic (1984) N6
84AL1M Allen, Wilson and Linklater, in Knoxville (1984) 178
84AL22 A.S. Alimov, V.I. Mokeev, E.S. Omarov and I.M. Piskarev, Yad. Fiz. 40 (1984) 301; Sov. J. Nucl. Phys. 40 (1984) 190

84AN1B Anagnostatos, in Panic (1984) I56
84AN1D Antuf'ev et al, Sov. J. Nucl. Phys. 40 (1984) 35
84BA1R V.N. Baturin, A.V. Khanzadeev, V.P. Koptev, E.M. Maev, M.M. Makarov, V.V. Nelyubin, G.V. Shcherbakov, V.V. Sulimov, PANIC, Part. and Nucl. 10th Int. Conf., Books of Abstracts Vol. II, Heidelberg, July 30-Aug. 3, 1984, (1984) I11

84BA1T Bayukov et al, in Panic (1984) I16
84BA1U Bayukov et al, in Panic (1984) I25
84BE1A Bethge, Bull. Amer. Phys. Soc. 29 (1984) 1080
84BE23 T.L. Belyaeva, Izv. Akad. Nauk SSSR, Ser.Fiz. 48 (1984) 383
84 BO18 S. Boffi, R. Cenni, C. Giusti, F.D. Pacati, Nucl. Phys. A420 (1984) 38
84CA1D Cahill et al, Nucl. Instr. Meth. Phys. Res. B231 (1984) 263
84CA34 J.R. Calarco, J. Arruda-Neto, K.A. Griffioen, S.S. Hanna, D.H.H. Hoffmann, B. Neyer, R.E. Rand, K. Wienhard and M.R. Yearian, Phys. Lett. B146 (1984) 179
84CH1G Chen et al, Chin. J. Nucl. Phys. 6 (1984) 303
$84 D A 17$ B. Dasmahapatra, B. Cujec and F. Lahlou, Nucl. Phys. A427 (1984) 186
84DE1A P. De Bievre, M. Gallet, N.E. Holden and I.L. Barnes, J. Phys. Chem. Ref. Data 13 (1984) 809

84DE1J Dennis and Hanspal, Bull. Amer. Phys. Soc. 29 (1984) 1047
84DE46 A.S. Deineko, I.I. Zalyubovsky, V.D. Sarana, A.I. Tutubalin and N.A. Shlyakhov, Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 1000
84DO1A Donnelly and Sick, Rev. Mod. Phys. 56 (1984) 461
84EL05 R.J. Ellis, K.S. Sharma, R.C. Barber, S.R. Loewen and H.E. Duckworth, Phys. Lett. B141 (1984) 306
84FA11 J.A. Faucett, B.E. Wood, D.K. McDaniels, P.A.M. Gram, M.E. Hamm, M.A. Oothoudt, C.A. Goulding, L.W. Swenson, K.S. Krane, A.W. Stetz et al, Phys. Rev. C30 (1984) 1622
84 FI17 D.J. Fields, W.G. Lynch, C.B. Chitwood, C.K. Gelbke, M.B. Tsang, H. Utsunomiya and J. Aichelin, Phys. Rev. C30 (1984) 1912

84FR13 H. Friedrich, Phys. Lett. B146 (1984) 135
84FR1A Frobrich, Phys. Rep. 116 (1984) 337
84GO1F Goetz et al, in Panic (1984) F17
84HA13 G. Hardie, B.W. Filippone, A.J. Elwyn, M. Wiescher and R.E. Segel, Phys. Rev. C29 (1984) 1199

84HA43 Q. Haider and B. Cujec, Nucl. Phys. A429 (1984) 116
84HA53 Q. Haider and F.B. Malik, At. Data Nucl. Data Tables 31 (1984) 185
84HAZK J.S. Hanspal, L.C. Dennis, A.D. Frawley, R.A. Parker, Bull. Am. Phys. Soc. 29 (1984) 1047

84HO23 H. Homeyer, M. Burgel, Ch. Egelhaaf, H. Fuchs and G. Thoma, Z. Phys. A319 (1984) 143

84IN03 M. Inoue and S.E. Koonin, Phys. Rev. C30 (1984) 175
84KO1M Kondrat'ev and Krasnov, Sov. J. Nucl. Phys. 40 (1984) 870
84 KO24 K. Koshigiri, H. Ohtsubo and M. Morita, Prog. Theor. Phys. 71 (1984) 1293
84LA16 L. Lapikas and P.K.A. de Witt Huberts, J. Phys. C4 (1984) 57; See 84LA34
84LA27 M. Langevin, C. Detraz, M. Epherre, D. Guillemaud-Mueller, B. Jonson, C. Thibault and the ISOLDE Collaboration, Phys. Lett. B146 (1984) 176
84LI1N Liutostanskii, Panov and Sirotkin, in Leningrad (1985) 256
84MI1H Millener, in Drexel Univ. Symp. (1984)
84MO1D Montgomery et al, Can. J. Phys. 62 (1984) 764
84 OH 04 Y. Ohkubo and L.C. Liu, Phys. Rev. C30 (1984) 254
84 OH 06 H. Ohnuma, F. Irom, B. Aas, M. Haji-Saeid, G.J. Igo, G. Pauletta, A.K. Rahbar, A.T.M. Wang, C.A. Whitten, Jr., M.M. Gazzaly et al, Phys. Lett. B147 (1984) 253

84OL05 M.D. Olson and R.W. Kavanagh, Phys. Rev. C30 (1984) 1375
84 PO11 D.N. Poenaru and M. Ivascu, J. Phys. 45 (1984) 1099
84RE1A Read and Wiola, At. Data Nucl. Data Tables 31 (1984) 359
84SH1J Shoeb and Khan, J. Phys. G10 (1984) 1047
84SI15 S.H. Simon, P.L. Gonthier, R.K. Choudhury, M.N. Namboodiri, K. Hagel, S. Kniffen, R. Patton, L. Adler and J.B. Natowitz, Nucl. Phys. A430 (1984) 249
84SM04 G.R. Smith, J.R. Shepard, R.L. Boudrie, R.J. Peterson, G.S. Adams, T.S. Bauer, G.J. Igo, G. Pauletta, C.A. Whitten, Jr., A. Wriekat et al, Phys. Rev. C30 (1984) 593

84SU1E Sugarbaker et al, Bull. Amer. Phys. Soc. 29 (1984) 1051
84TA1F Taddeucci, Bull. Amer. Phys. Soc. 29 (1984) 1032
84TE1A Teh et al, Bull. Amer. Phys. Soc. 29 (1984) 1502
84TR1C Truran, Ann. Rev. Nucl. Part. Sci. 34 (1984) 53
84 TU02 M. Turk, B. Antolkovic, Nucl. Phys. A431 (1984) 381
84VA06 A.G.M. van Hees, P.W.M. Glaudemans, Z. Phys. A315 (1984) 223
84VA07 O.I. Vasileva, V.M. Lebedev, A.V. Spassky, I.B. Teplov and L.N. Fateeva, Izv. Akad. Nauk SSSR, Ser. Fiz. 48 (1984) 155
84VD1B Vdovin, Golikov and Loshcharkov, Sov. J. Nucl. Phys. 39 (1984) 336
84XI1A Xiao, Kexue Tongbao 29 (1984) 234
84XI1B Xie et al, Phys. Energy Fortis and Phys. Nucl. 8 (1984) 748
84YA1A Yang et al, Astrophys. J. 281 9184) 493
84ZH1B Zhuang, Chen and Jin, Phys. Energy Fortis and Phys. Nucl. 8 (1984) 215
84ZI04 W. Zickendraht, Phys. Rev. C30 (1984) 2067
84ZI1B Ziock et al, Phys. Rev. C30 (1984) 650
84ZW1A Zwarts, Unpublished Ph.D. Thesis, Utrecht (1984)
85AG1A Aggarwal and Jain, Phys. Rev. C31 (1985) 1233
85AH1A Ahmad, Mian and Rahman Khan, Phys. Rev. C31 (1985) 1590
85AJ01 F. Ajzenberg-Selove, Nucl. Phys. A433 (1985) 1; Erratum Nucl. Phys. A449 (1986) 155

85AL1F Alkhazov et al, Sov. J. Nucl. Phys. 42 (1985) 4
85AL1G Aleksandrov et al, in Questions in At. Phys. and in tech., USSR (1985) 3
85AN28 M.S. Antony, J. Britz, J.B. Bueb and A. Pape, At. Data Nucl. Data Tables 33 (1985) 447

85 AR03 R. Aryaeinejad, W.R. Falk, N.E. Davison, J.N. Knudson and J.R. Campbell, Nucl. Phys. A436 (1985) 1
85AR09 A.A. Arakelyan, A.R. Balabekyan, A.S. Danagulyan and A.G. Khudaverdya, Yad. Fiz. 41 (1985) 833

85BA1T Barnes, in Lecture Notes in Phys. 219, Spronger-Verlag (1985) 70
85BA51 A.J. Baltz, C.B. Dover, M.E. Sainio, A. Gal and G. Toker, Phys. Rev. C32 (1985) 1272

85BE1A Beckermann, Phys. Rep. 129 (1985) 145
85BE1J Belostotskii et al, Sov. J. Nucl. Phys. 41 (1985) 903
85BE40 C. Beck, F. Haas, R.M. Freeman, B. Heusch, J.P. Coffin, G. Guillaume, F. Rami and P. Wagner, Nucl. Phys. A442 (1985) 320
85BH02 R. Bhanja, M. Shyam and S.K. Tuli, Nucl. Phys. A438 (1985) 740
85BO1A Boal, Adv. Nucl. Phys. 15 (1985) 85
85BO1D Body and Mihaly, INDC (Hun)-22/L (1985)
85BO39 H.G. Bohlen, X.S. Chen, J.G. Cramer, P. Frobrich, B. Gebauer, H. Lettau, A. Miczaika, W. von Oertzen, R. Ulrich and T. Wilpert, Z. Phys. A322 (1985) 241

85CA32 M. Cavinato, D. Drechsel, E. Fein, M. Marangoni and A.M. Saruis, Nucl. Phys. A444 (1985) 13
85CA41 G.R. Caughlan, W. A. Fowler, M.J. Harris and B.A. Zimmerman, At. Data Nucl. Data Tables 32 (1985) 197
85CH27 G.I. Chitanava, Yad. Fiz. 42 (1985) 145; Sov. J. Nucl. Phys. 42 (1985) 91
85CO03 J. Cohen and J.V. Noble, Phys. Lett. B150 (1985) 45
85 CO16 J. Cohen and J.V. Noble, Phys. Rev. C32 (1985) 961
85CU1A B. Cujec, Lecture Notes in Phys. 219 (1985)108
85DE56 P.K.A. De Witt Huberts, Nucl. Phys. A446 (1985) 301C
85DO1B Dotsenko and Starodubskii, Sov. J. Nucl. Phys. 42 (1985) 66
85DW1A Dwyer and Meyer, Astrophys. J. 294 (1985) 441
85FA01 Fan Wang, C.W. Wong, Nucl. Phys. A432 (1985) 619
85 FR07 J. Franz, E. Rossle, C. Sauerwein, H. Schmitt, H.L. Woolverton, J. Ero, Z. Fodor, J. Kecskemeti, P. Koncz, Zs. Kovacs et al, Phys. Lett. B153 (1985) 382
85GA1E Gal, Nucl. Phys. A545 (1985) 381C
85GO1A Goncharova, Kissener and Eramzhyan, Sov. J. Part. and Nucl. 16 (1985) 337
85GO1H Gorionov et al, in Leningrad (1985) 362

85 GR09 S.M. Grimes, J.D. Anderson, J.C. Davis, R.H. Howell, C. Wong, A.W. Carpenter, J.A. Carr and F. Petrovich, Phys. Rev. C31 (1985) 1679
85GR10 R. Grace, P.D. Barnes, R.A. Eisenstein, G.B. Franklin, C. Maher, R. Rieder, J. Seydoux, J. Szymanski, W. Wharton, S. Bart et al, Phys. Rev. Lett. 55 (1985) 1055

85GU1C Gulyamov et al, in Leningrad (1985) 291
85HA18 S.S. Hanna and J.W. Hugg, Hyperfine Interactions 21 (1985) 59
85HA1J Hauser et al, in AIP Conf. proc. 125 (1985) 701
85HA1K Hamilton, Hansen and Zganjar, Rep. Prog. Phys. 48 (1985) 631
85HA1T Hardy, Science 227 (1985) 993
85HI1C Hill et al, Bull. Amer. Phys. Soc. 30 (1985) 1262
85IK1A Ikeda, Bando and Motoba, Suppl. Prog. Theor. Phys. 81 (1985) 147
85JA1B Jacak, Fox and Westfall, Phys. Rev. C31 (1985) 704
85KE1E Kerimov, Safin and Alizade, in Leningrad (1985) 420
85KO1J Koonin, in Lecture Notes in Phys. 219, Springer-Verlag (1985) 129
85KW02 E. Kwasniewicz, L. Jarczyk, Nucl. Phys. A441 (1985) 77
85LA1F Lapikas and De Vries, Ned. Tijdschr. Natuurkd. A51 (1985) 60
85MA10 J.F. Mateja, A.D. Frawley, D.G. Kovar, D. Henderson, H. Ikezoe, R.V.F. Janssens, G. Rosner, G.S.F. Stephans, B. Wilkins, K.T. Lesko et al, Phys. Rev. C31 (1985) 867
85MC03 M.A. McMahan, L.G. Moretto, M.L. Padgett, G.J. Wozniak, L.G. Sobotka and M.G. Mustafa, Phys. Rev. Lett. 54 (1985) 1995

85MC1C McNally, Fusion Tech. 7 (1985) 331
85MI1D Missimer and Simons, Phys. Rep. 118 (1985) 179
85MO08 M. Morjean, J.L. Charvet, J.L. Uzureau, Y. Patin, A. Peghaire, Y. Pranal, L. Sinopoli, A. Billerey, A. Chevarier, N. Chevarier et al, Nucl. Phys. A438 (1985) 547
85MO1K Morgenstern et al, in Visby (1985) 54
85MUZZ K. Murphy, C.R. Howell, H.G. Pfutzner, M.L. Roberts, A. Li and R.L. Walter, Bull. Am. Phys. Soc. 30 (1985) 796
85 PO10 N.A.F.M. Poppelier, L.D. Wood and P.W.M. Glaudemans, Phys. Lett. B157 (1985) 120

85PO11 D.N. Poenaru, M. Ivascu, A. Sandulescu and W. Greiner, Phys. Rev. C32 (1985) 572

85SA32 H. Sato and Y. Okuhara, Phys. Lett. B162 (1985) 217

85SC08 H.R. Schelin, E. Farrelly Pessoa, W.R. Wylie, J.L. Cardoso, Jr. and R.A. Douglas, Nucl. Sci. Eng. 89 (1985) 87
85SH1D Shvedov and Nemets, in Leningrad (1985) 317
85SH1G Shen et al, Chin. Phys. 5 (1985) 657
85SH24 R. Sherr and G. Bertsch, Phys. Rev. C32 (1985) 1809
85SI19 K. Siwek-Wilczynska, R.A. Blue, L.H. Harwood, R.M. Ronningen, H. Utsunomiya, J. Wilczynski and D.J. Morrissey, Phys. Rev. C32 (1985) 1450

85SM08 D.L. Smith, J.W. Meadows and P.T. Guenther, Nucl. Instrum. Meth. 241 (1985) 507

85 TA18 I. Tanihata, H. Hamagaki, O. Hashimoto, Y. Shida, N. Yoshikawa, K. Sugimoto, O. Yamakawa, T. Kobayashi, N. Takahashi, Phys. Rev. Lett. 55 (1985) 2676

85TA1D Tanihata, Hyperfine Interactions 21 (1985) 251
85 TA26 X. Tang, L. Gao, Y. Tian, Chin. J. Nucl. Phys. 7 (1985) 263
85VA05 G. Van Der Steenhoven, H.P. Blok, J.W.A. Den Herder, E. Jans, P.H.M. Keizer, L. Lapikas, E.N.M. Quint, P.K.A. De Witt Huberts, G.W.R. Dean, P.J. Brussaard et al, Phys. Lett. B156 (1985) 151
85VA16 G. van der Steenhoven, H.P. Blok, J.W.A. den Herder, E. Jans, P.H.M. Keizer, L. Lapikas, E.N.M. Quint and P.K.A. de Witt Huberts, Phys. Rev. C32 (1985) 1787

85WA1F Waddington and Freier, in Visby (1985) 22
85WA1K Walker, Mathews and Viola, Astrophys. J. 299 (1985) 745
85WA1P Walter, in AIP Conf. Proc. 124 (1985) 53
85 WA22 S. Wald, S.B. Gazes, C.R. Albiston, Y. Chan, B.G. Harvey, M.J. Murphy, I. Tserruya, R.G. Stokstad, P.J. Countryman, K. Van Bibber et al, Phys. Rev. C32 (1985) 894

85ZI04 W. Ziegler, E.G. Auld, W.R. Falk, G.L. Giles, G. Jones, G.J. Lolos, B.J. McParland, P.L. Walden and D.F. Ottewell, Phys. Rev. C32 (1985) 301
85ZI05 W. Zickendraht, Ann. Phys. 42 (1985) 113
86AB1E Abrahams, J. Phys. Soc. Jpn. Suppl. 55 (1986) 572
86AJ01 F. Ajzenberg-Selove, Nucl. Phys. A449 (1986) 1
86 AL24 A.S. Alimov, M.Kh. Zhalilov, K.M. Irgashev, E.V. Lazutin, E.Yu. Nikolsky, I.M. Piskarev, V.M. Sorvin and F.Sh. Khamraev, Yad. Fiz. 44 (1986) 561; Sov. J. Nucl. Phys. 44 (1986) 361

86AN07 M.S. Antony, J. Britz and A. Pape, At. Data Nucl. Data Tables 34 (1986) 279
86AN1R Ansari, Shoeb and Rahman Khan, J. Phys. G12 (1986) 1369

86AN25 M. Anghinolfi, V. Lucherini, N. Bianchi, G.P. Capitani, P. Corvisiero, E. De Sanctis, P. Di Giacomo, C. Guaraldo, P. Levi-Sandri, E. Polli et al, Nucl. Phys. A457 (1986) 645
86 AV07 A.R. Avakyan, G.A. Vartapetyan, E.O. Grigoryan and N.A. Demekhina, Yad. Fiz. 44 (1986) 566; Sov. J. Nucl. Phys. 44 (1986) 187

86AV1B Avdeichikov, in Dubna (1986) 122
86BA3G Bamblevskij, Kernenergie 29 (1986) 64
86BA3L Barnes, Nucl. Phys. A450 (1986) 43C
86BA40 F.M. Baumann, G. Domogala, H. Freiesleben, H.J. Paul, S. Puhlvers and H. Sohlbach, Nucl. Instrum. Meth. Phys. Res. A247 (1986) 359
86BA69 D. Baye, Nucl. Phys. A460 (1986) 581
86BAYL M. Baba, M. Ono, N. Yabuta, T. Kikuti and N. Hirakawa, Proc. Inter. Conf. Nucl. Data for Basic and Appl. Sci., Santa Fe, New Mexico, 1 (1986) 223
86BI1A Bimbot et al, J. Phys. 47 (1986) C4-241
86BI1G Bishop and Dabrowski, J. Phys. G12 (1986) L63
86BO1B Bogdanov et al, JETP Lett. 44 (1986) 391
86CA28 A.D. Carlson, W.P. Poenitz, G.M. Hale, R.W. Peelle, Radiat. Eff. 96 (1986) 87; Nucl. Data for Basic and Applied Sci., Proc. Int. Conf., Santa Fe, New Mexico 13-17 May 1985, (1986) 1429
86CA29 A.D. Carlson, Radiat. Eff. 96 (1986) 109; Nucl. Data for Basic and Applied Sci., Proc. Int. Conf., Santa Fe, New Mexico 13-17 May 1985, (1986) 1451
86CH1J Chant, AIP Conf. Proc. 142 (1986) 246
86CH2G Chbihi et al, J. Physique 47 (1986) C4-87
86CO1M Constantine, Baker and Taylor, Nucl. Instr. Meth. Phys. Res. A250 (1986) 565
86CS1A Csernai and Kapusta, Phys. Rep. 131 (1986) 223
86CU01 M.S. Curtin, L.H. Harwood, J.A. Nolen, B. Sherrill, Z.Q. Xie and B.A. Brown, Phys. Rev. Lett. 56 (1986) 34
86 CU02 B. Cujec, B. Dasmahapatra, Q. Haider, F. Lahlou and R.A. Dayras, Nucl. Phys. A453 (1986) 505
86DA1B Davis and Pniewski, Contemp. Phys. 27 (1986) 91
86DA1G Dalitz, Davis and Tovee, Nucl. Phys. A450 (1986) 311C
86DA1H Dabrowski and Rozynek, Nucl. Phys. A450 (1986) 349C
86DE05 G.W.R. Dean and P.J. Brussaard, Z. Phys. A323 (1986) 351
86DE1U De Witt Huberts, in AIP Conf. Proc. 142 (1986) 233

86DO12 P. Doll, G. Fink, F.P. Brady, R. Garrett, H.O. Klages and H. Krupp, Nucl. Instrum. Meth. Phys. Res. A250 (1986) 526
86DO1E Dolbilskii et al, in Kharkov (1986) 352
86DR1D Drosg et al, in Santa Fe (1985) 145
86DR1G Drake, Feldman and Hurlburt, Bull. Amer. Phys. Soc. 31 (1986) 1111
86 DU11 J.P. Dufour, R. Del Moral, H. Emmermann, F. Hubert, D. Jean, C. Poinot, M.S. Pravikoff, A. Fleury, H. Delagrange and K.-H. Schmidt, Nucl. Instrum. Meth. Phys. Res. A248 (1986) 267
86DU1P Dubach, AIP Conf. Proc. 150 (1986) 946
86EL1A Ellis and Tang, Phys. Rev. Lett. 56 (1986) 1309
86ER05 O.N. Ermakov, I.L. Karpikhin, P.A. Krupchitsky, G.A. Lobov, V.F. Perepelitsa, F. Stecher-Rasmussen and P. Kok, Yad. Fiz. 43 (1986) 1359; Sov. J. Nucl. Phys. 43 (1986) 874
86ER1A Eramzhyan et al, Phys. Rep. 136 (1986) 229
86FR1J Franklin, Proc. Int. Symp., Heidelberg, Germany (Berlin, Germany: SpringerVerlag 1986) 571
86GA1H Gal, AIP Conf. Proc. 150 (1986) 127
86GA1J Gal, Nucl. Phys. A450 (1986) 23C
86GL1A Glaudemans, AIP Conf. Proc. 142 (1986) 316
86GL1E Glukhov et al, in Kharkov (1986) 377, 378
$86 G O 28$ N.F. Golovanova and V.V. Kurovsky, Izv. Akad. Nauk SSSR, Ser. Fiz. 50 (1986) 963; Bull. Acad. Sci. USSR, Phys. Ser. 50 (1986) 131
86GR1F Grundl, in Santa Fe (1985) 471
86HA13 Q. Haider and F.B. Malik, J. Phys. G12 (1986) 537
86HA1B Harvey, J. Phys. 47 (1986) C4-29
86HA1M Han et al, New Phys. 26 (1986) 16
86HE01 D.P. Heddle and L.S. Kisslinger, Phys. Rev. C33 (1986) 608
86HE1A He et al, in Harrogate (1986) C51
86HI1D Hill et al, Phys. Rev. C33 (1986) 557
86HU06 M.S. Hussein, E. Farrelly-Pessoa, H.R. Schelin and R.A. Douglas, Nucl. Phys. A458 (1986) 397
86JA14 L. Jarczyk, B. Kamys, Z. Rudy, A. Strzalkowski, B. Styczen, G.P.A. Berg, A. Magiera, J. Meissburger, W. Oelert, P. von Rossen et al, Nucl. Phys. A459 (1986) 52

86KE06 E. Kerkhove, P. Berkvens, R. Van de Vyver, D. Ryckbosch, P. Van Otten, H. Ferdinande, E. Van Camp and A. De Graeve, Phys. Rev. C33 (1986) 1796

86KE1F Kerimov, Buras and El Gavkhari, in Kharkov (1986) 472
86KE1Q Kerimov et al, in Kharkov (1986) 510
86KI1K Kishimoto, Nucl. Phys. A450 (1986) 447C
86 KO 19 P.J.J. Kok, J.B.M. de Haas, K. Abrahams, H. Postma and W.J. Huiskamp, Z. Phys. A324 (1986) 271

86KO1A Kolesnikov et al, in Kharkov (1986) 225
86LA1T Lapikas, AIP Conf. Proc. 150 (1986) 535
86MA13 J.F. Mateja, A.D. Frawley, R.A. Parker and K. Sartor, Phys. Rev. C33 (1986) 1307

86MA19 J.F. Mateja, A.D. Frawley, L.C. Dennis and K. Sartor, Phys. Rev. C33 (1986) 1649

86MA1P Martin et al, Bull. AMer. Phys. Soc. 31 (1986) 1304
86 MC 15 J.C. McGeorge, G.I. Crawford, R.O. Owens, M.R. Sene, D. Branford, A.C. Shotter, B. Schoch, R. Beck, P. Jennewein, F. Klein et al, Phys. Lett. B179 (1986) 212

86ME06 M.C. Mermaz, T. Suomijarvi, R. Lucas, B. Berthier, J. Matuszek, J.P. Coffin, G. Guillaume, B. Heusch, F. Jundt and F. Rami, Nucl. Phys. A456 (1986) 186

86ME1F Measday, Czech. J. Phys. 36 (1986) 395
86MI1G Mizumoto, Proc. 1985 Seminar on Nucl. Data (Tokai, Ibaraki, Japan: JAERI 1986) 124

86 MO 15 H. Morgenstern, W. Bohne, W. Galster and K. Grabisch, Z. Phys. A324 (1986) 443

86MU1D Murphy et al, in Santa Fe (1985) 219
86NO1C Nojiri et al, J. Phys. Soc. Jpn. Suppl. 55 (1986) 391
86OL1B Oliver et al, in Santa Fe 85 (1986) 625
86PE05 J.P. Perroud, A. Perrenoud, J.C. Alder, B. Gabioud, C. Joseph, J.F. Loude, N. Morel, M.T. Tran, E. Winkelmann, H. Von Fellenberg et al, Nucl. Phys. A453 (1986) 542

86PO06 D.N. Poenaru, W. Greiner, K. Depta, M. Ivascu, D. Mazilu and A. Sandulescu, At. Data Nucl. Data Tables 34 (1986) 423
86PO1H Povh, Nucl. Phys. A450 (1986) 573C
86QA1A Qaim et al, in Santa Fe 85 (1986) 97

86RE13 B.A. Remington, G. Caskey, A. Galonsky, C.K. Gelbke, L. Heilbronn, J. Heltsley, M.B. Tsang, F. Deak, A. Kiss, Z. Seres et al, Phys. Rev. C34 (1986) 1685

86 RO03 R. Rockmore, B. Saghai, Phys. Rev. C33 (1986) 576
$86 R O 12$ G. Royer, J. Phys. G12 (1986) 623
86RU1B Rusek et al, Nukleonika (Poland) 31 (1986) 287
86SA30 H. Sato, Y. Okuhara, Phys. Rev. C34 (1986) 2171
86SAZR E.T. Sadowski, H.D. Knox, D.A. Resler and R.O. Lane, Bull. Am. Phys. Soc. 31 (1986) 1209
86SH2B Shibata and Fujita, Phys. Lett. B172 (1986) 283
86SZ1A J.J. Szymanski, AIP Conf. Proc. 150 (1986) 934
86TE1A Ter-Akopian et al, Nucl. Instr. Meth. Phys. Res. B17 (1986) 393; Private Communication (1986)
86UT01 H. Utsunomiya, E.C. Deci, R.A. Blue, L.H. Harwood, R.M. Ronningen, K. Siwek-Wilczynska, J. Wilczynski and D.J. Morrissey, Phys. Rev. C33 (1986) 185

86VA17 G. van der Steenhoven, H.P. Blok, J.F.J. van den Brand, T. de Forest,Jr., J.W.A. den Herder, E. Jans, P.H.M. Keizer, L. Lapikas, P.J. Mulders, E.N.M. Quint et al, Phys. Rev. Lett. 57 (1986) 182
86VD1C Vdovin et al, in Kharkov (1986) 290
86WA1H Wang et al, Phys. Energ. Fortis and Phys. Nucl. 10 (1986) 68
86WE1C Westfall, Nucl. Phys. A447 (1986) 591C
86WE1E Wei et al, Bull. Amer. Phys. Soc. 31 (1986) 1294
86WI04 D.H. Wilkinson, Nucl. Phys. A452 (1986) 296
86WI1B Winn, IEE Trans. Nucl. Sci. 33 (1986) 213
86YA1F Yamamoto, Prog. Theor. Phys. 75 (1986) 639
87 AB 03 H. Abele, H.J. Hauser, A. Korber, W. Leitner, R. Neu, H. Plappert, T. Rohwer, G. Staudt, M. Strasser, S. Welte et al, Z. Phys. A326 (1987) 373

87AB1E Abeav et al, in Panic 87 (1987) 204
87 AD07 E. Adamides, H.G. Bohlen, W. von Oertzen, M. Buenerd, J. Chauvin, D. Lebrun, J.Y. Hostachy, Ph. Martin, G. Perrin and P. de Saintignon, Nucl. Phys. A475 (1987) 598
87 AL10 D.V. Aleksandrov, Yu.A. Glukhov, E.Yu. Nikolsky, B.G. Novatsky, A.A. Ogloblin and D.N. Stepanov, Yad. Fiz. 45 (1987) 1217
87AL1M Alizade, Kerimov and Elgawhari, Sov. J. Nucl. Phys. 45 (1987) 1067
87AN1A Anne et al, Nucl. Instr. Meth. Phys. Res. A257 (1987) 215

87 AR19 S.E. Arnell, S. Mattsson, H.A. Roth, M. Rydehell, O. Skeppstedt, A. Johnson, J. Nyberg, A. Kerek and A. Nilsson, Phys. Scr. 36 (1987) 214

87AR1J Arai, Hahimoto and Fukui, Astron. Astrophys. 179 (1987) 17
87 AR22 E. Arnold, J. Bonn, R. Gegenwarth, W. Neu, R. Neugart, E.-W. Otten, G. Ulm, K. Wendt and ISOLDE Collaboration, Phys. Lett. B197 (1987) 311

87AU1A Audouze, J. Astrophys. Astron. 8 (1987) 147
87BA1G Balamuth, Proc. Beijing Int. Symp. on Phys. at Tandem 1986 (1987) 251
87BA38 G.J. Balster, P.C.N. Crouzen, P.B. Goldhoorn, R.H. Siemssen and H.W. Wilschut, Nucl. Phys. A468 (1987) 93
87 BE55 I. Berceanu, I. Brancus, A. Buta, A. Demian, C. Grama, I. Lazar, I. Mihai, M. Petrascu, M. Petrovici, V. Simion et al, Rev. Roum. Phys. 32 (1987) 961
87 BE58 B. Berthier, R. Boisgard, J. Julien, J.M. Hisleur, R. Lucas, C. Mazur, C. Ng, M. Ribrag and C. Cerruti, Phys. Lett. B193 (1987) 417

87BL07 G.S. Blanpied, C.S. Mishra, G.S. Adams, B.M. Preedom, C.S. Whisnant, J.-P. Egger, C.L. Morris, H. Breuer, N.S. Chant, B.G. Ritchie et al, Phys. Rev. C35 (1987) 1567

87 BL10 H.P. Blok and G. van der Steenhoven, Phys. Rev. C35 (1987) 2347
87 BO16 N. Bordes, G. Blondiaux, C.J. Maggiore, M. Valladon, J.L. Debrun, R. Coquille and M. Gauneau, Nucl. Instrum. Methods Phys. Res. B24/25 (1987) 722

87BO1K Bock et al, Mod. Phys. Lett. A2 (1987) 721
87BO1X Bonev, Bulg. J. Phys. 14 (1987) 406
87BO1Y Borozenets, Vishnebskii and Zheltonozhskii, Sov. J. Nucl. Phys. 46 (1987) 774
87 BU07 M. Bürgel, H. Fuchs, H. Homeyer, G. Ingold, U. Jahnke and G. Thoma, Phys. Rev. C36 (1987) 90
87 BU27 N.T. Burtebaev, A.D. Duisebaev, V.S. Sadkovskii and G.A. Feofilov, Izv. Akad. Nauk SSSR Ser. Fiz. 51 (1987) 615; Bull. Acad. Sci. USSR Phys. Ser. 51:3 (1987) 191

87 CA20 J.R. Campbell, W.R. Falk, N.E. Davison, J. Knudson, R. Aryaeinejad and R. Tkachuk, Nucl. Phys. A470 (1987) 349
87CAZY J.R. Calarco, J.E. Wise, H.J. Emrich, G. Fricke, G. Herbert, M. Konig, T. Krohl, R. Neuhausen, H. Weyand and N. Zimmermann, Bull. Am. Phys. Soc. 32 (1987) 1061
87 CO 02 J. Cook, A.K. Abdallah, M.N. Stephens and K.W. Kemper, Phys. Rev. C35 (187) 126
$87 C O 16$ J. Cook, M.N. Stephens and K.W. Kemper, Nucl. Phys. A466 (1987) 168
87DE1A De Vries, De Jager and De Vries, At. Data Nucl. Data Tables 36 (1987) 495

87 DE37 F. Deak, A. Kiss, Z. Seres, G. Caskey, A. Galonsky and B. Remington, Nucl. Instrum. Meth. Phys. Res. A258 (1987) 67
87DM1C Dmitrenko et al, in Yurmala (1987) 330
87DO05 G. Domogala and H. Freiesleben, Nucl. Phys. A467 (1987) 149
87 DO07 G. Domogala, H. Freiesleben and B. Hippert, Nucl. Instrum. Meth. Phys. Res. A257 (1987) 7
87 DO12 T.W. Donnelly, A.S. Raskin and J. Dubach, Nucl. Phys. A474 (1987) 307
87DW1A R. Dwyer and P. Meyer, Astrophys. J. 322 (1987) 981
87EL1B Elevant and Andersson, Phys. Scr. T16 (1987) 148
87ER1D Eremin et al, in Yurmala (1987) 300
87FE1A Feng et al, Chin. Phys. 7 (1987) 121
87 FO21 P.B. Foot, D. Barker, C.O. Blyth, J.B.A. England, O. Karban, M.C. Mannion, J.M. Nelson, C.A. Ogilvie, C. Pinder, L. Potvin et al, J. Phys. G13 (1987) 1531

87 FR16 J. Franz, E. Rossle, C. Sauerwein, H. Schmitt, H.L. Woolverton, J. Ero, Z. Fodor, J. Kecskemeti, P. Koncz, Zs. Kovacs et al, Nucl. Phys. A472 (1987) 733
87FU06 R.J. Furnstahl and B.D. Serot, Nucl. Phys. A468 (1987) 539
87GA20 A.K. Ganguly, B. Chaudhuri and B.B. Baliga, Nuovo Cim. A97 (1987) 639
87 GO 37 A.N. Goltsov, B.S. Ishkhanov, V.N. Orlin and V.V. Sapunenko, Yad. Fiz. 46 (1987) 1434; Sov. J. Nucl. Phys. 46 (1987) 846
$87 \mathrm{GOZ0}$ N.G. Goncharova, A.N. Goltsov and Kh.R. Kissener, Prog. and Theses, Proc. 37th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Yurmala (1987) p. 164
87GR1O Greiner et al, in Panic (1987) 472
87HA30 P.G. Hansen and B. Jonson, Europhys. Lett. 4 (1987) 409
87HI1B R.D. Hichwa, E.A. Hugel, J.J. Moskwa and R.R. Raylman, Nucl. Instrum. Meth. Phys. Res. B24-25 (1987) 932
87HO1L Ho, Chin. Phys. Lett. 4 (1987) 69
87 HU02 J.R. Hurd, J.S. Boswell, R.C. Minehart, L.B. Rees, Y. Tzeng, H.J. Ziock and K.O.H. Ziock, Nucl. Phys. A462 (1987) 605
$87 J A 06$ B.V. Jacak, G.D. Westfall, G.M. Crawley, D. Fox, C.K. Gelbke, L.H. Harwood, B.E. Hasselquist, W.G. Lynch, D.K. Scott, H. Stocker et al, Phys.Rev. C35 (1987) 1751

87KA32 R.W. Kavanagh and R.G. Marcley, Phys. Rev. C36 (1987) 1194
87 KI 05 A. Kiss, F. Deak, Z. Seres, G. Caskey, A. Galonsky, L. Heilbronn, B.A. Remington and J. Kasagi, Phys. Lett. B184 (1987) 149
87KI1C Kissener, Rotter and Goncharova, Fortschr. Phys. 35 (1987) 277

87 KO 5 T 5 Kozik, J. Buschmann, K. Grotowski, H.J. Gils, N. Heide, J. Kiener, H. KleweNebenius, H. Rebel, S. Zagromski, A.J. Cole et al, Z. Phys. A326 (1987) 421
$87 K U 23$ Y. Kuno, K. Nagamine and T. Yamazaki, Nucl. Phys. A475 (1987) 615
$87 K W 01$ E. Kwasniewicz and J. Kisiel, J. Phys. G13 (1987) 121
87 KW 03 E. Kwasniewicz and J. Kisiel, Rev. Roum. Phys. 32 (1987) 607
$87 L A 16$ D. Lal, K. Nishiizumi, R.C. Reedy, M. Suter and W. Wolfli, Nucl. Phys. A468 (1987) 189; Erratum Nucl. Phys. A481 (1988) 834

87LU1B Lubovoi and Chitanava, in Jurmala (1987) 512
87LY04 W.G. Lynch, Nucl. Phys. A471 (1987) 309c
87MA2C Malaney and Fowler, OAP-680, To be Published in Origin and Dist. of the Elements (1987)

87MA2F Magda, Stud. Cercet. Fiz. (Romania) 39 (1987) 685; Phys. Abs. 96960 (1988)
87MI1A Mian, Phys. Rev. C35 (1987) 1463
87MU1D Muzitshka, Pustilnik and Avdechikov, Dubna (1987) 589
87NA01 M.N. Namboodiri, R.K. Choudhury, L. Adler, J.D. Bronson, D. Fabris, U. Garg, P.L. Gonthier, K. Hagel, D.R. Haenni, Y.W. Lui et al, Phys. Rev. C35 (1987) 149

87OS1E Osman and Saleh, Nucl. Sci. J. (Taiwan) 24 (1987) 146
87 PA01 D.J. Parker, J.J. Hogan and J. Asher, Phys. Rev. C35 (1987) 161
87 PO03 J. Pochodzalla, C.K. Gelbke, W.G. Lynch, M. Maier, D. Ardouin, H. Delagrange, H. Doubre, C. Gregoire, A. Kyanowski, W. Mittig et al, Phys. Rev. C35 (1987) 1695

87 PO15 A. Pop, M. Cenja, M. Duma, R. Dumitrescu, A. Isbasescu and M.T. Magda, Rev. Roum. Phys. 32 (1987) 603
87PO1H Povh, prog. Part. Nucl. Phys. 18 (1987) 183
87PO1I Pochodzalla, Nucl. Phys. A471 (1987) C289
87RA1D R. Ramaty and R.J. Murphy, Space Sci. Rev. 45 (1987) 213
87RA32 J. Rapaport, Can. J. Phys. 65 (1987) 574
87RI03 J. Richert and P. Wagner, Nucl. Phys. A466 (1987) 132
87RO1D C. Rolfs, H.P. Trautvetter and W.S. Rodney, Rep. Prog. Phys. 50 (1987) 233
87SA15 H. Sagawa and H. Toki, J. Phys. G13 (1987) 453
87SAZX E.T. Sadowski, H.D. Knox, D.A. Resler and R.O. Lane, Bull. Am. Phys. Soc. 32 (1987) 1061
87SH1K Shimoura and Tanihata, in Panic (1987) 480

87SH23 W. Shen, Y. Zhu, W. Zhan, Z. Guo, S. Yin, W. Qiao and X. Yu, Nucl. Phys. A472 (1987) 358
87SI1C Siemssen, Proc. Beijing Int. Symp. on Phys. at Tandem 1986 (World Scientific 1987) 317

87SN01 K. Sneppen, Nucl. Phys. A470 (1987) 213
87 ST01 G.S.F. Stephans, R.V.F. Janssens, D.G. Kovar and B.D. Wilkins, Phys. Rev. C35 (1987) 614

87SU06 T. Suzuki, D.F. Measday and J.P. Roalsvig, Phys. Rev. C35 (1987) 2212
87TA1F Tanihata et al, in Panic (1987) 474
87TE1D Ter Nersesyants, in Yurmala (1987) 540
87 TR01 H.-J. Trost, P. Lezoch and U. Strohbusch, Nucl. Phys. A462 (1987) 333
87 TR05 W. Trautmann, K.D. Hildenbrand, U. Lynen, W.F.J. Muller, H.J. Rabe, H. Sann, H. Stelzer, R. Trockel, R. Wada, N. Brummund et al, Nucl. Phys. A471 (1987) 191C

87 UL03 P.E. Ulmer, H. Baghaei, W. Bertozzi, K.I. Blomqvist, J.M. Finn, C.E. HydeWright, N. Kalantar-Nayestanaki, S. Kowalski, R.W. Lourie, J. Nelson et al, Phys. Rev. Lett. 59 (1987) 2259
87VA15 G. Van der Steenhoven, H.P. Blok, M. Thies and P.J. Mulders, Phys. Lett. B191 (1987) 227

87VA26 A.G.M. van Hees, A.A. Wolters and P.W.M. Glaudemans, Phys. Lett. B196 (1987) 19

87VD1A A.I. Vdovin, A.V. Golovin and I.I. Loschakov, Sov. J. Part. Nucl. 18 (1987) 573
87VI02 F. Videbaek, S.G. Steadman, G.G. Batrouni and J. Karp, Phys. Rev. C35 (1987) 2333

87 VO 08 V.I. Voloshchuk, I.V. Dogyust, V.V. Zolenko, V.V. Kirichenko and A.F. Khodyachikh, Ukr. Fiz. Zh. 32 (1987) 651

87 WA09 R. Wada, K.D. Hildenbrand, U. Lynen, W.F.J. Muller, H.J. Rabe, H. Sann, H. Stelzer, W. Trautmann, R. Trockel, N. Brummund et al, Phys. Rev. Lett. 58 (1987) 1829

87WE1D Webb et al, Phys. Rev. C36 (1987) 193
87WE1E Weinberg, Int. J. Mod. Phys. A2 (1987) 301
87WIZW J.S. Winfield, S.M. Austin, G.M. Crawley, C. Djalali, R.J. Smith, Z. Chen and M. Torres, Bull. Am. Phys. Soc. 32 (1987) 1076

87YA16 Yu.P. Yakovlev, Yad. Fiz. 46 (1987) 459; SOv. J. Nucl. Phys. 46 (1987) 244

88AB05 V.V. Abaev, E.P. Fedorova-Koval, A.B. Gridnev, V.P. Koptev, S.P. Kruglov,Yu.A. Malov, G.V. Scherbakov, I.I. Strakovsky and N.A. Tarasov, J. Phys. G14 (1988) 903

88ABZW S.N. Abramovich, B.Ya. Guzhovsky and V.N. Protopopov, Prog. and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Baku (1988) 299
88AJ01 F. Ajzenberg-Selove, Nucl. Phys. A490 (1988) 1
88AP1A Applegate, Phys. Rep. 163 (1988) 141
88AR1I A. Arima, Hyperfine Interactions 43 (1988) 47
88BA1H Bahcall and Ulrich, Rev. Mod. Phys. 60 (1988) 297
88BA53 H.W. Barz, H. Schulz, J.P. Bondorf, J. Lopez and K. Sneppen, Phys. Lett. B211 (1988) 10

88BE09 C.A. Bertulani and G. Baur, Nucl. Phys. A480 (1988) 615
88BE1O Bertulani and Baur, Phys. Rep. 163 (1988) 299
88BE2B Belostotsky et al, Proc. Int. Symp. on Modern Devt. in Nucl. Phys., Novosibirsk, USSR 1987 (Singapore: World Scientific 1988) 191

88BEYY R.B. Begzhanov, D.A. Gladyshev, O. Sh.Kobilov, G.A. Kulabdullaev and N. Razzakova, Prog. and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Baku (1988) 51
88BI1A Bi, Mod. Phys. Lett. A3 (1988) 653
88BL09 C. Bloch, W. Benenson, A.I. Galonsky, E. Kashy, J. Heltsley, L. Heilbronn, M. Lowe, R.J. Radtke, B. Remington, J. Kassagi et al, Phys. Rev. C37 (1988) 2469
88BU01 L. Buchman, J.M. D'Auria and P. McCorquodale, Astrophys. J. 324 (1988) 953
88BUZI V.V. Buranov, N.I. Venikov, Yu.A. Glukhov, A.M. Dobychin, A.A. Ogloblin, S.B. Sakuta and V.N. Unezhev, Prog. and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Baku (1988) 361

88CA06 G. Caskey, L. Heilbronn, B. Remington, A. Galonsky, F. Deak, A. Kiss and Z. Seres, Phys. Rev. C37 (1988) 696
88CA26 G.R. Caughlan and W.A. Fowler, At. Data Nucl. Data Tables 40 (1988) 283
88DI02 S.S. Dietrich and B.L. Berman, At. Data Nucl. Data Tables 38 (1988) 199
88DI08 J. Ding and G. He, J. Phys. G14 (1988) 1315
88DU04 E.I. Dubovoy and G.I. Chitanava, Yad. Fiz. 47 (1988) 75
88DUO6 E.I. Dubovoy and G.I. Chitanava, Yad. Fiz. 47 (1988) 370
88FA1C Fares, Bull. Amer. Phys. Soc. 33 (1988) 1768
88FE1A Ferrando et al, Phys. Rev. C37 (1988) 1490

88 FO03 D. Fox, D.A. Cebra, J. Karn, C. Parks, A. Pradhan, A. Vander Molen, J. van der Plicht, G.D. Westfall, W.K. Wilson and R.S. Tickle, Phys. Rev. C38 (1988) 146

88GA12 S.B. Gazes, H.R. Schmidt, Y. Chan, E. Chavez, R. Kamermans and R.G. Stokstad, Phys. Rev. C38 (1988) 712
88GIZU Yu.R. Gismatullin, A.A. Melentev, V.I. Ostroumov, A.M. Petukhov and M.A. Stalevich, Prog. and Theses, Proc.38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Baku (1988) 293

88HA01 P.D. Harty, M.N. Thompson, G.J. O’Keefe, R.P. Rassool, K. Mori, Y. Fujii, T. Suda, I. Nomura, O. Konno, T. Terasawa et al, Phys. Rev. C37 (1988) 13
88HA12 S.S. Hanna, J. Phys. G14 (1988) S283
88HA1Q Hansen, Nature 334 (1988) 194
88HAZT L.F. Hansen, F.S. Dietrich, R.L. Walter and J.M. Hanley, Bull. Am. Phys. Soc. 33 (1988) 1570

88 HI 02 R.S. Hicks, J. Button-Shafer, B. Debebe, J. Dubach, A. Hotta, R.L. Huffman, R.A. Lindgren, G.A. Peterson, R.P. Singhal and C.W. de Jager, Phys. Rev. Lett. 60 (1988) 905
88HI1F R.D. Hichwa, Bull. Amer. Phys. Soc. 33 (1988) 1747
88HN01 V. Hnizdo and K.W. Kemper, Phys. Rev. C38 (1988) 1242
88HO10 T. Hoshino, H. Sagawa and A. Arima, Nucl. Phys. A481 (1988) 458
88JO1C Jonson et al, AIP Conf. Proc. 164 (1988) 223
88KA1L Kademsky et al, Baku (1988) 462
88KA30 M.A. Kayumov, Sh.S. Kayumov, S.P. Krekoten, A.M. Mukhamedzhanov, Kh.D. Razikov, K. Khamidova and R. Yarmukhamedov, Yad. Fiz. 48 (1988) 629
88KH11 A.E. Khalil, Can. J. Phys. 66 (1988) 612
88KH1G Khan et al, Bull. Amer. Phys. Soc. 33 (1988) 2193
88KI05 J.M. Kidd, P.J. Lindstrom, H.J. Crawford and G. Woods, Phys. Rev. C37 (1988) 2613
88KI06 A. Kiss, F. Deak, Z. Seres, G. Caskey, A. Galonsky, L. Heilbronn and B. Remington, Phys. Rev. C38 (1988) 170
88 KO 10 T. Kobayashi, O. Yamakawa, K. Omata, K. Sugimoto, T. Shimoda, N. Takahashi and I. Tanihata, Phys. Rev. Lett. 60 (1988) 2599
88KW1A Kwasniewicz and Kisiel, Acta Phys. Pol. B19 (1988) 141
88LO1C Lombard and Maillet, Europhys. Lett. 6 (1988) 323
88MA07 J.F. Mateja, G.L. Gentry, N.R. Fletcher, L.C. Dennis and A.D. Frawley, Phys. Rev. C37 (1988) 1004

88MA1G Majling et al, Phys. Lett. B202 (1988) 489
88MA1H Manokhin, INDC(CCP)-283 (1988)
88MA1U R.A. Malaney and W.A. Fowler, Astrophys. J. 333 (1988) 14
88MCZT V. McLane, C.L. Dunford and P.F. Rose, Neutron Cross Sect., Vol. 2 (Academic Press, Inc. 1988)
88MI28 M. Mishra, M. Satpathy and L. Satpathy, J. Phys. G14 (1988) 1115
88MO1K Moretto and Wozniak, Prog. Part. Nucl. Phys. 21 (1988) 401
88MO1L Motoba, Itonaga and Bando, Nucl. Phys. A489 (1988) 683
88MU05 S.F. Mughabghab, J. Phys. G14 Supplement (1988) S231
$880 R 02$ V.N. Orlin, Nucl. Phys. A489 (1988) 430
88OR1C Ormand and Brown, NBI-87-63 (1988)
88PAZS S.J. Padalino, T.G. Declerk, M.A. Putnam, J.A. Constable, L.C. Dennis, K. Sartor, R.A. Zingarelli and R.C. Kline, Bull. Am. Phys. Soc. 33 (1988) 1562

88PO1E N.A.F.M. Poppelier, J.H. de Vries, A.A. Wolters and P.W.M. Glaudemans, AIP Conf. Proc. 164 (1988) 334

88RA10 S. Raman, S. Kahane and J.E. Lynn, J. Phys. G14, Supplement (1988) S223
88RA1E Raghavan, Nucl. Phys. A478 (1988) 779C
88RE09 D.A. Resler and E.T. Sadowski, Nucl. Instrum. Meth. Phys. Res. A269 (1988) 607

88RE1B Rebolo et al, Astron. Astrophys. 193 (1988) 193
88RU01 V.A. Rubchenya and S.G. Yavshits, Z. Phys. A329 (1988) 217
88SA19 H. Sato, Phys. Rev. C37 (1988) 2902
88SA2P Sapathy and Navak, in AIP Conf. Proc. 164 (1988) 80
88SA2Q Sale, Bull. Amer. Phys. Soc. 33 (1988) 1720
88SH08 A.C. Shotter, S. Springham, D. Branford, J. Yorkston, J.C. McGeorge, B. Schoch and P. Jennewein, Phys. Rev. C37 (1988) 1354
88SH1E Shvedov, Nemets and Rudchik, Baku (1988) 351
88SI08 P.J. Simmonds, K.I. Pearce, P.R. Hayes, N.M. Clarke, R.J. Griffiths, M.C. Mannion and C.A. Ogilvie, Nucl. Phys. A482 (1988) 653
88SM07 A.R. Smith, J.C. Hill, J.A. Winger, P.J. Karol, Phys. Rev. C38 (1988) 210
88ST06 J. Stevenson, B.A. Brown, Y. Chen, J. Clayton, E. Kashy, D. Mikolas, J. Nolen, M. Samuel, B. Sherrill, J.S. Winfield et al, Phys. Rev. C37 (1988) 2220

88SU02 T. Suzuki, Phys. Rev. C37 (1988) 549; Erratum Phys. Rev. C39 (1989) 287
88SUZY A. Suhaimi, JUL-2196 (1988)

88 TA10 I. Tanihata, T. Kobayashi, O. Yamakawa, S. Shimoura, K. Ekuni, K. Sugimoto, N. Takahashi, T. Shimoda and H. Sato, Phys. Lett. B206 (1988) 592

88 TA14 L. Tang, E. Hungerford, T. Kishimoto, B. Mayes, L. Pinsky, S. Bart, R. Chrien, P. Pile, R. Sutter, P. Barnes et al, Phys. Rev. C38 (1988) 846

88TA1A Tanihata, Nucl. Phys. A478 (1988) 795C
88TA1B Tamura et al, Nucl. Phys. A479 (1988) 161C
88TA1C Tanihata, AIP Conf. proc. 164 (1988) 213
88TA1N Tanihata, Nucl. Phys. A488 (1988) 113C
88 TE03 W. Terlau, M. Burgel, A. Budzanowski, H. Fuchs, H. Homeyer, G. Roschert, J. Uckert and R. Vogel, Z. Phys. A330 (1988) 303
$88 T R 03$ R. Trockel, K.D. Hildenbrand, U. Lyen, W.F.L. Muller, H.J. Rabe, H. Sann, H. Stelzer, W. Trautmann, R. Wada, E. Eckert et al, Phys. Rev. C38 (1988) 576
88UC03 F. Uchiyama and N. Masuda, Phys. Rev. C38 (1988) 2670
88UT02 H. Utsunomiya and R.P. Schmitt, Nucl. Phys. A487 (1988) 162
88VA03 A.G.M. van Hees, A.A. Wolters and P.W.M. Glaudemans, Nucl. Phys. A476 (1988) 61

88VA09 G. van der Steenhoven, H.P. Blok, E. Jans, M. de Jong, L. Lapikas, E.N.M. Quint and P.K.A. de Witt Huberts, Nucl. Phys. A480 (1988) 547

88VA21 G. van der Steenhoven, H.P. Blok, E. Jans, L. Lapikas, E.N.M. Quint and P.K.A. de Witt Huberts, Nucl. Phys. A484 (1988) 445

88VO08 W. von Oertzen, E. Adamides, M. Buenerd, J. Chauvin, D. Lebrun, J.Y. Hostachy, G. Duhamel, Ph. Martin, G. Perrin and P. de Saintignon, Nucl. Phys. A487 (1988) 195
88VO1D J.R. Votaw, Bull. Amer. Phys. Soc. 33 (1988) 1748
88VUZZ V.A. Vukolov and F.E. Chukreev, Prog. and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Baku (1988) 560
88WA08 F. Wang, C.W. Wong and S.-Q. Lu, Nucl. Phys. A480 (1988) 490
88WA18 A.H. Wapstra, G. Audi and R. Hoekstra, At. Data Nucl. Data Tables 39 (1988) 281

88WA1E Warburton, Int. and Struct. in Nucl., Proc. in Honor of D.H. Wilkinson, Sussex, Sept. 1987; Adam Hilger Publ. (1988) 81

88 WI09 J.S. Winfield, S.M. Austin, G.M. Crawley, C. Djalali, C.A. Ogilvie, R.J. Smith, Z. Chen and M. Torres, Phys. Lett. B203 (1988) 345

88WO04 A.A. Wolters, A.G.M. van Hees and P.W.M. Glaudemans, Europhys. Lett. 5 (1988) 7

88WO09 J.M. Wouters, R.H. Kraus, Jr., D.J. Vieira, G.W. Butler and K.E.G. Löbner, Z. Phys. A331 (1988) 229

88XI1B Xiao, Beary and Fassett, Int. J. Mass. Spectrom. Ion Proc. 85 (1988) 203
88YOZX J.C. Young, F.P. Brady, J.L. Romero, G.A. Needham and J.L. Ullmann, Bull. Am. Phys. Soc. 33 (1988) 1568
88ZH1B Zhusupov and Usmanov, Baku (1988) 167
88ZVZZ A.G. Zvenigorodsky, S.N. Abramovich, B.Ya. Guzhovsky and O.A. Pelipenko, Prog. and Theses, Proc. 38th Ann. Conf. Nucl. Spectrosc. Struct. At. Nucl., Baku (1988) 297

89AJ1A Ajzenberg-Selove,"Heavy Ions in Nucl. and At. Phys" (1988 Mikolajki Summer Sch. on Nucl. Phys.), Ed. Wilhelmi and Szeflinska; Adam Hilger Publ. (1989) 1
89AR1G Arnould et al, Tokyo (1988) 287
89BA1T Baur, Tokyo (1989) 225
89BA60 F. C. Barker and C. L. Woods, Aust. J. Phys. 42 (1989) 233
89BE03 G. F. Bertsch, B. A. Brown and H. Sagawa, Phys. Rev. C39 (1989) 1154
89BL1D Blann and Remington,"Heavy Ions in Nucl. and At. Phys." (1988 Mikolajki Summer Sch. on Nucl. Phys.), Ed. Wilhelmi and Szeflinska; Adam Hilger Publ. (1989) 97

89BO1F Boyd, Ferland and Schramm, Astrophys. J. 336 (1989) L1
89BO1K Boyd et al, Tokyo (1988) 39
89BO1M Boyd et al, science 244 (1989) 1450
89BOZZ P. Boberg, C.C. Chang, H. Breuer, N.S. Chant, A.E. Feldman, B.S. Flanders, S.D. Hyman, J.J. Kelly, M. Khandaker, H. Seifert et al, Bull. Am. Phys. Soc. 34 (1989) 1153
89CEZZ D.A. Cebra, J. Clayton, S. Howden, J. Karn, A. Nadasen, C. Ogilvie, A. Vander Molen, G.D. Westfall, W.K. Wilson and J. Winfield, Bull. Am. Phys. Soc. 34 (1989) 1221

89CL01 W.B. Clarke and R.F. Fleming, Phys. Rev. C39 (1989) 1633
89FE01 H. Ferdinande, D. Ryckbosch, E. Kerkhove, P. Berkvens, R. Van de Vyver, A. De Graeve and L. Van Hoorebeke, Phys. Rev. C39 (1989) 253

89GU1Q Gupta and Webber, Astrophys. J. 340 (1989) 1124
89HA1L Harvey et al, Phys. Rev. C39 (1989) 841
89JI1A L. Jin, W.D. Arnett and S.K. Chakrabarti, Astrophys. J. 336 (1989) 572
89KO1P Kobayashi, Tokyo (1988) 217
89MI1G Missemer and Simons, Wein 89 (1989) Paper PB17

89MI30 M. Mian, Phys. Rev. C39 (1989) 279
$890 R 02$ W.E. Ormand and B.A. Brown, Nucl. Phys. A491 (1989) 1
89PA06 D.J. Parker, J.J. Hogan and J. Asher, Phys. Rev. C39 (1989) 2256
89PIZZ J. Piekarewicz and C.J. Horowitz, Bull. Am. Phys. Soc. 34 (1989) 1154
89PO06 N.T. Porile, A.J. Bujak, D.D. Carmony, Y.H. Chung, L.J. Gutay, A.S. Hirsch, M. Mahi, G.L. Paderewski, T.C. Sangster, R.P. Scharenberg et al, Phys. Rev. C39 (1989) 1914

89RA09 J. Rapaport, P.W. Lisowski, J.L. Ullmann, R.C. Byrd, T.A. Carey, J.B. McClelland, L.J. Rybarcyk, T.N. Taddeucci, R.C. Haight, N.S.P. King et al, Phys. Rev. C39 (1989) 1929
89ROZW J.L. Romero, G.A. Needham, F.P. Brady, C.M. Castaneda, J.R. Drummond, T.D. Ford, E.H. Hjort, B.C. McEachern, D.C. Sorenson, R. Zounes et al, Bull. Am. Phys. Soc. 34 (1989) 1244

89RY03 J. Ryckebusch, K. Heyde, D. Van Neck and M. Waroquier, Phys. Lett. B222 (1989) 183

89SA10 M.G. Saint-Laurent, R. Anne, D. Bazin, D. Guillemaud-Mueller, U. Jahnke, Jin Gen-Ming, A.C. Mueller, J.F. Bruandet, F. Glasser, S. Kox et al, Z. Phys. A332 (1989) 457

89SE03 Z. Seres, F. Deak, A. Kiss, G. Caskey, A. Galonsky, L. Heilbronn and B. Remington, Nucl. Phys. A492 (1989) 315
89ST1G Stokstad et al, "Heavy Ion in Nucl. and At. Phys." (1988 Mikolajki Summer Sch. on Nucl. Phys.) Eds. Wilhelmi and Szeflinska; Adam Hilger Publ. (1989) 141

89SZ01 A. Szanto de Toledo, M.M. Coimbra, N. Added, R.M. Anjos, N. Carlin Filho, L. Fante, Jr., M.C.S. Figueira, V. Guimaraes and E.M. Szanto, Phys. Rev. Lett. 62 (1989) 1255
89TA1K Tanihata, Tokyo (1989) 185
89TEZZ J.A. Templon, L.C. Bland, K. Murphy, B.A. Raue, W. Anderson, D.S. Carman, G.M. Huber, B.C. Markham, D.W. Miller and P. Schwandt, Bull. Am. Phys. Soc. 34 (1989) 1142

89TR1B Tribble, Burch and Gagliardi, Tokyo (1989) 261
89VO1D Von Oertzen, Tokyo (1989) 373
89 WI07 J.S. Winfield, E. Adamides, S.M. Austin, G.M. Crawley, M.F. Mohar, C.A. Ogilvie, B. Sherrill, M. Torres, G. Yoo and A. Nadasen, Phys. Rev. C39 (1989) 1395
89WO1B Wood, Bull. Amer. Phys. Soc. 34 (1989) 1133

89YO02 A. Yokoyama, T. Saito, H. Baba, K. Hata, Y. Nagame, S. Ichikawa, S. Baba, A. Shinohara and N. Imanishi, Z. Phys. A332 (1989) 71
90AJ01 F. Ajzenberg-Selove, Nucl. Phys. A506 (1990) 1

[^0]: a See discussion in (MI82C). See also Table 11.4 in (80AJ01) and Tables 11.5 and 11.13 here.
 ${ }^{\text {b }}$ See also (65OL03).
 c $\delta=-0.19 \pm 0.03$.
 d $\delta=0.03 \pm 0.05$.
 e $\delta=-0.05 \pm 0.02$.
 ${ }^{\text {f }} \delta=-0.45 \pm 0.18$. This value leads to too large a value of Γ_{γ} for an M3 transition (P.M. Endt, private communication).
 ${ }^{\mathrm{g}}$ This is probably the ${ }^{11} \mathrm{~B}$ analog of ${ }^{11} \mathrm{C}^{*}(8.10)$. If so $J^{\pi}=\frac{3}{2}^{-}$.
 h $\delta=-0.11 \pm 0.04$.
 ${ }^{\text {i }}$ Weighted mean of branching ratios and Γ_{γ} (84HA13). Earlier work is also included: see (84HA13).

[^1]: ${ }^{\text {a }}$ Mostly from (66CU02). For other parameters see Table 11.9 in (75AJ02). See also Table 11.8 in (85AJ01).
 ${ }^{\text {b }}{ }^{7} \mathrm{Li}\left(\alpha, \alpha^{\prime} \gamma\right)^{7} \mathrm{Li}: \sigma$ (total).
 ${ }^{\text {c }}{ }^{7} \mathrm{Li}\left(\alpha, \alpha_{0}\right)^{7} \mathrm{Li}$.
 ${ }^{d}{ }^{7} \operatorname{Li}(\alpha, \mathrm{n}){ }^{10} \mathrm{~B}$ threshold.
 ${ }^{e}$ Anomaly in angular distribution.
 ${ }^{\mathrm{f}}$ Observed at $\theta=60^{\circ}$.

[^2]: ${ }^{\text {a }}$ See also Table 11.4 here, and Table 11.16 in (80AJJ01). For references see Table 11.14 in (85AJ01).
 ${ }^{\mathrm{b}}$ Mean of values shown in Table 11.14 (85AJ01).

[^3]: ${ }^{\text {a }}$ See also Table 11.17 here, and Tables 11.23 and 11.24 in (75AJ02). Table 11.23 displays some other reported resonances; Table 11.24 gives detailed parameters for ${ }^{11} \mathrm{C}^{*}(9.73,10.08,10.68,12.65)$. For references see Table 11.22 in (80AJ01). For unpublished work and other references see Table 11.20 in (85AJ01). (88ABZW) [in (p, $\mathrm{p}^{\prime} \gamma$) and ($\mathrm{p}, \alpha \gamma$); $E_{\mathrm{p}}=2$ to 5 MeV prelim.] report 5 states with energies $11.84,11.37(?), 12.63,12.75$, and 13.1 MeV .
 b (83WI09).
 ${ }^{c} \Gamma_{\gamma} / \Gamma_{\text {tot }}=(2.6 \pm 0.15) \times 10^{-4}:$ see (83WI09) $. \Gamma_{\gamma} / \Gamma_{\text {tot }}=0.20 \pm 0.05$ and <0.06, respectively for ${ }^{11} \mathrm{C}^{*}(8.42,8.66)$, respectively: $\Gamma_{\text {tot }} \leq 5 \mathrm{keV}$ for both states (83WI09).
 ${ }^{\mathrm{d}} \Gamma_{\mathrm{p}} \Gamma_{\gamma} / \Gamma \approx 20 \mathrm{eV}$.
 ${ }^{e}$ Probably part of the E1 giant resonance.

